projectEli/Assets/KinematicCharacterController/Walkthrough/14- Climbing Ladders/Scripts/MyCharacterController.cs

604 lines
27 KiB
C#
Raw Normal View History

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using KinematicCharacterController;
using System;
namespace KinematicCharacterController.Walkthrough.ClimbingLadders
{
public enum CharacterState
{
Default,
Climbing,
}
public enum ClimbingState
{
Anchoring,
Climbing,
DeAnchoring
}
public struct PlayerCharacterInputs
{
public float MoveAxisForward;
public float MoveAxisRight;
public Quaternion CameraRotation;
public bool JumpDown;
public bool CrouchDown;
public bool CrouchUp;
public bool ClimbLadder;
}
public class MyCharacterController : MonoBehaviour, ICharacterController
{
public KinematicCharacterMotor Motor;
[Header("Stable Movement")]
public float MaxStableMoveSpeed = 10f;
public float StableMovementSharpness = 15;
public float OrientationSharpness = 10;
public float MaxStableDistanceFromLedge = 5f;
[Range(0f, 180f)]
public float MaxStableDenivelationAngle = 180f;
[Header("Air Movement")]
public float MaxAirMoveSpeed = 10f;
public float AirAccelerationSpeed = 5f;
public float Drag = 0.1f;
[Header("Jumping")]
public bool AllowJumpingWhenSliding = false;
public bool AllowDoubleJump = false;
public bool AllowWallJump = false;
public float JumpSpeed = 10f;
public float JumpPreGroundingGraceTime = 0f;
public float JumpPostGroundingGraceTime = 0f;
[Header("Ladder Climbing")]
public float ClimbingSpeed = 4f;
public float AnchoringDuration = 0.25f;
public LayerMask InteractionLayer;
[Header("Misc")]
public List<Collider> IgnoredColliders = new List<Collider>();
public bool OrientTowardsGravity = false;
public Vector3 Gravity = new Vector3(0, -30f, 0);
public Transform MeshRoot;
public CharacterState CurrentCharacterState { get; private set; }
private Collider[] _probedColliders = new Collider[8];
private Vector3 _moveInputVector;
private Vector3 _lookInputVector;
private bool _jumpRequested = false;
private bool _jumpConsumed = false;
private bool _doubleJumpConsumed = false;
private bool _jumpedThisFrame = false;
private bool _canWallJump = false;
private Vector3 _wallJumpNormal;
private float _timeSinceJumpRequested = Mathf.Infinity;
private float _timeSinceLastAbleToJump = 0f;
private Vector3 _internalVelocityAdd = Vector3.zero;
private bool _shouldBeCrouching = false;
private bool _isCrouching = false;
// Ladder vars
private float _ladderUpDownInput;
private MyLadder _activeLadder { get; set; }
private ClimbingState _internalClimbingState;
private ClimbingState _climbingState
{
get
{
return _internalClimbingState;
}
set
{
_internalClimbingState = value;
_anchoringTimer = 0f;
_anchoringStartPosition = Motor.TransientPosition;
_anchoringStartRotation = Motor.TransientRotation;
}
}
private Vector3 _ladderTargetPosition;
private Quaternion _ladderTargetRotation;
private float _onLadderSegmentState = 0;
private float _anchoringTimer = 0f;
private Vector3 _anchoringStartPosition = Vector3.zero;
private Quaternion _anchoringStartRotation = Quaternion.identity;
private Quaternion _rotationBeforeClimbing = Quaternion.identity;
private void Start()
{
// Assign to motor
Motor.CharacterController = this;
// Handle initial state
TransitionToState(CharacterState.Default);
}
/// <summary>
/// Handles movement state transitions and enter/exit callbacks
/// </summary>
public void TransitionToState(CharacterState newState)
{
CharacterState tmpInitialState = CurrentCharacterState;
OnStateExit(tmpInitialState, newState);
CurrentCharacterState = newState;
OnStateEnter(newState, tmpInitialState);
}
/// <summary>
/// Event when entering a state
/// </summary>
public void OnStateEnter(CharacterState state, CharacterState fromState)
{
switch (state)
{
case CharacterState.Default:
{
break;
}
case CharacterState.Climbing:
{
_rotationBeforeClimbing = Motor.TransientRotation;
Motor.SetMovementCollisionsSolvingActivation(false);
Motor.SetGroundSolvingActivation(false);
_climbingState = ClimbingState.Anchoring;
// Store the target position and rotation to snap to
_ladderTargetPosition = _activeLadder.ClosestPointOnLadderSegment(Motor.TransientPosition, out _onLadderSegmentState);
_ladderTargetRotation = _activeLadder.transform.rotation;
break;
}
}
}
/// <summary>
/// Event when exiting a state
/// </summary>
public void OnStateExit(CharacterState state, CharacterState toState)
{
switch (state)
{
case CharacterState.Default:
{
break;
}
case CharacterState.Climbing:
{
Motor.SetMovementCollisionsSolvingActivation(true);
Motor.SetGroundSolvingActivation(true);
break;
}
}
}
/// <summary>
/// This is called every frame by MyPlayer in order to tell the character what its inputs are
/// </summary>
public void SetInputs(ref PlayerCharacterInputs inputs)
{
// Handle ladder transitions
_ladderUpDownInput = inputs.MoveAxisForward;
if (inputs.ClimbLadder)
{
if (Motor.CharacterOverlap(Motor.TransientPosition, Motor.TransientRotation, _probedColliders, InteractionLayer, QueryTriggerInteraction.Collide) > 0)
{
if (_probedColliders[0] != null)
{
// Handle ladders
MyLadder ladder = _probedColliders[0].gameObject.GetComponent<MyLadder>();
if (ladder)
{
// Transition to ladder climbing state
if (CurrentCharacterState == CharacterState.Default)
{
_activeLadder = ladder;
TransitionToState(CharacterState.Climbing);
}
// Transition back to default movement state
else if (CurrentCharacterState == CharacterState.Climbing)
{
_climbingState = ClimbingState.DeAnchoring;
_ladderTargetPosition = Motor.TransientPosition;
_ladderTargetRotation = _rotationBeforeClimbing;
}
}
}
}
}
// Clamp input
Vector3 moveInputVector = Vector3.ClampMagnitude(new Vector3(inputs.MoveAxisRight, 0f, inputs.MoveAxisForward), 1f);
// Calculate camera direction and rotation on the character plane
Vector3 cameraPlanarDirection = Vector3.ProjectOnPlane(inputs.CameraRotation * Vector3.forward, Motor.CharacterUp).normalized;
if (cameraPlanarDirection.sqrMagnitude == 0f)
{
cameraPlanarDirection = Vector3.ProjectOnPlane(inputs.CameraRotation * Vector3.up, Motor.CharacterUp).normalized;
}
Quaternion cameraPlanarRotation = Quaternion.LookRotation(cameraPlanarDirection, Motor.CharacterUp);
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
// Move and look inputs
_moveInputVector = cameraPlanarRotation * moveInputVector;
_lookInputVector = cameraPlanarDirection;
// Jumping input
if (inputs.JumpDown)
{
_timeSinceJumpRequested = 0f;
_jumpRequested = true;
}
// Crouching input
if (inputs.CrouchDown)
{
_shouldBeCrouching = true;
if (!_isCrouching)
{
_isCrouching = true;
Motor.SetCapsuleDimensions(0.5f, 1f, 0.5f);
MeshRoot.localScale = new Vector3(1f, 0.5f, 1f);
}
}
else if (inputs.CrouchUp)
{
_shouldBeCrouching = false;
}
break;
}
}
}
/// <summary>
/// (Called by KinematicCharacterMotor during its update cycle)
/// This is called before the character begins its movement update
/// </summary>
public void BeforeCharacterUpdate(float deltaTime)
{
}
/// <summary>
/// (Called by KinematicCharacterMotor during its update cycle)
/// This is where you tell your character what its rotation should be right now.
/// This is the ONLY place where you should set the character's rotation
/// </summary>
public void UpdateRotation(ref Quaternion currentRotation, float deltaTime)
{
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
if (_lookInputVector != Vector3.zero && OrientationSharpness > 0f)
{
// Smoothly interpolate from current to target look direction
Vector3 smoothedLookInputDirection = Vector3.Slerp(Motor.CharacterForward, _lookInputVector, 1 - Mathf.Exp(-OrientationSharpness * deltaTime)).normalized;
// Set the current rotation (which will be used by the KinematicCharacterMotor)
currentRotation = Quaternion.LookRotation(smoothedLookInputDirection, Motor.CharacterUp);
}
if (OrientTowardsGravity)
{
// Rotate from current up to invert gravity
currentRotation = Quaternion.FromToRotation((currentRotation * Vector3.up), -Gravity) * currentRotation;
}
break;
}
case CharacterState.Climbing:
{
switch (_climbingState)
{
case ClimbingState.Climbing:
currentRotation = _activeLadder.transform.rotation;
break;
case ClimbingState.Anchoring:
case ClimbingState.DeAnchoring:
currentRotation = Quaternion.Slerp(_anchoringStartRotation, _ladderTargetRotation, (_anchoringTimer / AnchoringDuration));
break;
}
break;
}
}
}
/// <summary>
/// (Called by KinematicCharacterMotor during its update cycle)
/// This is where you tell your character what its velocity should be right now.
/// This is the ONLY place where you can set the character's velocity
/// </summary>
public void UpdateVelocity(ref Vector3 currentVelocity, float deltaTime)
{
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
Vector3 targetMovementVelocity = Vector3.zero;
if (Motor.GroundingStatus.IsStableOnGround)
{
// Reorient velocity on slope
currentVelocity = Motor.GetDirectionTangentToSurface(currentVelocity, Motor.GroundingStatus.GroundNormal) * currentVelocity.magnitude;
// Calculate target velocity
Vector3 inputRight = Vector3.Cross(_moveInputVector, Motor.CharacterUp);
Vector3 reorientedInput = Vector3.Cross(Motor.GroundingStatus.GroundNormal, inputRight).normalized * _moveInputVector.magnitude;
targetMovementVelocity = reorientedInput * MaxStableMoveSpeed;
// Smooth movement Velocity
currentVelocity = Vector3.Lerp(currentVelocity, targetMovementVelocity, 1 - Mathf.Exp(-StableMovementSharpness * deltaTime));
}
else
{
// Add move input
if (_moveInputVector.sqrMagnitude > 0f)
{
targetMovementVelocity = _moveInputVector * MaxAirMoveSpeed;
// Prevent climbing on un-stable slopes with air movement
if (Motor.GroundingStatus.FoundAnyGround)
{
Vector3 perpenticularObstructionNormal = Vector3.Cross(Vector3.Cross(Motor.CharacterUp, Motor.GroundingStatus.GroundNormal), Motor.CharacterUp).normalized;
targetMovementVelocity = Vector3.ProjectOnPlane(targetMovementVelocity, perpenticularObstructionNormal);
}
Vector3 velocityDiff = Vector3.ProjectOnPlane(targetMovementVelocity - currentVelocity, Gravity);
currentVelocity += velocityDiff * AirAccelerationSpeed * deltaTime;
}
// Gravity
currentVelocity += Gravity * deltaTime;
// Drag
currentVelocity *= (1f / (1f + (Drag * deltaTime)));
}
// Handle jumping
{
_jumpedThisFrame = false;
_timeSinceJumpRequested += deltaTime;
if (_jumpRequested)
{
// Handle double jump
if (AllowDoubleJump)
{
if (_jumpConsumed && !_doubleJumpConsumed && (AllowJumpingWhenSliding ? !Motor.GroundingStatus.FoundAnyGround : !Motor.GroundingStatus.IsStableOnGround))
{
Motor.ForceUnground(0.1f);
// Add to the return velocity and reset jump state
currentVelocity += (Motor.CharacterUp * JumpSpeed) - Vector3.Project(currentVelocity, Motor.CharacterUp);
_jumpRequested = false;
_doubleJumpConsumed = true;
_jumpedThisFrame = true;
}
}
// See if we actually are allowed to jump
if (_canWallJump ||
(!_jumpConsumed && ((AllowJumpingWhenSliding ? Motor.GroundingStatus.FoundAnyGround : Motor.GroundingStatus.IsStableOnGround) || _timeSinceLastAbleToJump <= JumpPostGroundingGraceTime)))
{
// Calculate jump direction before ungrounding
Vector3 jumpDirection = Motor.CharacterUp;
if (_canWallJump)
{
jumpDirection = _wallJumpNormal;
}
else if (Motor.GroundingStatus.FoundAnyGround && !Motor.GroundingStatus.IsStableOnGround)
{
jumpDirection = Motor.GroundingStatus.GroundNormal;
}
// Makes the character skip ground probing/snapping on its next update.
// If this line weren't here, the character would remain snapped to the ground when trying to jump. Try commenting this line out and see.
Motor.ForceUnground(0.1f);
// Add to the return velocity and reset jump state
currentVelocity += (jumpDirection * JumpSpeed) - Vector3.Project(currentVelocity, Motor.CharacterUp);
_jumpRequested = false;
_jumpConsumed = true;
_jumpedThisFrame = true;
}
}
// Reset wall jump
_canWallJump = false;
}
// Take into account additive velocity
if (_internalVelocityAdd.sqrMagnitude > 0f)
{
currentVelocity += _internalVelocityAdd;
_internalVelocityAdd = Vector3.zero;
}
break;
}
case CharacterState.Climbing:
{
currentVelocity = Vector3.zero;
switch (_climbingState)
{
case ClimbingState.Climbing:
currentVelocity = (_ladderUpDownInput * _activeLadder.transform.up).normalized * ClimbingSpeed;
break;
case ClimbingState.Anchoring:
case ClimbingState.DeAnchoring:
Vector3 tmpPosition = Vector3.Lerp(_anchoringStartPosition, _ladderTargetPosition, (_anchoringTimer / AnchoringDuration));
currentVelocity = Motor.GetVelocityForMovePosition(Motor.TransientPosition, tmpPosition, deltaTime);
break;
}
break;
}
}
}
/// <summary>
/// (Called by KinematicCharacterMotor during its update cycle)
/// This is called after the character has finished its movement update
/// </summary>
public void AfterCharacterUpdate(float deltaTime)
{
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
// Handle jump-related values
{
// Handle jumping pre-ground grace period
if (_jumpRequested && _timeSinceJumpRequested > JumpPreGroundingGraceTime)
{
_jumpRequested = false;
}
if (AllowJumpingWhenSliding ? Motor.GroundingStatus.FoundAnyGround : Motor.GroundingStatus.IsStableOnGround)
{
// If we're on a ground surface, reset jumping values
if (!_jumpedThisFrame)
{
_doubleJumpConsumed = false;
_jumpConsumed = false;
}
_timeSinceLastAbleToJump = 0f;
}
else
{
// Keep track of time since we were last able to jump (for grace period)
_timeSinceLastAbleToJump += deltaTime;
}
}
// Handle uncrouching
if (_isCrouching && !_shouldBeCrouching)
{
// Do an overlap test with the character's standing height to see if there are any obstructions
Motor.SetCapsuleDimensions(0.5f, 2f, 1f);
if (Motor.CharacterOverlap(
Motor.TransientPosition,
Motor.TransientRotation,
_probedColliders,
Motor.CollidableLayers,
QueryTriggerInteraction.Ignore) > 0)
{
// If obstructions, just stick to crouching dimensions
Motor.SetCapsuleDimensions(0.5f, 1f, 0.5f);
}
else
{
// If no obstructions, uncrouch
MeshRoot.localScale = new Vector3(1f, 1f, 1f);
_isCrouching = false;
}
}
break;
}
case CharacterState.Climbing:
{
switch (_climbingState)
{
case ClimbingState.Climbing:
// Detect getting off ladder during climbing
_activeLadder.ClosestPointOnLadderSegment(Motor.TransientPosition, out _onLadderSegmentState);
if (Mathf.Abs(_onLadderSegmentState) > 0.05f)
{
_climbingState = ClimbingState.DeAnchoring;
// If we're higher than the ladder top point
if (_onLadderSegmentState > 0)
{
_ladderTargetPosition = _activeLadder.TopReleasePoint.position;
_ladderTargetRotation = _activeLadder.TopReleasePoint.rotation;
}
// If we're lower than the ladder bottom point
else if (_onLadderSegmentState < 0)
{
_ladderTargetPosition = _activeLadder.BottomReleasePoint.position;
_ladderTargetRotation = _activeLadder.BottomReleasePoint.rotation;
}
}
break;
case ClimbingState.Anchoring:
case ClimbingState.DeAnchoring:
// Detect transitioning out from anchoring states
if (_anchoringTimer >= AnchoringDuration)
{
if (_climbingState == ClimbingState.Anchoring)
{
_climbingState = ClimbingState.Climbing;
}
else if (_climbingState == ClimbingState.DeAnchoring)
{
TransitionToState(CharacterState.Default);
}
}
// Keep track of time since we started anchoring
_anchoringTimer += deltaTime;
break;
}
break;
}
}
}
public bool IsColliderValidForCollisions(Collider coll)
{
if (IgnoredColliders.Contains(coll))
{
return false;
}
return true;
}
public void OnGroundHit(Collider hitCollider, Vector3 hitNormal, Vector3 hitPoint, ref HitStabilityReport hitStabilityReport)
{
}
public void OnMovementHit(Collider hitCollider, Vector3 hitNormal, Vector3 hitPoint, ref HitStabilityReport hitStabilityReport)
{
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
// We can wall jump only if we are not stable on ground and are moving against an obstruction
if (AllowWallJump && !Motor.GroundingStatus.IsStableOnGround && !hitStabilityReport.IsStable)
{
_canWallJump = true;
_wallJumpNormal = hitNormal;
}
break;
}
}
}
public void AddVelocity(Vector3 velocity)
{
switch (CurrentCharacterState)
{
case CharacterState.Default:
{
_internalVelocityAdd += velocity;
break;
}
}
}
public void ProcessHitStabilityReport(Collider hitCollider, Vector3 hitNormal, Vector3 hitPoint, Vector3 atCharacterPosition, Quaternion atCharacterRotation, ref HitStabilityReport hitStabilityReport)
{
}
public void PostGroundingUpdate(float deltaTime)
{
}
public void OnDiscreteCollisionDetected(Collider hitCollider)
{
}
}
}