projectEli/Assets/KinematicCharacterController/Core/KinematicCharacterMotor.cs

2689 lines
118 KiB
C#
Raw Normal View History

using System;
using System.Collections.Generic;
using UnityEngine;
namespace KinematicCharacterController
{
public enum RigidbodyInteractionType
{
None,
Kinematic,
SimulatedDynamic
}
public enum StepHandlingMethod
{
None,
Standard,
Extra
}
public enum MovementSweepState
{
Initial,
AfterFirstHit,
FoundBlockingCrease,
FoundBlockingCorner,
}
/// <summary>
/// Represents the entire state of a character motor that is pertinent for simulation.
/// Use this to save state or revert to past state
/// </summary>
[System.Serializable]
public struct KinematicCharacterMotorState
{
public Vector3 Position;
public Quaternion Rotation;
public Vector3 BaseVelocity;
public bool MustUnground;
public float MustUngroundTime;
public bool LastMovementIterationFoundAnyGround;
public CharacterTransientGroundingReport GroundingStatus;
public Rigidbody AttachedRigidbody;
public Vector3 AttachedRigidbodyVelocity;
}
/// <summary>
/// Describes an overlap between the character capsule and another collider
/// </summary>
public struct OverlapResult
{
public Vector3 Normal;
public Collider Collider;
public OverlapResult(Vector3 normal, Collider collider)
{
Normal = normal;
Collider = collider;
}
}
/// <summary>
/// Contains all the information for the motor's grounding status
/// </summary>
public struct CharacterGroundingReport
{
public bool FoundAnyGround;
public bool IsStableOnGround;
public bool SnappingPrevented;
public Vector3 GroundNormal;
public Vector3 InnerGroundNormal;
public Vector3 OuterGroundNormal;
public Collider GroundCollider;
public Vector3 GroundPoint;
public void CopyFrom(CharacterTransientGroundingReport transientGroundingReport)
{
FoundAnyGround = transientGroundingReport.FoundAnyGround;
IsStableOnGround = transientGroundingReport.IsStableOnGround;
SnappingPrevented = transientGroundingReport.SnappingPrevented;
GroundNormal = transientGroundingReport.GroundNormal;
InnerGroundNormal = transientGroundingReport.InnerGroundNormal;
OuterGroundNormal = transientGroundingReport.OuterGroundNormal;
GroundCollider = null;
GroundPoint = Vector3.zero;
}
}
/// <summary>
/// Contains the simulation-relevant information for the motor's grounding status
/// </summary>
public struct CharacterTransientGroundingReport
{
public bool FoundAnyGround;
public bool IsStableOnGround;
public bool SnappingPrevented;
public Vector3 GroundNormal;
public Vector3 InnerGroundNormal;
public Vector3 OuterGroundNormal;
public void CopyFrom(CharacterGroundingReport groundingReport)
{
FoundAnyGround = groundingReport.FoundAnyGround;
IsStableOnGround = groundingReport.IsStableOnGround;
SnappingPrevented = groundingReport.SnappingPrevented;
GroundNormal = groundingReport.GroundNormal;
InnerGroundNormal = groundingReport.InnerGroundNormal;
OuterGroundNormal = groundingReport.OuterGroundNormal;
}
}
/// <summary>
/// Contains all the information from a hit stability evaluation
/// </summary>
public struct HitStabilityReport
{
public bool IsStable;
public bool FoundInnerNormal;
public Vector3 InnerNormal;
public bool FoundOuterNormal;
public Vector3 OuterNormal;
public bool ValidStepDetected;
public Collider SteppedCollider;
public bool LedgeDetected;
public bool IsOnEmptySideOfLedge;
public float DistanceFromLedge;
public bool IsMovingTowardsEmptySideOfLedge;
public Vector3 LedgeGroundNormal;
public Vector3 LedgeRightDirection;
public Vector3 LedgeFacingDirection;
}
/// <summary>
/// Contains the information of hit rigidbodies during the movement phase, so they can be processed afterwards
/// </summary>
public struct RigidbodyProjectionHit
{
public Rigidbody Rigidbody;
public Vector3 HitPoint;
public Vector3 EffectiveHitNormal;
public Vector3 HitVelocity;
public bool StableOnHit;
}
/// <summary>
/// Component that manages character collisions and movement solving
/// </summary>
[RequireComponent(typeof(CapsuleCollider))]
public class KinematicCharacterMotor : MonoBehaviour
{
#pragma warning disable 0414
[Header("Components")]
/// <summary>
/// The capsule collider of this motor
/// </summary>
[ReadOnly]
public CapsuleCollider Capsule;
[Header("Capsule Settings")]
/// <summary>
/// Radius of the character's capsule
/// </summary>
[SerializeField]
[Tooltip("Radius of the Character Capsule")]
private float CapsuleRadius = 0.5f;
/// <summary>
/// Height of the character's capsule
/// </summary>
[SerializeField]
[Tooltip("Height of the Character Capsule")]
private float CapsuleHeight = 2f;
/// <summary>
/// Local y position of the character's capsule center
/// </summary>
[SerializeField]
[Tooltip("Height of the Character Capsule")]
private float CapsuleYOffset = 1f;
/// <summary>
/// Physics material of the character's capsule
/// </summary>
[SerializeField]
[Tooltip("Physics material of the Character Capsule (Does not affect character movement. Only affects things colliding with it)")]
#pragma warning disable 0649
private PhysicMaterial CapsulePhysicsMaterial;
#pragma warning restore 0649
[Header("Grounding settings")]
/// <summary>
/// Increases the range of ground detection, to allow snapping to ground at very high speeds
/// </summary>
[Tooltip("Increases the range of ground detection, to allow snapping to ground at very high speeds")]
public float GroundDetectionExtraDistance = 0f;
/// <summary>
/// Maximum slope angle on which the character can be stable
/// </summary>
[Range(0f, 89f)]
[Tooltip("Maximum slope angle on which the character can be stable")]
public float MaxStableSlopeAngle = 60f;
/// <summary>
/// Which layers can the character be considered stable on
/// </summary>
[Tooltip("Which layers can the character be considered stable on")]
public LayerMask StableGroundLayers = -1;
/// <summary>
/// Notifies the Character Controller when discrete collisions are detected
/// </summary>
[Tooltip("Notifies the Character Controller when discrete collisions are detected")]
public bool DiscreteCollisionEvents = false;
[Header("Step settings")]
/// <summary>
/// Handles properly detecting grounding status on steps, but has a performance cost.
/// </summary>
[Tooltip("Handles properly detecting grounding status on steps, but has a performance cost.")]
public StepHandlingMethod StepHandling = StepHandlingMethod.Standard;
/// <summary>
/// Maximum height of a step which the character can climb
/// </summary>
[Tooltip("Maximum height of a step which the character can climb")]
public float MaxStepHeight = 0.5f;
/// <summary>
/// Can the character step up obstacles even if it is not currently stable?
/// </summary>
[Tooltip("Can the character step up obstacles even if it is not currently stable?")]
public bool AllowSteppingWithoutStableGrounding = false;
/// <summary>
/// Minimum length of a step that the character can step on (used in Extra stepping method. Use this to let the character step on steps that are smaller that its radius
/// </summary>
[Tooltip("Minimum length of a step that the character can step on (used in Extra stepping method). Use this to let the character step on steps that are smaller that its radius")]
public float MinRequiredStepDepth = 0.1f;
[Header("Ledge settings")]
/// <summary>
/// Handles properly detecting ledge information and grounding status, but has a performance cost.
/// </summary>
[Tooltip("Handles properly detecting ledge information and grounding status, but has a performance cost.")]
public bool LedgeAndDenivelationHandling = true;
/// <summary>
/// The distance from the capsule central axis at which the character can stand on a ledge and still be stable
/// </summary>
[Tooltip("The distance from the capsule central axis at which the character can stand on a ledge and still be stable")]
public float MaxStableDistanceFromLedge = 0.5f;
/// <summary>
/// Prevents snapping to ground on ledges beyond a certain velocity
/// </summary>
[Tooltip("Prevents snapping to ground on ledges beyond a certain velocity")]
public float MaxVelocityForLedgeSnap = 0f;
/// <summary>
/// The maximun downward slope angle change that the character can be subjected to and still be snapping to the ground
/// </summary>
[Tooltip("The maximun downward slope angle change that the character can be subjected to and still be snapping to the ground")]
[Range(1f, 180f)]
public float MaxStableDenivelationAngle = 180f;
[Header("Rigidbody interaction settings")]
/// <summary>
/// Handles properly being pushed by and standing on PhysicsMovers or dynamic rigidbodies. Also handles pushing dynamic rigidbodies
/// </summary>
[Tooltip("Handles properly being pushed by and standing on PhysicsMovers or dynamic rigidbodies. Also handles pushing dynamic rigidbodies")]
public bool InteractiveRigidbodyHandling = true;
/// <summary>
/// How the character interacts with non-kinematic rigidbodies. \"Kinematic\" mode means the character pushes the rigidbodies with infinite force (as a kinematic body would). \"SimulatedDynamic\" pushes the rigidbodies with a simulated mass value.
/// </summary>
[Tooltip("How the character interacts with non-kinematic rigidbodies. \"Kinematic\" mode means the character pushes the rigidbodies with infinite force (as a kinematic body would). \"SimulatedDynamic\" pushes the rigidbodies with a simulated mass value.")]
public RigidbodyInteractionType RigidbodyInteractionType;
[Tooltip("Mass used for pushing bodies")]
public float SimulatedCharacterMass = 1f;
/// <summary>
/// Determines if the character preserves moving platform velocities when de-grounding from them
/// </summary>
[Tooltip("Determines if the character preserves moving platform velocities when de-grounding from them")]
public bool PreserveAttachedRigidbodyMomentum = true;
[Header("Constraints settings")]
/// <summary>
/// Determines if the character's movement uses the planar constraint
/// </summary>
[Tooltip("Determines if the character's movement uses the planar constraint")]
public bool HasPlanarConstraint = false;
/// <summary>
/// Defines the plane that the character's movement is constrained on, if HasMovementConstraintPlane is active
/// </summary>
[Tooltip("Defines the plane that the character's movement is constrained on, if HasMovementConstraintPlane is active")]
public Vector3 PlanarConstraintAxis = Vector3.forward;
[Header("Other settings")]
/// <summary>
/// How many times can we sweep for movement per update
/// </summary>
[Tooltip("How many times can we sweep for movement per update")]
public int MaxMovementIterations = 5;
/// <summary>
/// How many times can we check for decollision per update
/// </summary>
[Tooltip("How many times can we check for decollision per update")]
public int MaxDecollisionIterations = 1;
/// <summary>
/// Checks for overlaps before casting movement, making sure all collisions are detected even when already intersecting geometry (has a performance cost, but provides safety against tunneling through colliders)
/// </summary>
[Tooltip("Checks for overlaps before casting movement, making sure all collisions are detected even when already intersecting geometry (has a performance cost, but provides safety against tunneling through colliders)")]
public bool CheckMovementInitialOverlaps = true;
/// <summary>
/// Sets the velocity to zero if exceed max movement iterations
/// </summary>
[Tooltip("Sets the velocity to zero if exceed max movement iterations")]
public bool KillVelocityWhenExceedMaxMovementIterations = true;
/// <summary>
/// Sets the remaining movement to zero if exceed max movement iterations
/// </summary>
[Tooltip("Sets the remaining movement to zero if exceed max movement iterations")]
public bool KillRemainingMovementWhenExceedMaxMovementIterations = true;
/// <summary>
/// Contains the current grounding information
/// </summary>
[System.NonSerialized]
public CharacterGroundingReport GroundingStatus = new CharacterGroundingReport();
/// <summary>
/// Contains the previous grounding information
/// </summary>
[System.NonSerialized]
public CharacterTransientGroundingReport LastGroundingStatus = new CharacterTransientGroundingReport();
/// <summary>
/// Specifies the LayerMask that the character's movement algorithm can detect collisions with. By default, this uses the rigidbody's layer's collision matrix
/// </summary>
[System.NonSerialized]
public LayerMask CollidableLayers = -1;
/// <summary>
/// The Transform of the character motor
/// </summary>
public Transform Transform { get { return _transform; } }
private Transform _transform;
/// <summary>
/// The character's goal position in its movement calculations (always up-to-date during the character update phase)
/// </summary>
public Vector3 TransientPosition { get { return _transientPosition; } }
private Vector3 _transientPosition;
/// <summary>
/// The character's up direction (always up-to-date during the character update phase)
/// </summary>
public Vector3 CharacterUp { get { return _characterUp; } }
private Vector3 _characterUp;
/// <summary>
/// The character's forward direction (always up-to-date during the character update phase)
/// </summary>
public Vector3 CharacterForward { get { return _characterForward; } }
private Vector3 _characterForward;
/// <summary>
/// The character's right direction (always up-to-date during the character update phase)
/// </summary>
public Vector3 CharacterRight { get { return _characterRight; } }
private Vector3 _characterRight;
/// <summary>
/// The character's position before the movement calculations began
/// </summary>
public Vector3 InitialSimulationPosition { get { return _initialSimulationPosition; } }
private Vector3 _initialSimulationPosition;
/// <summary>
/// The character's rotation before the movement calculations began
/// </summary>
public Quaternion InitialSimulationRotation { get { return _initialSimulationRotation; } }
private Quaternion _initialSimulationRotation;
/// <summary>
/// Represents the Rigidbody to stay attached to
/// </summary>
public Rigidbody AttachedRigidbody { get { return _attachedRigidbody; } }
private Rigidbody _attachedRigidbody;
/// <summary>
/// Vector3 from the character transform position to the capsule center
/// </summary>
public Vector3 CharacterTransformToCapsuleCenter { get { return _characterTransformToCapsuleCenter; } }
private Vector3 _characterTransformToCapsuleCenter;
/// <summary>
/// Vector3 from the character transform position to the capsule bottom
/// </summary>
public Vector3 CharacterTransformToCapsuleBottom { get { return _characterTransformToCapsuleBottom; } }
private Vector3 _characterTransformToCapsuleBottom;
/// <summary>
/// Vector3 from the character transform position to the capsule top
/// </summary>
public Vector3 CharacterTransformToCapsuleTop { get { return _characterTransformToCapsuleTop; } }
private Vector3 _characterTransformToCapsuleTop;
/// <summary>
/// Vector3 from the character transform position to the capsule bottom hemi center
/// </summary>
public Vector3 CharacterTransformToCapsuleBottomHemi { get { return _characterTransformToCapsuleBottomHemi; } }
private Vector3 _characterTransformToCapsuleBottomHemi;
/// <summary>
/// Vector3 from the character transform position to the capsule top hemi center
/// </summary>
public Vector3 CharacterTransformToCapsuleTopHemi { get { return _characterTransformToCapsuleTopHemi; } }
private Vector3 _characterTransformToCapsuleTopHemi;
/// <summary>
/// The character's velocity resulting from standing on rigidbodies or PhysicsMover
/// </summary>
public Vector3 AttachedRigidbodyVelocity { get { return _attachedRigidbodyVelocity; } }
private Vector3 _attachedRigidbodyVelocity;
/// <summary>
/// The number of overlaps detected so far during character update (is reset at the beginning of the update)
/// </summary>
public int OverlapsCount { get { return _overlapsCount; } }
private int _overlapsCount;
/// <summary>
/// The overlaps detected so far during character update
/// </summary>
public OverlapResult[] Overlaps { get { return _overlaps; } }
private OverlapResult[] _overlaps = new OverlapResult[MaxRigidbodyOverlapsCount];
/// <summary>
/// The motor's assigned controller
/// </summary>
[NonSerialized]
public ICharacterController CharacterController;
/// <summary>
/// Did the motor's last swept collision detection find a ground?
/// </summary>
[NonSerialized]
public bool LastMovementIterationFoundAnyGround;
/// <summary>
/// Index of this motor in KinematicCharacterSystem arrays
/// </summary>
[NonSerialized]
public int IndexInCharacterSystem;
/// <summary>
/// Remembers initial position before all simulation are done
/// </summary>
[NonSerialized]
public Vector3 InitialTickPosition;
/// <summary>
/// Remembers initial rotation before all simulation are done
/// </summary>
[NonSerialized]
public Quaternion InitialTickRotation;
/// <summary>
/// Specifies a Rigidbody to stay attached to
/// </summary>
[NonSerialized]
public Rigidbody AttachedRigidbodyOverride;
/// <summary>
/// The character's velocity resulting from direct movement
/// </summary>
[NonSerialized]
public Vector3 BaseVelocity;
// Private
private RaycastHit[] _internalCharacterHits = new RaycastHit[MaxHitsBudget];
private Collider[] _internalProbedColliders = new Collider[MaxCollisionBudget];
private List<Rigidbody> _rigidbodiesPushedThisMove = new List<Rigidbody>(16);
private RigidbodyProjectionHit[] _internalRigidbodyProjectionHits = new RigidbodyProjectionHit[MaxRigidbodyOverlapsCount];
private Rigidbody _lastAttachedRigidbody;
private bool _solveMovementCollisions = true;
private bool _solveGrounding = true;
private bool _movePositionDirty = false;
private Vector3 _movePositionTarget = Vector3.zero;
private bool _moveRotationDirty = false;
private Quaternion _moveRotationTarget = Quaternion.identity;
private bool _lastSolvedOverlapNormalDirty = false;
private Vector3 _lastSolvedOverlapNormal = Vector3.forward;
private int _rigidbodyProjectionHitCount = 0;
private bool _isMovingFromAttachedRigidbody = false;
private bool _mustUnground = false;
private float _mustUngroundTimeCounter = 0f;
private Vector3 _cachedWorldUp = Vector3.up;
private Vector3 _cachedWorldForward = Vector3.forward;
private Vector3 _cachedWorldRight = Vector3.right;
private Vector3 _cachedZeroVector = Vector3.zero;
private Quaternion _transientRotation;
/// <summary>
/// The character's goal rotation in its movement calculations (always up-to-date during the character update phase)
/// </summary>
public Quaternion TransientRotation
{
get
{
return _transientRotation;
}
private set
{
_transientRotation = value;
_characterUp = _transientRotation * _cachedWorldUp;
_characterForward = _transientRotation * _cachedWorldForward;
_characterRight = _transientRotation * _cachedWorldRight;
}
}
/// <summary>
/// The character's total velocity, including velocity from standing on rigidbodies or PhysicsMover
/// </summary>
public Vector3 Velocity
{
get
{
return BaseVelocity + _attachedRigidbodyVelocity;
}
}
// Warning: Don't touch these constants unless you know exactly what you're doing!
public const int MaxHitsBudget = 16;
public const int MaxCollisionBudget = 16;
public const int MaxGroundingSweepIterations = 2;
public const int MaxSteppingSweepIterations = 3;
public const int MaxRigidbodyOverlapsCount = 16;
public const float CollisionOffset = 0.01f;
public const float GroundProbeReboundDistance = 0.02f;
public const float MinimumGroundProbingDistance = 0.005f;
public const float GroundProbingBackstepDistance = 0.1f;
public const float SweepProbingBackstepDistance = 0.002f;
public const float SecondaryProbesVertical = 0.02f;
public const float SecondaryProbesHorizontal = 0.001f;
public const float MinVelocityMagnitude = 0.01f;
public const float SteppingForwardDistance = 0.03f;
public const float MinDistanceForLedge = 0.05f;
public const float CorrelationForVerticalObstruction = 0.01f;
public const float ExtraSteppingForwardDistance = 0.01f;
public const float ExtraStepHeightPadding = 0.01f;
#pragma warning restore 0414
private void OnEnable()
{
KinematicCharacterSystem.EnsureCreation();
KinematicCharacterSystem.RegisterCharacterMotor(this);
}
private void OnDisable()
{
KinematicCharacterSystem.UnregisterCharacterMotor(this);
}
private void Reset()
{
ValidateData();
}
private void OnValidate()
{
ValidateData();
}
[ContextMenu("Remove Component")]
private void HandleRemoveComponent()
{
CapsuleCollider tmpCapsule = gameObject.GetComponent<CapsuleCollider>();
DestroyImmediate(this);
DestroyImmediate(tmpCapsule);
}
/// <summary>
/// Handle validating all required values
/// </summary>
public void ValidateData()
{
Capsule = GetComponent<CapsuleCollider>();
CapsuleRadius = Mathf.Clamp(CapsuleRadius, 0f, CapsuleHeight * 0.5f);
Capsule.direction = 1;
Capsule.sharedMaterial = CapsulePhysicsMaterial;
SetCapsuleDimensions(CapsuleRadius, CapsuleHeight, CapsuleYOffset);
MaxStepHeight = Mathf.Clamp(MaxStepHeight, 0f, Mathf.Infinity);
MinRequiredStepDepth = Mathf.Clamp(MinRequiredStepDepth, 0f, CapsuleRadius);
MaxStableDistanceFromLedge = Mathf.Clamp(MaxStableDistanceFromLedge, 0f, CapsuleRadius);
transform.localScale = Vector3.one;
#if UNITY_EDITOR
Capsule.hideFlags = HideFlags.NotEditable;
if (!Mathf.Approximately(transform.lossyScale.x, 1f) || !Mathf.Approximately(transform.lossyScale.y, 1f) || !Mathf.Approximately(transform.lossyScale.z, 1f))
{
Debug.LogError("Character's lossy scale is not (1,1,1). This is not allowed. Make sure the character's transform and all of its parents have a (1,1,1) scale.", this.gameObject);
}
#endif
}
/// <summary>
/// Sets whether or not the capsule collider will detect collisions
/// </summary>
public void SetCapsuleCollisionsActivation(bool collisionsActive)
{
Capsule.isTrigger = !collisionsActive;
}
/// <summary>
/// Sets whether or not the motor will solve collisions when moving (or moved onto)
/// </summary>
public void SetMovementCollisionsSolvingActivation(bool movementCollisionsSolvingActive)
{
_solveMovementCollisions = movementCollisionsSolvingActive;
}
/// <summary>
/// Sets whether or not grounding will be evaluated for all hits
/// </summary>
public void SetGroundSolvingActivation(bool stabilitySolvingActive)
{
_solveGrounding = stabilitySolvingActive;
}
/// <summary>
/// Sets the character's position directly
/// </summary>
public void SetPosition(Vector3 position, bool bypassInterpolation = true)
{
_transform.position = position;
_initialSimulationPosition = position;
_transientPosition = position;
if (bypassInterpolation)
{
InitialTickPosition = position;
}
}
/// <summary>
/// Sets the character's rotation directly
/// </summary>
public void SetRotation(Quaternion rotation, bool bypassInterpolation = true)
{
_transform.rotation = rotation;
_initialSimulationRotation = rotation;
TransientRotation = rotation;
if (bypassInterpolation)
{
InitialTickRotation = rotation;
}
}
/// <summary>
/// Sets the character's position and rotation directly
/// </summary>
public void SetPositionAndRotation(Vector3 position, Quaternion rotation, bool bypassInterpolation = true)
{
_transform.SetPositionAndRotation(position, rotation);
_initialSimulationPosition = position;
_initialSimulationRotation = rotation;
_transientPosition = position;
TransientRotation = rotation;
if (bypassInterpolation)
{
InitialTickPosition = position;
InitialTickRotation = rotation;
}
}
/// <summary>
/// Moves the character position, taking all movement collision solving int account. The actual move is done the next time the motor updates are called
/// </summary>
public void MoveCharacter(Vector3 toPosition)
{
_movePositionDirty = true;
_movePositionTarget = toPosition;
}
/// <summary>
/// Moves the character rotation. The actual move is done the next time the motor updates are called
/// </summary>
public void RotateCharacter(Quaternion toRotation)
{
_moveRotationDirty = true;
_moveRotationTarget = toRotation;
}
/// <summary>
/// Returns all the state information of the motor that is pertinent for simulation
/// </summary>
public KinematicCharacterMotorState GetState()
{
KinematicCharacterMotorState state = new KinematicCharacterMotorState();
state.Position = _transientPosition;
state.Rotation = _transientRotation;
state.BaseVelocity = BaseVelocity;
state.AttachedRigidbodyVelocity = _attachedRigidbodyVelocity;
state.MustUnground = _mustUnground;
state.MustUngroundTime = _mustUngroundTimeCounter;
state.LastMovementIterationFoundAnyGround = LastMovementIterationFoundAnyGround;
state.GroundingStatus.CopyFrom(GroundingStatus);
state.AttachedRigidbody = _attachedRigidbody;
return state;
}
/// <summary>
/// Applies a motor state instantly
/// </summary>
public void ApplyState(KinematicCharacterMotorState state, bool bypassInterpolation = true)
{
SetPositionAndRotation(state.Position, state.Rotation, bypassInterpolation);
BaseVelocity = state.BaseVelocity;
_attachedRigidbodyVelocity = state.AttachedRigidbodyVelocity;
_mustUnground = state.MustUnground;
_mustUngroundTimeCounter = state.MustUngroundTime;
LastMovementIterationFoundAnyGround = state.LastMovementIterationFoundAnyGround;
GroundingStatus.CopyFrom(state.GroundingStatus);
_attachedRigidbody = state.AttachedRigidbody;
}
/// <summary>
/// Resizes capsule. ALso caches importand capsule size data
/// </summary>
public void SetCapsuleDimensions(float radius, float height, float yOffset)
{
height = Mathf.Max(height, (radius * 2f) + 0.01f); // Safety to prevent invalid capsule geometries
CapsuleRadius = radius;
CapsuleHeight = height;
CapsuleYOffset = yOffset;
Capsule.radius = CapsuleRadius;
Capsule.height = Mathf.Clamp(CapsuleHeight, CapsuleRadius * 2f, CapsuleHeight);
Capsule.center = new Vector3(0f, CapsuleYOffset, 0f);
_characterTransformToCapsuleCenter = Capsule.center;
_characterTransformToCapsuleBottom = Capsule.center + (-_cachedWorldUp * (Capsule.height * 0.5f));
_characterTransformToCapsuleTop = Capsule.center + (_cachedWorldUp * (Capsule.height * 0.5f));
_characterTransformToCapsuleBottomHemi = Capsule.center + (-_cachedWorldUp * (Capsule.height * 0.5f)) + (_cachedWorldUp * Capsule.radius);
_characterTransformToCapsuleTopHemi = Capsule.center + (_cachedWorldUp * (Capsule.height * 0.5f)) + (-_cachedWorldUp * Capsule.radius);
}
private void Awake()
{
_transform = this.transform;
ValidateData();
_transientPosition = _transform.position;
TransientRotation = _transform.rotation;
// Build CollidableLayers mask
CollidableLayers = 0;
for (int i = 0; i < 32; i++)
{
if (!Physics.GetIgnoreLayerCollision(this.gameObject.layer, i))
{
CollidableLayers |= (1 << i);
}
}
SetCapsuleDimensions(CapsuleRadius, CapsuleHeight, CapsuleYOffset);
}
/// <summary>
/// Update phase 1 is meant to be called after physics movers have calculated their velocities, but
/// before they have simulated their goal positions/rotations. It is responsible for:
/// - Initializing all values for update
/// - Handling MovePosition calls
/// - Solving initial collision overlaps
/// - Ground probing
/// - Handle detecting potential interactable rigidbodies
/// </summary>
public void UpdatePhase1(float deltaTime)
{
// NaN propagation safety stop
if (float.IsNaN(BaseVelocity.x) || float.IsNaN(BaseVelocity.y) || float.IsNaN(BaseVelocity.z))
{
BaseVelocity = Vector3.zero;
}
if (float.IsNaN(_attachedRigidbodyVelocity.x) || float.IsNaN(_attachedRigidbodyVelocity.y) || float.IsNaN(_attachedRigidbodyVelocity.z))
{
_attachedRigidbodyVelocity = Vector3.zero;
}
#if UNITY_EDITOR
if (!Mathf.Approximately(_transform.lossyScale.x, 1f) || !Mathf.Approximately(_transform.lossyScale.y, 1f) || !Mathf.Approximately(_transform.lossyScale.z, 1f))
{
Debug.LogError("Character's lossy scale is not (1,1,1). This is not allowed. Make sure the character's transform and all of its parents have a (1,1,1) scale.", this.gameObject);
}
#endif
_rigidbodiesPushedThisMove.Clear();
// Before update
CharacterController.BeforeCharacterUpdate(deltaTime);
_transientPosition = _transform.position;
TransientRotation = _transform.rotation;
_initialSimulationPosition = _transientPosition;
_initialSimulationRotation = _transientRotation;
_rigidbodyProjectionHitCount = 0;
_overlapsCount = 0;
_lastSolvedOverlapNormalDirty = false;
#region Handle Move Position
if (_movePositionDirty)
{
if (_solveMovementCollisions)
{
Vector3 tmpVelocity = GetVelocityFromMovement(_movePositionTarget - _transientPosition, deltaTime);
if (InternalCharacterMove(ref tmpVelocity, deltaTime))
{
if (InteractiveRigidbodyHandling)
{
ProcessVelocityForRigidbodyHits(ref tmpVelocity, deltaTime);
}
}
}
else
{
_transientPosition = _movePositionTarget;
}
_movePositionDirty = false;
}
#endregion
LastGroundingStatus.CopyFrom(GroundingStatus);
GroundingStatus = new CharacterGroundingReport();
GroundingStatus.GroundNormal = _characterUp;
if (_solveMovementCollisions)
{
#region Resolve initial overlaps
Vector3 resolutionDirection = _cachedWorldUp;
float resolutionDistance = 0f;
int iterationsMade = 0;
bool overlapSolved = false;
while (iterationsMade < MaxDecollisionIterations && !overlapSolved)
{
int nbOverlaps = CharacterCollisionsOverlap(_transientPosition, _transientRotation, _internalProbedColliders);
if (nbOverlaps > 0)
{
// Solve overlaps that aren't against dynamic rigidbodies or physics movers
for (int i = 0; i < nbOverlaps; i++)
{
if (GetInteractiveRigidbody(_internalProbedColliders[i]) == null)
{
// Process overlap
Transform overlappedTransform = _internalProbedColliders[i].GetComponent<Transform>();
if (Physics.ComputePenetration(
Capsule,
_transientPosition,
_transientRotation,
_internalProbedColliders[i],
overlappedTransform.position,
overlappedTransform.rotation,
out resolutionDirection,
out resolutionDistance))
{
// Resolve along obstruction direction
HitStabilityReport mockReport = new HitStabilityReport();
mockReport.IsStable = IsStableOnNormal(resolutionDirection);
resolutionDirection = GetObstructionNormal(resolutionDirection, mockReport.IsStable);
// Solve overlap
Vector3 resolutionMovement = resolutionDirection * (resolutionDistance + CollisionOffset);
_transientPosition += resolutionMovement;
// Remember overlaps
if (_overlapsCount < _overlaps.Length)
{
_overlaps[_overlapsCount] = new OverlapResult(resolutionDirection, _internalProbedColliders[i]);
_overlapsCount++;
}
break;
}
}
}
}
else
{
overlapSolved = true;
}
iterationsMade++;
}
#endregion
}
#region Ground Probing and Snapping
// Handle ungrounding
if (_solveGrounding)
{
if (MustUnground())
{
_transientPosition += _characterUp * (MinimumGroundProbingDistance * 1.5f);
}
else
{
// Choose the appropriate ground probing distance
float selectedGroundProbingDistance = MinimumGroundProbingDistance;
if (!LastGroundingStatus.SnappingPrevented && (LastGroundingStatus.IsStableOnGround || LastMovementIterationFoundAnyGround))
{
if (StepHandling != StepHandlingMethod.None)
{
selectedGroundProbingDistance = Mathf.Max(CapsuleRadius, MaxStepHeight);
}
else
{
selectedGroundProbingDistance = CapsuleRadius;
}
selectedGroundProbingDistance += GroundDetectionExtraDistance;
}
ProbeGround(ref _transientPosition, _transientRotation, selectedGroundProbingDistance, ref GroundingStatus);
if (!LastGroundingStatus.IsStableOnGround && GroundingStatus.IsStableOnGround)
{
// Handle stable landing
BaseVelocity = Vector3.ProjectOnPlane(BaseVelocity, CharacterUp);
BaseVelocity = GetDirectionTangentToSurface(BaseVelocity, GroundingStatus.GroundNormal) * BaseVelocity.magnitude;
}
}
}
LastMovementIterationFoundAnyGround = false;
if (_mustUngroundTimeCounter > 0f)
{
_mustUngroundTimeCounter -= deltaTime;
}
_mustUnground = false;
#endregion
if (_solveGrounding)
{
CharacterController.PostGroundingUpdate(deltaTime);
}
if (InteractiveRigidbodyHandling)
{
#region Interactive Rigidbody Handling
_lastAttachedRigidbody = _attachedRigidbody;
if (AttachedRigidbodyOverride)
{
_attachedRigidbody = AttachedRigidbodyOverride;
}
else
{
// Detect interactive rigidbodies from grounding
if (GroundingStatus.IsStableOnGround && GroundingStatus.GroundCollider.attachedRigidbody)
{
Rigidbody interactiveRigidbody = GetInteractiveRigidbody(GroundingStatus.GroundCollider);
if (interactiveRigidbody)
{
_attachedRigidbody = interactiveRigidbody;
}
}
else
{
_attachedRigidbody = null;
}
}
Vector3 tmpVelocityFromCurrentAttachedRigidbody = Vector3.zero;
Vector3 tmpAngularVelocityFromCurrentAttachedRigidbody = Vector3.zero;
if (_attachedRigidbody)
{
GetVelocityFromRigidbodyMovement(_attachedRigidbody, _transientPosition, deltaTime, out tmpVelocityFromCurrentAttachedRigidbody, out tmpAngularVelocityFromCurrentAttachedRigidbody);
}
// Conserve momentum when de-stabilized from an attached rigidbody
if (PreserveAttachedRigidbodyMomentum && _lastAttachedRigidbody != null && _attachedRigidbody != _lastAttachedRigidbody)
{
BaseVelocity += _attachedRigidbodyVelocity;
BaseVelocity -= tmpVelocityFromCurrentAttachedRigidbody;
}
// Process additionnal Velocity from attached rigidbody
_attachedRigidbodyVelocity = _cachedZeroVector;
if (_attachedRigidbody)
{
_attachedRigidbodyVelocity = tmpVelocityFromCurrentAttachedRigidbody;
// Rotation from attached rigidbody
Vector3 newForward = Vector3.ProjectOnPlane(Quaternion.Euler(Mathf.Rad2Deg * tmpAngularVelocityFromCurrentAttachedRigidbody * deltaTime) * _characterForward, _characterUp).normalized;
TransientRotation = Quaternion.LookRotation(newForward, _characterUp);
}
// Cancel out horizontal velocity upon landing on an attached rigidbody
if (GroundingStatus.GroundCollider &&
GroundingStatus.GroundCollider.attachedRigidbody &&
GroundingStatus.GroundCollider.attachedRigidbody == _attachedRigidbody &&
_attachedRigidbody != null &&
_lastAttachedRigidbody == null)
{
BaseVelocity -= Vector3.ProjectOnPlane(_attachedRigidbodyVelocity, _characterUp);
}
// Movement from Attached Rigidbody
if (_attachedRigidbodyVelocity.sqrMagnitude > 0f)
{
_isMovingFromAttachedRigidbody = true;
if (_solveMovementCollisions)
{
// Perform the move from rgdbdy velocity
InternalCharacterMove(ref _attachedRigidbodyVelocity, deltaTime);
}
else
{
_transientPosition += _attachedRigidbodyVelocity * deltaTime;
}
_isMovingFromAttachedRigidbody = false;
}
#endregion
}
}
/// <summary>
/// Update phase 2 is meant to be called after physics movers have simulated their goal positions/rotations.
/// At the end of this, the TransientPosition/Rotation values will be up-to-date with where the motor should be at the end of its move.
/// It is responsible for:
/// - Solving Rotation
/// - Handle MoveRotation calls
/// - Solving potential attached rigidbody overlaps
/// - Solving Velocity
/// - Applying planar constraint
/// </summary>
public void UpdatePhase2(float deltaTime)
{
// Handle rotation
CharacterController.UpdateRotation(ref _transientRotation, deltaTime);
TransientRotation = _transientRotation;
// Handle move rotation
if (_moveRotationDirty)
{
TransientRotation = _moveRotationTarget;
_moveRotationDirty = false;
}
if (_solveMovementCollisions && InteractiveRigidbodyHandling)
{
if (InteractiveRigidbodyHandling)
{
#region Solve potential attached rigidbody overlap
if (_attachedRigidbody)
{
float upwardsOffset = Capsule.radius;
RaycastHit closestHit;
if (CharacterGroundSweep(
_transientPosition + (_characterUp * upwardsOffset),
_transientRotation,
-_characterUp,
upwardsOffset,
out closestHit))
{
if (closestHit.collider.attachedRigidbody == _attachedRigidbody && IsStableOnNormal(closestHit.normal))
{
float distanceMovedUp = (upwardsOffset - closestHit.distance);
_transientPosition = _transientPosition + (_characterUp * distanceMovedUp) + (_characterUp * CollisionOffset);
}
}
}
#endregion
}
if (InteractiveRigidbodyHandling)
{
#region Resolve overlaps that could've been caused by rotation or physics movers simulation pushing the character
Vector3 resolutionDirection = _cachedWorldUp;
float resolutionDistance = 0f;
int iterationsMade = 0;
bool overlapSolved = false;
while (iterationsMade < MaxDecollisionIterations && !overlapSolved)
{
int nbOverlaps = CharacterCollisionsOverlap(_transientPosition, _transientRotation, _internalProbedColliders);
if (nbOverlaps > 0)
{
for (int i = 0; i < nbOverlaps; i++)
{
// Process overlap
Transform overlappedTransform = _internalProbedColliders[i].GetComponent<Transform>();
if (Physics.ComputePenetration(
Capsule,
_transientPosition,
_transientRotation,
_internalProbedColliders[i],
overlappedTransform.position,
overlappedTransform.rotation,
out resolutionDirection,
out resolutionDistance))
{
// Resolve along obstruction direction
HitStabilityReport mockReport = new HitStabilityReport();
mockReport.IsStable = IsStableOnNormal(resolutionDirection);
resolutionDirection = GetObstructionNormal(resolutionDirection, mockReport.IsStable);
// Solve overlap
Vector3 resolutionMovement = resolutionDirection * (resolutionDistance + CollisionOffset);
_transientPosition += resolutionMovement;
// If interactiveRigidbody, register as rigidbody hit for velocity
if (InteractiveRigidbodyHandling)
{
Rigidbody probedRigidbody = GetInteractiveRigidbody(_internalProbedColliders[i]);
if (probedRigidbody != null)
{
HitStabilityReport tmpReport = new HitStabilityReport();
tmpReport.IsStable = IsStableOnNormal(resolutionDirection);
if (tmpReport.IsStable)
{
LastMovementIterationFoundAnyGround = tmpReport.IsStable;
}
if (probedRigidbody != _attachedRigidbody)
{
Vector3 characterCenter = _transientPosition + (_transientRotation * _characterTransformToCapsuleCenter);
Vector3 estimatedCollisionPoint = _transientPosition;
StoreRigidbodyHit(
probedRigidbody,
Velocity,
estimatedCollisionPoint,
resolutionDirection,
tmpReport);
}
}
}
// Remember overlaps
if (_overlapsCount < _overlaps.Length)
{
_overlaps[_overlapsCount] = new OverlapResult(resolutionDirection, _internalProbedColliders[i]);
_overlapsCount++;
}
break;
}
}
}
else
{
overlapSolved = true;
}
iterationsMade++;
}
#endregion
}
}
// Handle velocity
CharacterController.UpdateVelocity(ref BaseVelocity, deltaTime);
//this.CharacterController.UpdateVelocity(ref BaseVelocity, deltaTime);
if (BaseVelocity.magnitude < MinVelocityMagnitude)
{
BaseVelocity = Vector3.zero;
}
#region Calculate Character movement from base velocity
// Perform the move from base velocity
if (BaseVelocity.sqrMagnitude > 0f)
{
if (_solveMovementCollisions)
{
InternalCharacterMove(ref BaseVelocity, deltaTime);
}
else
{
_transientPosition += BaseVelocity * deltaTime;
}
}
// Process rigidbody hits/overlaps to affect velocity
if (InteractiveRigidbodyHandling)
{
ProcessVelocityForRigidbodyHits(ref BaseVelocity, deltaTime);
}
#endregion
// Handle planar constraint
if (HasPlanarConstraint)
{
_transientPosition = _initialSimulationPosition + Vector3.ProjectOnPlane(_transientPosition - _initialSimulationPosition, PlanarConstraintAxis.normalized);
}
// Discrete collision detection
if (DiscreteCollisionEvents)
{
int nbOverlaps = CharacterCollisionsOverlap(_transientPosition, _transientRotation, _internalProbedColliders, CollisionOffset * 2f);
for (int i = 0; i < nbOverlaps; i++)
{
CharacterController.OnDiscreteCollisionDetected(_internalProbedColliders[i]);
}
}
CharacterController.AfterCharacterUpdate(deltaTime);
}
/// <summary>
/// Determines if motor can be considered stable on given slope normal
/// </summary>
private bool IsStableOnNormal(Vector3 normal)
{
return Vector3.Angle(_characterUp, normal) <= MaxStableSlopeAngle;
}
/// <summary>
/// Determines if motor can be considered stable on given slope normal
/// </summary>
private bool IsStableWithSpecialCases(ref HitStabilityReport stabilityReport, Vector3 velocity)
{
if (LedgeAndDenivelationHandling)
{
if (stabilityReport.LedgeDetected)
{
if (stabilityReport.IsMovingTowardsEmptySideOfLedge)
{
// Max snap vel
Vector3 velocityOnLedgeNormal = Vector3.Project(velocity, stabilityReport.LedgeFacingDirection);
if (velocityOnLedgeNormal.magnitude >= MaxVelocityForLedgeSnap)
{
return false;
}
}
// Distance from ledge
if (stabilityReport.IsOnEmptySideOfLedge && stabilityReport.DistanceFromLedge > MaxStableDistanceFromLedge)
{
return false;
}
}
// "Launching" off of slopes of a certain denivelation angle
if (LastGroundingStatus.FoundAnyGround && stabilityReport.InnerNormal.sqrMagnitude != 0f && stabilityReport.OuterNormal.sqrMagnitude != 0f)
{
float denivelationAngle = Vector3.Angle(stabilityReport.InnerNormal, stabilityReport.OuterNormal);
if (denivelationAngle > MaxStableDenivelationAngle)
{
return false;
}
else
{
denivelationAngle = Vector3.Angle(LastGroundingStatus.InnerGroundNormal, stabilityReport.OuterNormal);
if (denivelationAngle > MaxStableDenivelationAngle)
{
return false;
}
}
}
}
return true;
}
/// <summary>
/// Probes for valid ground and midifies the input transientPosition if ground snapping occurs
/// </summary>
public void ProbeGround(ref Vector3 probingPosition, Quaternion atRotation, float probingDistance, ref CharacterGroundingReport groundingReport)
{
if (probingDistance < MinimumGroundProbingDistance)
{
probingDistance = MinimumGroundProbingDistance;
}
int groundSweepsMade = 0;
RaycastHit groundSweepHit = new RaycastHit();
bool groundSweepingIsOver = false;
Vector3 groundSweepPosition = probingPosition;
Vector3 groundSweepDirection = (atRotation * -_cachedWorldUp);
float groundProbeDistanceRemaining = probingDistance;
while (groundProbeDistanceRemaining > 0 && (groundSweepsMade <= MaxGroundingSweepIterations) && !groundSweepingIsOver)
{
// Sweep for ground detection
if (CharacterGroundSweep(
groundSweepPosition, // position
atRotation, // rotation
groundSweepDirection, // direction
groundProbeDistanceRemaining, // distance
out groundSweepHit)) // hit
{
Vector3 targetPosition = groundSweepPosition + (groundSweepDirection * groundSweepHit.distance);
HitStabilityReport groundHitStabilityReport = new HitStabilityReport();
EvaluateHitStability(groundSweepHit.collider, groundSweepHit.normal, groundSweepHit.point, targetPosition, _transientRotation, BaseVelocity, ref groundHitStabilityReport);
groundingReport.FoundAnyGround = true;
groundingReport.GroundNormal = groundSweepHit.normal;
groundingReport.InnerGroundNormal = groundHitStabilityReport.InnerNormal;
groundingReport.OuterGroundNormal = groundHitStabilityReport.OuterNormal;
groundingReport.GroundCollider = groundSweepHit.collider;
groundingReport.GroundPoint = groundSweepHit.point;
groundingReport.SnappingPrevented = false;
// Found stable ground
if (groundHitStabilityReport.IsStable)
{
// Find all scenarios where ground snapping should be canceled
groundingReport.SnappingPrevented = !IsStableWithSpecialCases(ref groundHitStabilityReport, BaseVelocity);
groundingReport.IsStableOnGround = true;
// Ground snapping
if (!groundingReport.SnappingPrevented)
{
probingPosition = groundSweepPosition + (groundSweepDirection * (groundSweepHit.distance - CollisionOffset));
}
CharacterController.OnGroundHit(groundSweepHit.collider, groundSweepHit.normal, groundSweepHit.point, ref groundHitStabilityReport);
groundSweepingIsOver = true;
}
else
{
// Calculate movement from this iteration and advance position
Vector3 sweepMovement = (groundSweepDirection * groundSweepHit.distance) + ((atRotation * _cachedWorldUp) * Mathf.Max(CollisionOffset, groundSweepHit.distance));
groundSweepPosition = groundSweepPosition + sweepMovement;
// Set remaining distance
groundProbeDistanceRemaining = Mathf.Min(GroundProbeReboundDistance, Mathf.Max(groundProbeDistanceRemaining - sweepMovement.magnitude, 0f));
// Reorient direction
groundSweepDirection = Vector3.ProjectOnPlane(groundSweepDirection, groundSweepHit.normal).normalized;
}
}
else
{
groundSweepingIsOver = true;
}
groundSweepsMade++;
}
}
/// <summary>
/// Forces the character to unground itself on its next grounding update
/// </summary>
public void ForceUnground(float time = 0.1f)
{
_mustUnground = true;
_mustUngroundTimeCounter = time;
}
public bool MustUnground()
{
return _mustUnground || _mustUngroundTimeCounter > 0f;
}
/// <summary>
/// Returns the direction adjusted to be tangent to a specified surface normal relatively to the character's up direction.
/// Useful for reorienting a direction on a slope without any lateral deviation in trajectory
/// </summary>
public Vector3 GetDirectionTangentToSurface(Vector3 direction, Vector3 surfaceNormal)
{
Vector3 directionRight = Vector3.Cross(direction, _characterUp);
return Vector3.Cross(surfaceNormal, directionRight).normalized;
}
/// <summary>
/// Moves the character's position by given movement while taking into account all physics simulation, step-handling and
/// velocity projection rules that affect the character motor
/// </summary>
/// <returns> Returns false if movement could not be solved until the end </returns>
private bool InternalCharacterMove(ref Vector3 transientVelocity, float deltaTime)
{
if (deltaTime <= 0f)
return false;
// Planar constraint
if (HasPlanarConstraint)
{
transientVelocity = Vector3.ProjectOnPlane(transientVelocity, PlanarConstraintAxis.normalized);
}
bool wasCompleted = true;
Vector3 remainingMovementDirection = transientVelocity.normalized;
float remainingMovementMagnitude = transientVelocity.magnitude * deltaTime;
Vector3 originalVelocityDirection = remainingMovementDirection;
int sweepsMade = 0;
bool hitSomethingThisSweepIteration = true;
Vector3 tmpMovedPosition = _transientPosition;
bool previousHitIsStable = false;
Vector3 previousVelocity = _cachedZeroVector;
Vector3 previousObstructionNormal = _cachedZeroVector;
MovementSweepState sweepState = MovementSweepState.Initial;
// Project movement against current overlaps before doing the sweeps
for (int i = 0; i < _overlapsCount; i++)
{
Vector3 overlapNormal = _overlaps[i].Normal;
if (Vector3.Dot(remainingMovementDirection, overlapNormal) < 0f)
{
bool stableOnHit = IsStableOnNormal(overlapNormal) && !MustUnground();
Vector3 velocityBeforeProjection = transientVelocity;
Vector3 obstructionNormal = GetObstructionNormal(overlapNormal, stableOnHit);
InternalHandleVelocityProjection(
stableOnHit,
overlapNormal,
obstructionNormal,
originalVelocityDirection,
ref sweepState,
previousHitIsStable,
previousVelocity,
previousObstructionNormal,
ref transientVelocity,
ref remainingMovementMagnitude,
ref remainingMovementDirection);
previousHitIsStable = stableOnHit;
previousVelocity = velocityBeforeProjection;
previousObstructionNormal = obstructionNormal;
}
}
// Sweep the desired movement to detect collisions
while (remainingMovementMagnitude > 0f &&
(sweepsMade <= MaxMovementIterations) &&
hitSomethingThisSweepIteration)
{
bool foundClosestHit = false;
Vector3 closestSweepHitPoint = default;
Vector3 closestSweepHitNormal = default;
float closestSweepHitDistance = 0f;
Collider closestSweepHitCollider = null;
if (CheckMovementInitialOverlaps)
{
int numOverlaps = CharacterCollisionsOverlap(
tmpMovedPosition,
_transientRotation,
_internalProbedColliders,
0f,
false);
if (numOverlaps > 0)
{
closestSweepHitDistance = 0f;
float mostObstructingOverlapNormalDotProduct = 2f;
for (int i = 0; i < numOverlaps; i++)
{
Collider tmpCollider = _internalProbedColliders[i];
if (Physics.ComputePenetration(
Capsule,
tmpMovedPosition,
_transientRotation,
tmpCollider,
tmpCollider.transform.position,
tmpCollider.transform.rotation,
out Vector3 resolutionDirection,
out float resolutionDistance))
{
float dotProduct = Vector3.Dot(remainingMovementDirection, resolutionDirection);
if (dotProduct < 0f && dotProduct < mostObstructingOverlapNormalDotProduct)
{
mostObstructingOverlapNormalDotProduct = dotProduct;
closestSweepHitNormal = resolutionDirection;
closestSweepHitCollider = tmpCollider;
closestSweepHitPoint = tmpMovedPosition + (_transientRotation * CharacterTransformToCapsuleCenter) + (resolutionDirection * resolutionDistance);
foundClosestHit = true;
}
}
}
}
}
if (!foundClosestHit && CharacterCollisionsSweep(
tmpMovedPosition, // position
_transientRotation, // rotation
remainingMovementDirection, // direction
remainingMovementMagnitude + CollisionOffset, // distance
out RaycastHit closestSweepHit, // closest hit
_internalCharacterHits) // all hits
> 0)
{
closestSweepHitNormal = closestSweepHit.normal;
closestSweepHitDistance = closestSweepHit.distance;
closestSweepHitCollider = closestSweepHit.collider;
closestSweepHitPoint = closestSweepHit.point;
foundClosestHit = true;
}
if (foundClosestHit)
{
// Calculate movement from this iteration
Vector3 sweepMovement = (remainingMovementDirection * (Mathf.Max(0f, closestSweepHitDistance - CollisionOffset)));
tmpMovedPosition += sweepMovement;
remainingMovementMagnitude -= sweepMovement.magnitude;
// Evaluate if hit is stable
HitStabilityReport moveHitStabilityReport = new HitStabilityReport();
EvaluateHitStability(closestSweepHitCollider, closestSweepHitNormal, closestSweepHitPoint, tmpMovedPosition, _transientRotation, transientVelocity, ref moveHitStabilityReport);
// Handle stepping up steps points higher than bottom capsule radius
bool foundValidStepHit = false;
if (_solveGrounding && StepHandling != StepHandlingMethod.None && moveHitStabilityReport.ValidStepDetected)
{
float obstructionCorrelation = Mathf.Abs(Vector3.Dot(closestSweepHitNormal, _characterUp));
if (obstructionCorrelation <= CorrelationForVerticalObstruction)
{
Vector3 stepForwardDirection = Vector3.ProjectOnPlane(-closestSweepHitNormal, _characterUp).normalized;
Vector3 stepCastStartPoint = (tmpMovedPosition + (stepForwardDirection * SteppingForwardDistance)) +
(_characterUp * MaxStepHeight);
// Cast downward from the top of the stepping height
int nbStepHits = CharacterCollisionsSweep(
stepCastStartPoint, // position
_transientRotation, // rotation
-_characterUp, // direction
MaxStepHeight, // distance
out RaycastHit closestStepHit, // closest hit
_internalCharacterHits,
0f,
true); // all hits
// Check for hit corresponding to stepped collider
for (int i = 0; i < nbStepHits; i++)
{
if (_internalCharacterHits[i].collider == moveHitStabilityReport.SteppedCollider)
{
Vector3 endStepPosition = stepCastStartPoint + (-_characterUp * (_internalCharacterHits[i].distance - CollisionOffset));
tmpMovedPosition = endStepPosition;
foundValidStepHit = true;
// Project velocity on ground normal at step
transientVelocity = Vector3.ProjectOnPlane(transientVelocity, CharacterUp);
remainingMovementDirection = transientVelocity.normalized;
break;
}
}
}
}
// Handle movement solving
if (!foundValidStepHit)
{
Vector3 obstructionNormal = GetObstructionNormal(closestSweepHitNormal, moveHitStabilityReport.IsStable);
// Movement hit callback
CharacterController.OnMovementHit(closestSweepHitCollider, closestSweepHitNormal, closestSweepHitPoint, ref moveHitStabilityReport);
// Handle remembering rigidbody hits
if (InteractiveRigidbodyHandling && closestSweepHitCollider.attachedRigidbody)
{
StoreRigidbodyHit(
closestSweepHitCollider.attachedRigidbody,
transientVelocity,
closestSweepHitPoint,
obstructionNormal,
moveHitStabilityReport);
}
bool stableOnHit = moveHitStabilityReport.IsStable && !MustUnground();
Vector3 velocityBeforeProj = transientVelocity;
// Project velocity for next iteration
InternalHandleVelocityProjection(
stableOnHit,
closestSweepHitNormal,
obstructionNormal,
originalVelocityDirection,
ref sweepState,
previousHitIsStable,
previousVelocity,
previousObstructionNormal,
ref transientVelocity,
ref remainingMovementMagnitude,
ref remainingMovementDirection);
previousHitIsStable = stableOnHit;
previousVelocity = velocityBeforeProj;
previousObstructionNormal = obstructionNormal;
}
}
// If we hit nothing...
else
{
hitSomethingThisSweepIteration = false;
}
// Safety for exceeding max sweeps allowed
sweepsMade++;
if (sweepsMade > MaxMovementIterations)
{
if (KillRemainingMovementWhenExceedMaxMovementIterations)
{
remainingMovementMagnitude = 0f;
}
if (KillVelocityWhenExceedMaxMovementIterations)
{
transientVelocity = Vector3.zero;
}
wasCompleted = false;
}
}
// Move position for the remainder of the movement
tmpMovedPosition += (remainingMovementDirection * remainingMovementMagnitude);
_transientPosition = tmpMovedPosition;
return wasCompleted;
}
/// <summary>
/// Gets the effective normal for movement obstruction depending on current grounding status
/// </summary>
private Vector3 GetObstructionNormal(Vector3 hitNormal, bool stableOnHit)
{
// Find hit/obstruction/offset normal
Vector3 obstructionNormal = hitNormal;
if (GroundingStatus.IsStableOnGround && !MustUnground() && !stableOnHit)
{
Vector3 obstructionLeftAlongGround = Vector3.Cross(GroundingStatus.GroundNormal, obstructionNormal).normalized;
obstructionNormal = Vector3.Cross(obstructionLeftAlongGround, _characterUp).normalized;
}
// Catch cases where cross product between parallel normals returned 0
if (obstructionNormal.sqrMagnitude == 0f)
{
obstructionNormal = hitNormal;
}
return obstructionNormal;
}
/// <summary>
/// Remembers a rigidbody hit for processing later
/// </summary>
private void StoreRigidbodyHit(Rigidbody hitRigidbody, Vector3 hitVelocity, Vector3 hitPoint, Vector3 obstructionNormal, HitStabilityReport hitStabilityReport)
{
if (_rigidbodyProjectionHitCount < _internalRigidbodyProjectionHits.Length)
{
if (!hitRigidbody.GetComponent<KinematicCharacterMotor>())
{
RigidbodyProjectionHit rph = new RigidbodyProjectionHit();
rph.Rigidbody = hitRigidbody;
rph.HitPoint = hitPoint;
rph.EffectiveHitNormal = obstructionNormal;
rph.HitVelocity = hitVelocity;
rph.StableOnHit = hitStabilityReport.IsStable;
_internalRigidbodyProjectionHits[_rigidbodyProjectionHitCount] = rph;
_rigidbodyProjectionHitCount++;
}
}
}
public void SetTransientPosition(Vector3 newPos)
{
_transientPosition = newPos;
}
/// <summary>
/// Processes movement projection upon detecting a hit
/// </summary>
private void InternalHandleVelocityProjection(bool stableOnHit, Vector3 hitNormal, Vector3 obstructionNormal, Vector3 originalDirection,
ref MovementSweepState sweepState, bool previousHitIsStable, Vector3 previousVelocity, Vector3 previousObstructionNormal,
ref Vector3 transientVelocity, ref float remainingMovementMagnitude, ref Vector3 remainingMovementDirection)
{
if (transientVelocity.sqrMagnitude <= 0f)
{
return;
}
Vector3 velocityBeforeProjection = transientVelocity;
if (stableOnHit)
{
LastMovementIterationFoundAnyGround = true;
HandleVelocityProjection(ref transientVelocity, obstructionNormal, stableOnHit);
}
else
{
// Handle projection
if (sweepState == MovementSweepState.Initial)
{
HandleVelocityProjection(ref transientVelocity, obstructionNormal, stableOnHit);
sweepState = MovementSweepState.AfterFirstHit;
}
// Blocking crease handling
else if (sweepState == MovementSweepState.AfterFirstHit)
{
EvaluateCrease(
transientVelocity,
previousVelocity,
obstructionNormal,
previousObstructionNormal,
stableOnHit,
previousHitIsStable,
GroundingStatus.IsStableOnGround && !MustUnground(),
out bool foundCrease,
out Vector3 creaseDirection);
if (foundCrease)
{
if (GroundingStatus.IsStableOnGround && !MustUnground())
{
transientVelocity = Vector3.zero;
sweepState = MovementSweepState.FoundBlockingCorner;
}
else
{
transientVelocity = Vector3.Project(transientVelocity, creaseDirection);
sweepState = MovementSweepState.FoundBlockingCrease;
}
}
else
{
HandleVelocityProjection(ref transientVelocity, obstructionNormal, stableOnHit);
}
}
// Blocking corner handling
else if (sweepState == MovementSweepState.FoundBlockingCrease)
{
transientVelocity = Vector3.zero;
sweepState = MovementSweepState.FoundBlockingCorner;
}
}
if (HasPlanarConstraint)
{
transientVelocity = Vector3.ProjectOnPlane(transientVelocity, PlanarConstraintAxis.normalized);
}
float newVelocityFactor = transientVelocity.magnitude / velocityBeforeProjection.magnitude;
remainingMovementMagnitude *= newVelocityFactor;
remainingMovementDirection = transientVelocity.normalized;
}
private void EvaluateCrease(
Vector3 currentCharacterVelocity,
Vector3 previousCharacterVelocity,
Vector3 currentHitNormal,
Vector3 previousHitNormal,
bool currentHitIsStable,
bool previousHitIsStable,
bool characterIsStable,
out bool isValidCrease,
out Vector3 creaseDirection)
{
isValidCrease = false;
creaseDirection = default;
if (!characterIsStable || !currentHitIsStable || !previousHitIsStable)
{
Vector3 tmpBlockingCreaseDirection = Vector3.Cross(currentHitNormal, previousHitNormal).normalized;
float dotPlanes = Vector3.Dot(currentHitNormal, previousHitNormal);
bool isVelocityConstrainedByCrease = false;
// Avoid calculations if the two planes are the same
if (dotPlanes < 0.999f)
{
// TODO: can this whole part be made simpler? (with 2d projections, etc)
Vector3 normalAOnCreasePlane = Vector3.ProjectOnPlane(currentHitNormal, tmpBlockingCreaseDirection).normalized;
Vector3 normalBOnCreasePlane = Vector3.ProjectOnPlane(previousHitNormal, tmpBlockingCreaseDirection).normalized;
float dotPlanesOnCreasePlane = Vector3.Dot(normalAOnCreasePlane, normalBOnCreasePlane);
Vector3 enteringVelocityDirectionOnCreasePlane = Vector3.ProjectOnPlane(previousCharacterVelocity, tmpBlockingCreaseDirection).normalized;
if (dotPlanesOnCreasePlane <= (Vector3.Dot(-enteringVelocityDirectionOnCreasePlane, normalAOnCreasePlane) + 0.001f) &&
dotPlanesOnCreasePlane <= (Vector3.Dot(-enteringVelocityDirectionOnCreasePlane, normalBOnCreasePlane) + 0.001f))
{
isVelocityConstrainedByCrease = true;
}
}
if (isVelocityConstrainedByCrease)
{
// Flip crease direction to make it representative of the real direction our velocity would be projected to
if (Vector3.Dot(tmpBlockingCreaseDirection, currentCharacterVelocity) < 0f)
{
tmpBlockingCreaseDirection = -tmpBlockingCreaseDirection;
}
isValidCrease = true;
creaseDirection = tmpBlockingCreaseDirection;
}
}
}
/// <summary>
/// Allows you to override the way velocity is projected on an obstruction
/// </summary>
public virtual void HandleVelocityProjection(ref Vector3 velocity, Vector3 obstructionNormal, bool stableOnHit)
{
if (GroundingStatus.IsStableOnGround && !MustUnground())
{
// On stable slopes, simply reorient the movement without any loss
if (stableOnHit)
{
velocity = GetDirectionTangentToSurface(velocity, obstructionNormal) * velocity.magnitude;
}
// On blocking hits, project the movement on the obstruction while following the grounding plane
else
{
Vector3 obstructionRightAlongGround = Vector3.Cross(obstructionNormal, GroundingStatus.GroundNormal).normalized;
Vector3 obstructionUpAlongGround = Vector3.Cross(obstructionRightAlongGround, obstructionNormal).normalized;
velocity = GetDirectionTangentToSurface(velocity, obstructionUpAlongGround) * velocity.magnitude;
velocity = Vector3.ProjectOnPlane(velocity, obstructionNormal);
}
}
else
{
if (stableOnHit)
{
// Handle stable landing
velocity = Vector3.ProjectOnPlane(velocity, CharacterUp);
velocity = GetDirectionTangentToSurface(velocity, obstructionNormal) * velocity.magnitude;
}
// Handle generic obstruction
else
{
velocity = Vector3.ProjectOnPlane(velocity, obstructionNormal);
}
}
}
/// <summary>
/// Allows you to override the way hit rigidbodies are pushed / interacted with.
/// ProcessedVelocity is what must be modified if this interaction affects the character's velocity.
/// </summary>
public virtual void HandleSimulatedRigidbodyInteraction(ref Vector3 processedVelocity, RigidbodyProjectionHit hit, float deltaTime)
{
}
/// <summary>
/// Takes into account rigidbody hits for adding to the velocity
/// </summary>
private void ProcessVelocityForRigidbodyHits(ref Vector3 processedVelocity, float deltaTime)
{
for (int i = 0; i < _rigidbodyProjectionHitCount; i++)
{
RigidbodyProjectionHit bodyHit = _internalRigidbodyProjectionHits[i];
if (bodyHit.Rigidbody && !_rigidbodiesPushedThisMove.Contains(bodyHit.Rigidbody))
{
if (_internalRigidbodyProjectionHits[i].Rigidbody != _attachedRigidbody)
{
// Remember we hit this rigidbody
_rigidbodiesPushedThisMove.Add(bodyHit.Rigidbody);
float characterMass = SimulatedCharacterMass;
Vector3 characterVelocity = bodyHit.HitVelocity;
KinematicCharacterMotor hitCharacterMotor = bodyHit.Rigidbody.GetComponent<KinematicCharacterMotor>();
bool hitBodyIsCharacter = hitCharacterMotor != null;
bool hitBodyIsDynamic = !bodyHit.Rigidbody.isKinematic;
float hitBodyMass = bodyHit.Rigidbody.mass;
float hitBodyMassAtPoint = bodyHit.Rigidbody.mass; // todo
Vector3 hitBodyVelocity = bodyHit.Rigidbody.velocity;
if (hitBodyIsCharacter)
{
hitBodyMass = hitCharacterMotor.SimulatedCharacterMass;
hitBodyMassAtPoint = hitCharacterMotor.SimulatedCharacterMass; // todo
hitBodyVelocity = hitCharacterMotor.BaseVelocity;
}
else if (!hitBodyIsDynamic)
{
PhysicsMover physicsMover = bodyHit.Rigidbody.GetComponent<PhysicsMover>();
if(physicsMover)
{
hitBodyVelocity = physicsMover.Velocity;
}
}
// Calculate the ratio of the total mass that the character mass represents
float characterToBodyMassRatio = 1f;
{
if (characterMass + hitBodyMassAtPoint > 0f)
{
characterToBodyMassRatio = characterMass / (characterMass + hitBodyMassAtPoint);
}
else
{
characterToBodyMassRatio = 0.5f;
}
// Hitting a non-dynamic body
if (!hitBodyIsDynamic)
{
characterToBodyMassRatio = 0f;
}
// Emulate kinematic body interaction
else if (RigidbodyInteractionType == RigidbodyInteractionType.Kinematic && !hitBodyIsCharacter)
{
characterToBodyMassRatio = 1f;
}
}
ComputeCollisionResolutionForHitBody(
bodyHit.EffectiveHitNormal,
characterVelocity,
hitBodyVelocity,
characterToBodyMassRatio,
out Vector3 velocityChangeOnCharacter,
out Vector3 velocityChangeOnBody);
processedVelocity += velocityChangeOnCharacter;
if (hitBodyIsCharacter)
{
hitCharacterMotor.BaseVelocity += velocityChangeOnCharacter;
}
else if (hitBodyIsDynamic)
{
bodyHit.Rigidbody.AddForceAtPosition(velocityChangeOnBody, bodyHit.HitPoint, ForceMode.VelocityChange);
}
if (RigidbodyInteractionType == RigidbodyInteractionType.SimulatedDynamic)
{
HandleSimulatedRigidbodyInteraction(ref processedVelocity, bodyHit, deltaTime);
}
}
}
}
}
public void ComputeCollisionResolutionForHitBody(
Vector3 hitNormal,
Vector3 characterVelocity,
Vector3 bodyVelocity,
float characterToBodyMassRatio,
out Vector3 velocityChangeOnCharacter,
out Vector3 velocityChangeOnBody)
{
velocityChangeOnCharacter = default;
velocityChangeOnBody = default;
float bodyToCharacterMassRatio = 1f - characterToBodyMassRatio;
float characterVelocityMagnitudeOnHitNormal = Vector3.Dot(characterVelocity, hitNormal);
float bodyVelocityMagnitudeOnHitNormal = Vector3.Dot(bodyVelocity, hitNormal);
// if character velocity was going against the obstruction, restore the portion of the velocity that got projected during the movement phase
if (characterVelocityMagnitudeOnHitNormal < 0f)
{
Vector3 restoredCharacterVelocity = hitNormal * characterVelocityMagnitudeOnHitNormal;
velocityChangeOnCharacter += restoredCharacterVelocity;
}
// solve impulse velocities on both bodies, but only if the body velocity would be giving resistance to the character in any way
if (bodyVelocityMagnitudeOnHitNormal > characterVelocityMagnitudeOnHitNormal)
{
Vector3 relativeImpactVelocity = hitNormal * (bodyVelocityMagnitudeOnHitNormal - characterVelocityMagnitudeOnHitNormal);
velocityChangeOnCharacter += relativeImpactVelocity * bodyToCharacterMassRatio;
velocityChangeOnBody += -relativeImpactVelocity * characterToBodyMassRatio;
}
}
/// <summary>
/// Determines if the input collider is valid for collision processing
/// </summary>
/// <returns> Returns true if the collider is valid </returns>
private bool CheckIfColliderValidForCollisions(Collider coll)
{
// Ignore self
if (coll == Capsule)
{
return false;
}
if (!InternalIsColliderValidForCollisions(coll))
{
return false;
}
return true;
}
/// <summary>
/// Determines if the input collider is valid for collision processing
/// </summary>
private bool InternalIsColliderValidForCollisions(Collider coll)
{
Rigidbody colliderAttachedRigidbody = coll.attachedRigidbody;
if (colliderAttachedRigidbody)
{
bool isRigidbodyKinematic = colliderAttachedRigidbody.isKinematic;
// If movement is made from AttachedRigidbody, ignore the AttachedRigidbody
if (_isMovingFromAttachedRigidbody && (!isRigidbodyKinematic || colliderAttachedRigidbody == _attachedRigidbody))
{
return false;
}
// don't collide with dynamic rigidbodies if our RigidbodyInteractionType is kinematic
if (RigidbodyInteractionType == RigidbodyInteractionType.Kinematic && !isRigidbodyKinematic)
{
// wake up rigidbody
if (coll.attachedRigidbody)
{
coll.attachedRigidbody.WakeUp();
}
return false;
}
}
// Custom checks
bool colliderValid = CharacterController.IsColliderValidForCollisions(coll);
if (!colliderValid)
{
return false;
}
return true;
}
/// <summary>
/// Determines if the motor is considered stable on a given hit
/// </summary>
public void EvaluateHitStability(Collider hitCollider, Vector3 hitNormal, Vector3 hitPoint, Vector3 atCharacterPosition, Quaternion atCharacterRotation, Vector3 withCharacterVelocity, ref HitStabilityReport stabilityReport)
{
if (!_solveGrounding)
{
stabilityReport.IsStable = false;
return;
}
Vector3 atCharacterUp = atCharacterRotation * _cachedWorldUp;
Vector3 innerHitDirection = Vector3.ProjectOnPlane(hitNormal, atCharacterUp).normalized;
stabilityReport.IsStable = this.IsStableOnNormal(hitNormal);
stabilityReport.FoundInnerNormal = false;
stabilityReport.FoundOuterNormal = false;
stabilityReport.InnerNormal = hitNormal;
stabilityReport.OuterNormal = hitNormal;
// Ledge handling
if (LedgeAndDenivelationHandling)
{
float ledgeCheckHeight = MinDistanceForLedge;
if (StepHandling != StepHandlingMethod.None)
{
ledgeCheckHeight = MaxStepHeight;
}
bool isStableLedgeInner = false;
bool isStableLedgeOuter = false;
if (CharacterCollisionsRaycast(
hitPoint + (atCharacterUp * SecondaryProbesVertical) + (innerHitDirection * SecondaryProbesHorizontal),
-atCharacterUp,
ledgeCheckHeight + SecondaryProbesVertical,
out RaycastHit innerLedgeHit,
_internalCharacterHits) > 0)
{
Vector3 innerLedgeNormal = innerLedgeHit.normal;
stabilityReport.InnerNormal = innerLedgeNormal;
stabilityReport.FoundInnerNormal = true;
isStableLedgeInner = IsStableOnNormal(innerLedgeNormal);
}
if (CharacterCollisionsRaycast(
hitPoint + (atCharacterUp * SecondaryProbesVertical) + (-innerHitDirection * SecondaryProbesHorizontal),
-atCharacterUp,
ledgeCheckHeight + SecondaryProbesVertical,
out RaycastHit outerLedgeHit,
_internalCharacterHits) > 0)
{
Vector3 outerLedgeNormal = outerLedgeHit.normal;
stabilityReport.OuterNormal = outerLedgeNormal;
stabilityReport.FoundOuterNormal = true;
isStableLedgeOuter = IsStableOnNormal(outerLedgeNormal);
}
stabilityReport.LedgeDetected = (isStableLedgeInner != isStableLedgeOuter);
if (stabilityReport.LedgeDetected)
{
stabilityReport.IsOnEmptySideOfLedge = isStableLedgeOuter && !isStableLedgeInner;
stabilityReport.LedgeGroundNormal = isStableLedgeOuter ? stabilityReport.OuterNormal : stabilityReport.InnerNormal;
stabilityReport.LedgeRightDirection = Vector3.Cross(hitNormal, stabilityReport.LedgeGroundNormal).normalized;
stabilityReport.LedgeFacingDirection = Vector3.ProjectOnPlane(Vector3.Cross(stabilityReport.LedgeGroundNormal, stabilityReport.LedgeRightDirection), CharacterUp).normalized;
stabilityReport.DistanceFromLedge = Vector3.ProjectOnPlane((hitPoint - (atCharacterPosition + (atCharacterRotation * _characterTransformToCapsuleBottom))), atCharacterUp).magnitude;
stabilityReport.IsMovingTowardsEmptySideOfLedge = Vector3.Dot(withCharacterVelocity.normalized, stabilityReport.LedgeFacingDirection) > 0f;
}
if (stabilityReport.IsStable)
{
stabilityReport.IsStable = IsStableWithSpecialCases(ref stabilityReport, withCharacterVelocity);
}
}
// Step handling
if (StepHandling != StepHandlingMethod.None && !stabilityReport.IsStable)
{
// Stepping not supported on dynamic rigidbodies
Rigidbody hitRigidbody = hitCollider.attachedRigidbody;
if (!(hitRigidbody && !hitRigidbody.isKinematic))
{
DetectSteps(atCharacterPosition, atCharacterRotation, hitPoint, innerHitDirection, ref stabilityReport);
if (stabilityReport.ValidStepDetected)
{
stabilityReport.IsStable = true;
}
}
}
CharacterController.ProcessHitStabilityReport(hitCollider, hitNormal, hitPoint, atCharacterPosition, atCharacterRotation, ref stabilityReport);
}
private void DetectSteps(Vector3 characterPosition, Quaternion characterRotation, Vector3 hitPoint, Vector3 innerHitDirection, ref HitStabilityReport stabilityReport)
{
int nbStepHits = 0;
Collider tmpCollider;
RaycastHit outerStepHit;
Vector3 characterUp = characterRotation * _cachedWorldUp;
Vector3 verticalCharToHit = Vector3.Project((hitPoint - characterPosition), characterUp);
Vector3 horizontalCharToHitDirection = Vector3.ProjectOnPlane((hitPoint - characterPosition), characterUp).normalized;
Vector3 stepCheckStartPos = (hitPoint - verticalCharToHit) + (characterUp * MaxStepHeight) + (horizontalCharToHitDirection * CollisionOffset * 3f);
// Do outer step check with capsule cast on hit point
nbStepHits = CharacterCollisionsSweep(
stepCheckStartPos,
characterRotation,
-characterUp,
MaxStepHeight + CollisionOffset,
out outerStepHit,
_internalCharacterHits,
0f,
true);
// Check for overlaps and obstructions at the hit position
if (CheckStepValidity(nbStepHits, characterPosition, characterRotation, innerHitDirection, stepCheckStartPos, out tmpCollider))
{
stabilityReport.ValidStepDetected = true;
stabilityReport.SteppedCollider = tmpCollider;
}
if (StepHandling == StepHandlingMethod.Extra && !stabilityReport.ValidStepDetected)
{
// Do min reach step check with capsule cast on hit point
stepCheckStartPos = characterPosition + (characterUp * MaxStepHeight) + (-innerHitDirection * MinRequiredStepDepth);
nbStepHits = CharacterCollisionsSweep(
stepCheckStartPos,
characterRotation,
-characterUp,
MaxStepHeight - CollisionOffset,
out outerStepHit,
_internalCharacterHits,
0f,
true);
// Check for overlaps and obstructions at the hit position
if (CheckStepValidity(nbStepHits, characterPosition, characterRotation, innerHitDirection, stepCheckStartPos, out tmpCollider))
{
stabilityReport.ValidStepDetected = true;
stabilityReport.SteppedCollider = tmpCollider;
}
}
}
private bool CheckStepValidity(int nbStepHits, Vector3 characterPosition, Quaternion characterRotation, Vector3 innerHitDirection, Vector3 stepCheckStartPos, out Collider hitCollider)
{
hitCollider = null;
Vector3 characterUp = characterRotation * Vector3.up;
// Find the farthest valid hit for stepping
bool foundValidStepPosition = false;
while (nbStepHits > 0 && !foundValidStepPosition)
{
// Get farthest hit among the remaining hits
RaycastHit farthestHit = new RaycastHit();
float farthestDistance = 0f;
int farthestIndex = 0;
for (int i = 0; i < nbStepHits; i++)
{
float hitDistance = _internalCharacterHits[i].distance;
if (hitDistance > farthestDistance)
{
farthestDistance = hitDistance;
farthestHit = _internalCharacterHits[i];
farthestIndex = i;
}
}
Vector3 characterPositionAtHit = stepCheckStartPos + (-characterUp * (farthestHit.distance - CollisionOffset));
int atStepOverlaps = CharacterCollisionsOverlap(characterPositionAtHit, characterRotation, _internalProbedColliders);
if (atStepOverlaps <= 0)
{
// Check for outer hit slope normal stability at the step position
if (CharacterCollisionsRaycast(
farthestHit.point + (characterUp * SecondaryProbesVertical) + (-innerHitDirection * SecondaryProbesHorizontal),
-characterUp,
MaxStepHeight + SecondaryProbesVertical,
out RaycastHit outerSlopeHit,
_internalCharacterHits,
true) > 0)
{
if (IsStableOnNormal(outerSlopeHit.normal))
{
// Cast upward to detect any obstructions to moving there
if (CharacterCollisionsSweep(
characterPosition, // position
characterRotation, // rotation
characterUp, // direction
MaxStepHeight - farthestHit.distance, // distance
out RaycastHit tmpUpObstructionHit, // closest hit
_internalCharacterHits) // all hits
<= 0)
{
// Do inner step check...
bool innerStepValid = false;
RaycastHit innerStepHit;
if (AllowSteppingWithoutStableGrounding)
{
innerStepValid = true;
}
else
{
// At the capsule center at the step height
if (CharacterCollisionsRaycast(
characterPosition + Vector3.Project((characterPositionAtHit - characterPosition), characterUp),
-characterUp,
MaxStepHeight,
out innerStepHit,
_internalCharacterHits,
true) > 0)
{
if (IsStableOnNormal(innerStepHit.normal))
{
innerStepValid = true;
}
}
}
if (!innerStepValid)
{
// At inner step of the step point
if (CharacterCollisionsRaycast(
farthestHit.point + (innerHitDirection * SecondaryProbesHorizontal),
-characterUp,
MaxStepHeight,
out innerStepHit,
_internalCharacterHits,
true) > 0)
{
if (IsStableOnNormal(innerStepHit.normal))
{
innerStepValid = true;
}
}
}
// Final validation of step
if (innerStepValid)
{
hitCollider = farthestHit.collider;
foundValidStepPosition = true;
return true;
}
}
}
}
}
// Discard hit if not valid step
if (!foundValidStepPosition)
{
nbStepHits--;
if (farthestIndex < nbStepHits)
{
_internalCharacterHits[farthestIndex] = _internalCharacterHits[nbStepHits];
}
}
}
return false;
}
/// <summary>
/// Get true linear velocity (taking into account rotational velocity) on a given point of a rigidbody
/// </summary>
public void GetVelocityFromRigidbodyMovement(Rigidbody interactiveRigidbody, Vector3 atPoint, float deltaTime, out Vector3 linearVelocity, out Vector3 angularVelocity)
{
if (deltaTime > 0f)
{
linearVelocity = interactiveRigidbody.velocity;
angularVelocity = interactiveRigidbody.angularVelocity;
if(interactiveRigidbody.isKinematic)
{
PhysicsMover physicsMover = interactiveRigidbody.GetComponent<PhysicsMover>();
if (physicsMover)
{
linearVelocity = physicsMover.Velocity;
angularVelocity = physicsMover.AngularVelocity;
}
}
if (angularVelocity != Vector3.zero)
{
Vector3 centerOfRotation = interactiveRigidbody.transform.TransformPoint(interactiveRigidbody.centerOfMass);
Vector3 centerOfRotationToPoint = atPoint - centerOfRotation;
Quaternion rotationFromInteractiveRigidbody = Quaternion.Euler(Mathf.Rad2Deg * angularVelocity * deltaTime);
Vector3 finalPointPosition = centerOfRotation + (rotationFromInteractiveRigidbody * centerOfRotationToPoint);
linearVelocity += (finalPointPosition - atPoint) / deltaTime;
}
}
else
{
linearVelocity = default;
angularVelocity = default;
return;
}
}
/// <summary>
/// Determines if a collider has an attached interactive rigidbody
/// </summary>
private Rigidbody GetInteractiveRigidbody(Collider onCollider)
{
Rigidbody colliderAttachedRigidbody = onCollider.attachedRigidbody;
if (colliderAttachedRigidbody)
{
if (colliderAttachedRigidbody.gameObject.GetComponent<PhysicsMover>())
{
return colliderAttachedRigidbody;
}
if (!colliderAttachedRigidbody.isKinematic)
{
return colliderAttachedRigidbody;
}
}
return null;
}
/// <summary>
/// Calculates the velocity required to move the character to the target position over a specific deltaTime.
/// Useful for when you wish to work with positions rather than velocities in the UpdateVelocity callback
/// </summary>
public Vector3 GetVelocityForMovePosition(Vector3 fromPosition, Vector3 toPosition, float deltaTime)
{
return GetVelocityFromMovement(toPosition - fromPosition, deltaTime);
}
public Vector3 GetVelocityFromMovement(Vector3 movement, float deltaTime)
{
if (deltaTime <= 0f)
return Vector3.zero;
return movement / deltaTime;
}
/// <summary>
/// Trims a vector to make it restricted against a plane
/// </summary>
private void RestrictVectorToPlane(ref Vector3 vector, Vector3 toPlane)
{
if (vector.x > 0 != toPlane.x > 0)
{
vector.x = 0;
}
if (vector.y > 0 != toPlane.y > 0)
{
vector.y = 0;
}
if (vector.z > 0 != toPlane.z > 0)
{
vector.z = 0;
}
}
/// <summary>
/// Detect if the character capsule is overlapping with anything collidable
/// </summary>
/// <returns> Returns number of overlaps </returns>
public int CharacterCollisionsOverlap(Vector3 position, Quaternion rotation, Collider[] overlappedColliders, float inflate = 0f, bool acceptOnlyStableGroundLayer = false)
{
int queryLayers = CollidableLayers;
if (acceptOnlyStableGroundLayer)
{
queryLayers = CollidableLayers & StableGroundLayers;
}
Vector3 bottom = position + (rotation * _characterTransformToCapsuleBottomHemi);
Vector3 top = position + (rotation * _characterTransformToCapsuleTopHemi);
if (inflate != 0f)
{
bottom += (rotation * Vector3.down * inflate);
top += (rotation * Vector3.up * inflate);
}
int nbHits = 0;
int nbUnfilteredHits = Physics.OverlapCapsuleNonAlloc(
bottom,
top,
Capsule.radius + inflate,
overlappedColliders,
queryLayers,
QueryTriggerInteraction.Ignore);
// Filter out invalid colliders
nbHits = nbUnfilteredHits;
for (int i = nbUnfilteredHits - 1; i >= 0; i--)
{
if (!CheckIfColliderValidForCollisions(overlappedColliders[i]))
{
nbHits--;
if (i < nbHits)
{
overlappedColliders[i] = overlappedColliders[nbHits];
}
}
}
return nbHits;
}
/// <summary>
/// Detect if the character capsule is overlapping with anything
/// </summary>
/// <returns> Returns number of overlaps </returns>
public int CharacterOverlap(Vector3 position, Quaternion rotation, Collider[] overlappedColliders, LayerMask layers, QueryTriggerInteraction triggerInteraction, float inflate = 0f)
{
Vector3 bottom = position + (rotation * _characterTransformToCapsuleBottomHemi);
Vector3 top = position + (rotation * _characterTransformToCapsuleTopHemi);
if (inflate != 0f)
{
bottom += (rotation * Vector3.down * inflate);
top += (rotation * Vector3.up * inflate);
}
int nbHits = 0;
int nbUnfilteredHits = Physics.OverlapCapsuleNonAlloc(
bottom,
top,
Capsule.radius + inflate,
overlappedColliders,
layers,
triggerInteraction);
// Filter out the character capsule itself
nbHits = nbUnfilteredHits;
for (int i = nbUnfilteredHits - 1; i >= 0; i--)
{
if (overlappedColliders[i] == Capsule)
{
nbHits--;
if (i < nbHits)
{
overlappedColliders[i] = overlappedColliders[nbHits];
}
}
}
return nbHits;
}
/// <summary>
/// Sweeps the capsule's volume to detect collision hits
/// </summary>
/// <returns> Returns the number of hits </returns>
public int CharacterCollisionsSweep(Vector3 position, Quaternion rotation, Vector3 direction, float distance, out RaycastHit closestHit, RaycastHit[] hits, float inflate = 0f, bool acceptOnlyStableGroundLayer = false)
{
int queryLayers = CollidableLayers;
if (acceptOnlyStableGroundLayer)
{
queryLayers = CollidableLayers & StableGroundLayers;
}
Vector3 bottom = position + (rotation * _characterTransformToCapsuleBottomHemi) - (direction * SweepProbingBackstepDistance);
Vector3 top = position + (rotation * _characterTransformToCapsuleTopHemi) - (direction * SweepProbingBackstepDistance);
if (inflate != 0f)
{
bottom += (rotation * Vector3.down * inflate);
top += (rotation * Vector3.up * inflate);
}
// Capsule cast
int nbHits = 0;
int nbUnfilteredHits = Physics.CapsuleCastNonAlloc(
bottom,
top,
Capsule.radius + inflate,
direction,
hits,
distance + SweepProbingBackstepDistance,
queryLayers,
QueryTriggerInteraction.Ignore);
// Hits filter
closestHit = new RaycastHit();
float closestDistance = Mathf.Infinity;
nbHits = nbUnfilteredHits;
for (int i = nbUnfilteredHits - 1; i >= 0; i--)
{
hits[i].distance -= SweepProbingBackstepDistance;
RaycastHit hit = hits[i];
float hitDistance = hit.distance;
// Filter out the invalid hits
if (hitDistance <= 0f || !CheckIfColliderValidForCollisions(hit.collider))
{
nbHits--;
if (i < nbHits)
{
hits[i] = hits[nbHits];
}
}
else
{
// Remember closest valid hit
if (hitDistance < closestDistance)
{
closestHit = hit;
closestDistance = hitDistance;
}
}
}
return nbHits;
}
/// <summary>
/// Sweeps the capsule's volume to detect hits
/// </summary>
/// <returns> Returns the number of hits </returns>
public int CharacterSweep(Vector3 position, Quaternion rotation, Vector3 direction, float distance, out RaycastHit closestHit, RaycastHit[] hits, LayerMask layers, QueryTriggerInteraction triggerInteraction, float inflate = 0f)
{
closestHit = new RaycastHit();
Vector3 bottom = position + (rotation * _characterTransformToCapsuleBottomHemi);
Vector3 top = position + (rotation * _characterTransformToCapsuleTopHemi);
if (inflate != 0f)
{
bottom += (rotation * Vector3.down * inflate);
top += (rotation * Vector3.up * inflate);
}
// Capsule cast
int nbHits = 0;
int nbUnfilteredHits = Physics.CapsuleCastNonAlloc(
bottom,
top,
Capsule.radius + inflate,
direction,
hits,
distance,
layers,
triggerInteraction);
// Hits filter
float closestDistance = Mathf.Infinity;
nbHits = nbUnfilteredHits;
for (int i = nbUnfilteredHits - 1; i >= 0; i--)
{
RaycastHit hit = hits[i];
// Filter out the character capsule
if (hit.distance <= 0f || hit.collider == Capsule)
{
nbHits--;
if (i < nbHits)
{
hits[i] = hits[nbHits];
}
}
else
{
// Remember closest valid hit
float hitDistance = hit.distance;
if (hitDistance < closestDistance)
{
closestHit = hit;
closestDistance = hitDistance;
}
}
}
return nbHits;
}
/// <summary>
/// Casts the character volume in the character's downward direction to detect ground
/// </summary>
/// <returns> Returns the number of hits </returns>
private bool CharacterGroundSweep(Vector3 position, Quaternion rotation, Vector3 direction, float distance, out RaycastHit closestHit)
{
closestHit = new RaycastHit();
// Capsule cast
int nbUnfilteredHits = Physics.CapsuleCastNonAlloc(
position + (rotation * _characterTransformToCapsuleBottomHemi) - (direction * GroundProbingBackstepDistance),
position + (rotation * _characterTransformToCapsuleTopHemi) - (direction * GroundProbingBackstepDistance),
Capsule.radius,
direction,
_internalCharacterHits,
distance + GroundProbingBackstepDistance,
CollidableLayers & StableGroundLayers,
QueryTriggerInteraction.Ignore);
// Hits filter
bool foundValidHit = false;
float closestDistance = Mathf.Infinity;
for (int i = 0; i < nbUnfilteredHits; i++)
{
RaycastHit hit = _internalCharacterHits[i];
float hitDistance = hit.distance;
// Find the closest valid hit
if (hitDistance > 0f && CheckIfColliderValidForCollisions(hit.collider))
{
if (hitDistance < closestDistance)
{
closestHit = hit;
closestHit.distance -= GroundProbingBackstepDistance;
closestDistance = hitDistance;
foundValidHit = true;
}
}
}
return foundValidHit;
}
/// <summary>
/// Raycasts to detect collision hits
/// </summary>
/// <returns> Returns the number of hits </returns>
public int CharacterCollisionsRaycast(Vector3 position, Vector3 direction, float distance, out RaycastHit closestHit, RaycastHit[] hits, bool acceptOnlyStableGroundLayer = false)
{
int queryLayers = CollidableLayers;
if (acceptOnlyStableGroundLayer)
{
queryLayers = CollidableLayers & StableGroundLayers;
}
// Raycast
int nbHits = 0;
int nbUnfilteredHits = Physics.RaycastNonAlloc(
position,
direction,
hits,
distance,
queryLayers,
QueryTriggerInteraction.Ignore);
// Hits filter
closestHit = new RaycastHit();
float closestDistance = Mathf.Infinity;
nbHits = nbUnfilteredHits;
for (int i = nbUnfilteredHits - 1; i >= 0; i--)
{
RaycastHit hit = hits[i];
float hitDistance = hit.distance;
// Filter out the invalid hits
if (hitDistance <= 0f ||
!CheckIfColliderValidForCollisions(hit.collider))
{
nbHits--;
if (i < nbHits)
{
hits[i] = hits[nbHits];
}
}
else
{
// Remember closest valid hit
if (hitDistance < closestDistance)
{
closestHit = hit;
closestDistance = hitDistance;
}
}
}
return nbHits;
}
}
}