Table of Contents

User Manual
Working With NeoFPS
Installation
Getting Started
Common Tasks
Wizards
Game Modes
Generated Constants
Layers and Tags
Game Settings
NeoFPS Shaders
Reference
MonoBehaviours
ScriptableObjects
FPS Characters
Spawning
Stamina
Reference
FpsPrototypePlayerController
FpsSoloCharacter
FpsSoloPlayerController
OrderedSpawnPointGroup
SimpleBreathManager
SoloPlayerCharacterEventWatcher
SpawnManager
SpawnPoint
StaminaSystem
First Person Camera
Aim Controllers
Additive Transforms & Effects
Reference
MonoBehaviours

https://docs.neofps.com

ScriptableObjects
The Motion Graph
NeoCharacterController
The Motion Graph Editor
Motion Graph States
Motion Graph Behaviours
Motion Graph Conditions
Motion Graph Parameters And Data
Ladders
Moving Platforms
Swimming
Motion Debugger
Reference
States
Behaviours
Conditions
MonoBehaviours
ScriptableObjects
NeoFPS Input System
Input Settings
Creating Custom Input Handlers
Reference
MonoBehaviours
ScriptableObjects
Interaction With The World
Doors
Interactive Objects
Reference
AnimatedDoorHandle
CharacterlnteractionHandler
CharacterTriggerZone
CharacterTriggerZonePersistant
DoorlInteractiveObject
DoorTrigger
ElevatorController
ElevatorMovingPlatform
InteractiveObject

InteractiveObjectCornerMarkers
InteractiveObjectMaterialMarker
KeypadInteractiveObject
KeypadPopup
KeyRing
KinematicHingeDoor
LockedDoorlnteractiveObject
LockedDoorTrigger
LockedTriggerZone
LockpickPopup3D
LockpickPopupUI
PhysicsHingeDoor
PickableLockedDoorlnteractiveObject
SlidingDoor
SoloCharacterTriggerZone
SoloCharacterTriggerZonePersistant
TriggerZoneColliderCounter
Audio Systems
Footsteps
Reference
AnimationEventAudioPlayer
AudioTimeScalePitchBend
ClipSetContactAudioHandler
FpsCharacterAudioData
FpsCharacterAudioHandler
NeoFpsAudioManager
SurfaceAudioData
SurfaceContactAudioHandler
Inventory
Inventory Examples
Reference
MonoBehaviours
ScriptableObjects
Weapons
Firearms
The Modular Firearm System
Hitscan vs Projectiles

Scopes & Optics
Attachments

Melee Weapons

Thrown Weapons

Wieldable Tools

Explosions

Reference
MonoBehaviours
ScriptableObjects

Health and Damage

Reference
ArmouredDamageHandler
BasicDamageHandler
BasicHealthManager
DamageZone
EventDamageHandler
HealthPickup
HealZone
RechargingHealthManager
ShieldedArmouredDamageHandler
ShieldedDamageHandler
ShieldManager
ShieldPickup

The Player HUD

Reference
HudAdvancedCrosshair
HudAdvancedCrosshairStyleStandard
HudAmmoCounter
HudCrosshair
HudDamageMarkers
HudDeathPopup
HudFirearmMode
HudFirearmOverheatBar
HudHealthCounter
HudHider
HudlnteractionTooltip
HudlInventoryltemCounter

HudInventoryltemMeter
HudInventoryStackedPC
HudInventoryltemStacked
HudlInventoryStackedSlot
HudlInventoryStandardPC
HudlnventoryltemStandard
HudMotionGraphParameterMeter
HudMotionGraphParameterReadout
HudOxygenMeter
HudProgressBar
HudScope
HudShieldMeter
HudShieldMeterStep
HudSlowMoCharge
HudStaminaBar
HudTargetLock
HudTargetLockMarkers
HudToggle
Save Games

Serializing Data

Runtime Objects

Overrides And Persistence

Troubleshooting

Reference
MonoBehaviours
ScriptableObjects

Samples

Al

Ul

Reference
ApplyRandomDamage
CameraSeeker
DemokFacilityTarget
DemokFacilityTargetDamageTracker
Demolnfolaptop
DoorsDemokElevatorReadout
FiringRangeMovingTarget

FiringRangeReadout
FiringRangeSequencer
FiringRangeTarget
InfoPopupTrigger
KeypadPopup
LoadingScreen
MinimalDemoCharacter
OutOfBoundsRespawn
TurretSeeker
WaterZoneMover
Utilities
Reference
StateMachineBehaviours
MonoBehaviours
ScriptableObjects
Surfaces
Reference
MonoBehaviours
ScriptableObjects

Welcome to the NeoFPS documentation

NeoFPS is a first person shooter asset and toolkit for the Unity game engine. Its goal is to enable you to create an FPS that
matches your vision without restrictions. Designed to be flexible and extensible, NeoFPS can be the perfect starting point for your

game.

Installation

For instructions on getting set up with NeoFPS, see the section titled NeoFPS Installation.

Learning NeoFPS

More comprehensive documentation with more frequent updates can be found on the NeoFPS documentation website.
For information on using NeoFPS in the Unity editor, see the Manual.

For details on writing code for NeoFPS, see the Scripting Reference.

You can find a selection of helpful tutorials here.

Support

NeoFPS is a complex asset and as such there are bound to be occasional problems. If something seems broken or counter-
intuitive, or if you have a suggestion that would make NeoFPS better for developers then please get in touch.

You can access the support page on the website at NeoFPS Support.

Alternatively, you can email support@neofps.com.

Further sources of information

e The NeoFPS Website - tutorials, roadmap and support
e NeoFPS Unity Forum Thread - coming soon

https://docs.neofps.com
https://docs.neofps.com/manual/index.html
https://docs.neofps.com/api/index.html
https://neofps.com/tutorials
https://neofps.com/support
mailto:support@neofps.com
https://neofps.com

Working With NeoFPS

Overview

NeoFPS is a framework for building PC and console based first person games.

Since itis impossible to cover all of the first person game types in a single asset, instead NeoFPS concentrates on the core
mechanics of FPS games. Namely: movement, camera, interaction and shooting. It also provides implementations for features that
Unity lacks out of the box, but which are especially important in first person games such as bindable controls, surface based
effects, runtime settings and separating physics for shooting and movement.

NeoFPS was designed with the following goals:

e To help raise the quality bar of first person games created with the Unity game engine.

To make it possible for a developer to achieve their vision of a first person game without placing constraints on how the
game plays.

To make the more complex mechanics of first person shooters accessible with a minimum of coding required.

To allow developers to choose which features to use and which to replace without having to modify the code.

Installation

NeoFPS is a complex asset that requires a number of custom settings and has dependencies on other packages. Please see the
Installation Instructions for a guide to getting NeoFPS up and running.

Getting Started

If this is your first time using NeoFPS, take a look at the Getting Started section for details on where to start. The Common Tasks
section runs through some of the early tasks that are frequently raised in the NeoFPS Discord server and can point you in the
right direction for the steps and documentation required.

Generated Constants

To meet the goals of enabling developers to achieve their vision and create complex mechanics without rewriting code, a flexible
way of referencing objects and states is required. It would be easy to implement somthing using strings for keys, but the
performance and memory impact of this can be a problem if the system is used in a lot of places or many times a frame. NeoFPS
gets around this by providing a simple interface for creating constants similar to Unity's layers. These constants are turned into
code that makes the constants easy to use in scripts as well as using them for properties in the inspector.

For more information see Generated Constants.

Layers and Tags

NeoFPS makes heavy use of Unity layers to enable complex features and to separate out scene elements for better performance.
For more information see Layers and Tags.

Game Settings

NeoFPS exposes a number of runtime settings to the player through text based settings files.

For more information see Game Settings.

See Also

NeoFPS Installation
Getting Started

Generated Constants

https://discord.neofps.com
https://docs.unity3d.com/Manual/Layers.html

Layers and Tags

Game Settings

NeoFPS Installation

Overview

On first adding NeoFPS to a project, once the assets have been imported, the NeoFPS hub should appear, guiding you through
the installation and providing useful ingormation on getting started. This document covers any extra steps and gives details of

what is happening in case you want more manual control of the installation process.

Unity Settings

NeoFPS requires various project settings to be applied in order to function correctly. This includes custom layers, custom input
axes, and an optimised layer collision matrix. NeoFPS has an automated system for applying Unity settings built into the NeoFPS
Hub. It uses version numbers to track when updates to NeoFPS require new settings to be applied and will open the hub on the
Unity Settings page if they are not up to date. You can also find the hub in the toolbar via Tools/NeoFPS/NeoFPS Hub.

NeoFPS Hub

Contents Unity Settings

° Q Unity Settings
L1

correctly, This includes

Easy Mode

Hit the button to automatically apply all the | i equires to function properly.

Individual settings

y applying the required settings could interfere

5. Hitting "Apply Manually" will flag the
Layers and Tags:
Physics:

Input Settings:

Player Settings: ically Apply Manually Learn More

You can apply all required settings automatically here. If you are installing NeoFPS in a fresh project then this is the
recommended approach. If you would prefer to apply the correct settings manually then you can do so using the Individual
Settings section. Clicking the Apply Manually button for a section will open the relevant Unity settings editor and flag the
settings as up to date in the NeoFPS hub. The following is a breakdown of what is required for each section:

SETTINGS DETAILS

Layers and
Ta;s NeoFPS makes extensive use of custom layers. For more information, see the Layers and Tags documentation.
NeoFPS uses the physics layer collision matrix to define interactions between the custom layers. For more information see the
Physics Layer Collision Matrix section of the Layers and Tags documentation. This must be changed after the layers and tags have
been set up.
Inout To enable consistent controller mapping across platforms, NeoFPS has some fairly complex input settings. You can find a full
P list in the Input Settings documentation.
Player NeoFPS uses the Linear color space (this will be set to "Gamma" by default). Without this change, the sample scenes will look

Settings very washed out and bright.

SETTINGS DETAILS

Build

. See the Sample Scenes section below.
Settings

Sample Scenes

Sample scenes that demonstrate NeoFPS' features can be found in the project folder: NeoFPS/Samples/SinglePlayer/Scenes

The MainMenu scene is intended as a jumping off point for the individual demos and needs to be set as the first scene in the
build settings (index 0). This means it will be the start-up scene for standalone builds. The Loading scene is a loading screen that
is displayed when loading demo scenes. By default, this must be the second scene in the build settings (index 1), though this can

be changed via the Neo Scene Manager in the hub.
The Unity Settings page applies the above settings automatically as part of the Build Settings section.

Post Processing

NeoFPS makes use of Unity's Post Processing Stack V2 package. On first adding NeoFPS to your project this should be installed
automatically. If you want to check manually that the package is installed then you can access the package manager via the
toolbar at: Window/Package Manager. Once opened, click the All tab at the top of the package list on the left. Scroll down and
select Post Processing. At the bottom right of the description panel is an install button unless the package is already installed.

Due to a bug in the way the PostProcessLayer component is serialized, this has been removed from all cameras and replaced
with a script which attaches and sets up the component at runtime. For more information see the PostProcessLayerFix behaviour

reference.

See Also

Layers and Tags

Input Settings

Getting Started
NeoFPS Hub

On first adding NeoFPS to your project, once the assets have been imported, you should see the NeoFPS hub window appear:

Contents Front Page

Thankyou for chc

via Tools/MeaFPS/MeaFPS Hub

The hub will notify you of any changes to the required settings that must be applied (for more information see NeoFPS
Installation). It also provides a quick way of accessing the sample scenes along with helpful links for getting the most from
NeoFPS;

The hub pop-up will only be shown automatically this first time. If you want to see it again then it can be found in the toolbar via
Tools/NeoFPS/NeoFPS Hub. Alternatively you can check the Show hub on startup checkbox at the bottom of the front page, and
it will be shown each time the project is loaded.

Down the left-hand side of the hub is a navigation pane that lets you choose the page to view. The hub is split into the following

sections:

e The Front Page contains useful links to aid with learning NeoFPS, getting support and engaging with the NeoFPS
community.

e Unity Settings is used to apply the Unity settings that NeoFPS requires.

e Upgrade Notes tracks the installed version of NeoFPS and describes the steps required to upgrade to the latest update
(both in scripts and components)

e Quick Start contains a selection of readme sub-pages which aid in getting up and running in NeoFPS, link to the relevant
docs, and highlight useful assets and folders.

e Demo Scenes lists the available demo scenes and provides a quick way to find and load them. Once loaded, the Scene
Info sub-page displays a readme for the scene with links to relevant docs and scene or project items. You can also find an

object in each demo scene called Readme which contains this information.

e Game Settings organises the player facing game options, allowing you to change default / starting values or delete your
local settings files. These are the options the player can access through the in-game menus such as volume settings, mouse
sensitivity, etc.

e Managers organises the manager settings for the various NeoFPS systems.

e Wizards provides a series of tools for quickly creating and setting up items in NeoFPS. For more information, see NeoFPS
Wizards.

o Integations lists the available integrations for NeoFPS and provides links to the asset store and GitHub repositories. For the
latest integrations, see the integrations page on the website.

e Standalone Tools lists the non-hub based tools available in NeoFPS such as the motion graph editor, the motion
debugger, and the save file inspector.

Project Structure
All NeoFPS assets are contained in the NeoFPS folder. Inside this there are 4 subfolders:

Constants contains all the Generated Constants used by NeoFPS and its samples.
Core contains all the code and assets required by NeoFPS.
Resources contains the managers and settings assets that need to be loaded at runtime.

Samples contains a number of sample assets and scenes that demonstrate the different features of NeoFPS and provide a

reference for implementing your own contents and mechanics. For more information, see Samples.

Using NeoFPS In Your Game

The Scene Setup Quick-Start guide available in the hub details the required scene components and links to the relevant prefabs
in the project.

The quickest way to start prototyping in NeoFPS is to use the template scene as a starting point. You can find the template scene
at the following location:

Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Template\FeatureDemo_Template.unity

You can either duplicate this scene as a starting point, or alternatively, if you already have a scene that you want to add then you
can use Unity's multi-scene editing features to open the template scene additively in order to copy the relevant objects across.
With your starting scene selected, open the template scene additively by right clicking on the scene asset and selecting the Open
Scene Additive option. Both scenes will now be shown in the hierarchy and you can copy objects from the template scene and
paste them in your own scene. Once you are done, remember to close the template scene by clicking on its options dropdown in
the hierarchy and selecting Remove Scene.

The important objects in the demo scene are:

e SimpleSpawnerAndGameMode is a prefab game setup that handles player spawning and death (explained below). You
can also find this prefab atAssets\NeoFPS\Samples\SinglePlayer\Prefabs\SimpleSpawnerAndGameMode.prefab

e GlobalProfile is a post-processing profile. You can use this or create your own.

e SceneSavelnfo is required in any scene that you want to support the NeoFPS save game system. This is not a prefab as its
settings are unique to each scene. You will also need to add the scene to the build settings.

e ScenePoolHandler is used by the pooling system to manage pooled objects. This will be created automatically if not
found, but including one in your scenes leads to a smoother experience.

e HudAndMenuCanvas contains the ingame menu and player HUD

o HudAndMenuEventSystem contains a Unity Ul event system that handles input in the HudAndMenuCanvas object above.

In NeoFPS, the player character is not usually placed directly in a scene. Instead it is spawned at runtime from a spawn point and
attached to a player object. This system allows for features such as swapping characters and respawning while persisting player
information. The SimpleSpawnerAndGameMode prefab listed above contains the relevant spawner, along with a minimal
game mode called FpsSoloGameMinimal. This component references the character object and player object to spawn. For more
information, see Game Modes and FPS Characters.

https://www.neofps.com/integrations/

The default demo character can be found at Assets\NeoFPS\Samples\SinglePlayer\Prefabs\NeoFpsSoloPlayerCharacter.prefab.
You can also find a spawnerless character called PrototypeSpawnerlessCharacter.prefab at the same location. This can be placed
directly in a scene instead of the SimpleSpawnerAndGameMode object, but it is limited in how it can handle player death (it
defaults to reloading the scene).

To add environmental features to your scene, see Layers and Tags for details on what layers to use for environmental geometry,
and Surfaces to add surface audio and impact effects.

For information on how to set up weapons for your game, see Weapons.
To add interaction to your game such as switches, doors and puzzles, see Interaction.
To add your own characters or customise the sample character, see FPS Characters.

NeoFPS is also designed to be extended to suit your vision. Each of the features is implemented in such a way that it can be
replaced or expanded. For more information see Extending NeoFPS.

See Also

NeoFPS Installation

Samples

https://docs.neofps.com/manual/extend-index.html

Common Tasks

Overview

The following are tasks that are frequently raised by new users on the NeoFPS Discord server. More will be added over time
based on user feedback.

How To Interact With Objects In A Scene

NeoFPS lets you walk up to objects in a scene and use them or pick them up with the interact button using the Interactive Objects

system.

There is an interactive object creation wizard available in the NeoFPS Hub that can create new interactive objects and set them up
with render geometry, physics, sound effects and animations. Once you have an object set up, you would use the events on the
interactive object behaviour to trigger your own scripts or components. Alternatively you can create a script that inherits the
InteractiveObject class and extend its Interact() method.

One example of an interactive object is the scene switcher buttons in the persistence demo. The use the interactive object events
to trigger a NeoFpsSceneSwitcher component when pressed, changing the scene.

How To Remove Weapons From A Player Character And Add Your Own

The player character's loadout is specified in the inventory component attached to the root of the prefab. There are 3 inventory
types implemented in the demos: FpsinventoryQuickSwitch, FpsinventoryStacked and FpsinventorySwappable. Each of these have
a Starting Items list in the inspector. You can add items to this as required. The Backup Item is the inventory item that is used
when all others have been dropped, or when the selected item is holstered. By default, this is the demo hands, but it can be
switched to any inventory item you like.

You can also create inventory loadout assets in the project hierarchy using right-click: Create/NeoFPS/Inventory/Loadout. These
are assigned to the game mode component in your scene (for example the FpsSoloGameMinimal component). When the game
mode spawns a character, it will assign it that loadout instead of its default starting loadout. The backup item (hands) will remain
the same. See FpsinventoryLoadout for more details.

How To Add New Item Keys To The Inventory

Inventory items are each identified using a unique key. These keys are stored in the inventory database which is divided into
tables. When adding your own inventory item keys, the first thing you should do is create a new FpsinventoryDbTable for your
project by right-clicking in your project folder and using Create/NeofFPS/Inventory/Database Table. You then need to add the
table to the inventory database by opening the database in the inspector (you can find it in the NeoFPS Hub managers section, or
in the NeoFPS/Resources folder) and dragging your new table asset into the Add Table Asset field at the top. This means that
there is no risk of the keys you add being overwritten when updating the asset (though you might need to re-add your table to
the database).

Once you have an inventory database table for your project, there are a number of ways you can add a key. Firstly, you can select
the table asset and use the controls at the bottom of the inspector to add a new key. Secondly, you can select the inventory
database itself in the hub or resources folder. Clicking on your project table in the database table list will show its contents below.
Lastly, the most convenient approach is to add the key at the moment you need it. Whenever a component has an inventory key
property that yu can set in the inspector, it will pop up the inventory browser when clicked. At the bottom of this is a section to
add a new key. You must select your project's table, insert a name for the item, and click create. This will add the key to the
selected inventory database table, and assign it to the property that opened the browser.

Renaming a key in the asset database will not break connections. Any items that use that key will use the new name automatically.

For more information see the Inventory section.

How To Make Player Weapons, Items And Health Persist Across Play

https://discord.neofps.com

Sessions

NeoFPS has a full save game system built in which can also be used to save and load persistent data to memory between scene

switches.

The save system revolves around the NeoSerializedGameObject component which must be added to each GameObject with
components that need saving (including its transform). You can tell the NeoSerializedGameObject which child objects,
components and properties to save as required. You can also add overrides for different save modes such as persistence. You
would usually save less information for persistence data. For example, you don't want to save the position of the character or the
state of the selected weapon's animations. You do want to save information such as their health though. By default, all
components and child objects will be saved.

If you have your own scripts or components that need saving then you can do it one of two ways: Firstly, you can modify your
script to inherit from the INeoSerializableComponent interface and implement its ReadProperties and WriteProperties
methods. If you don't have access to modify the scripts then you can write formatters that read/write them to the save system's

binary format. For more information see Serializing Data.

How To Make Your Own Stat System Affect Movement And Combat

The NeoFPS motion graph is the movement system that drives the player characters. Each movement state can be set to use
motion data such as movement speed, jump height or directional multipliers. This motion data can be overriden by assigning an
object to the motion controller that implements the IMotionGraphDataOverride interface. The motion graph has a data override
built in that just lets you assign different values in an asset, but you can also use MonoBehaviours that change the values at
runtime. This allows you to base speed on character level or attributes, or add buffs and debuffs.

For stat based health effects, you would need to write a behaviour that implements the IHealthManager interface, or inherit from

one of the existing health managers and add your extra stat based behaviour.

To modify the way firearms work based on stats, you can create your own ammo effect module scripts that deal damage based
on the shooter's stats, or inherit from the existing BulletAmmoEffect to do the same thing.

For more information on extending NeoFPS, see the Extending NeoFPS section of the docs (online only).

How To Control Where The Player Spawns

In NeoFPS the player character is spawned in to the scene using spawn points. Spawning is controlled via the game mode along
with what action to perform on the character's death. The demo scenes use a prefab called the SimpleSpawnerAndGameMode

that has a game mode and a spawn point built in.

There's a few ways that you can control where the player character spawns. By default, spawn points register with the game mode
and spawn system on Awake. If multiple spawn points are registered, you can choose if they will be used in the order they were
registered or at random. You can also add an OrderedSpawnPointGroup to enforce the registration order.

To track progress through a level, you can enable and disable spawn points as you reach checkpoints. Combining this with the
save game system, you can add autosaves when reaching the checkpoint. If the spawn points each have a
NeoSerializedGameObject attached then their active state will be saved, meaning that the character will spawn at the correct
spawm points when the game is re-loaded.

If you want a much simpler system for the sake of prototyping, then you can also create a spawnerless character that can be
placed directly in the scene, though this is a much less flexible setup. For more information see spawning.

See Also

NeoFPS Wizards

Samples

https://docs.neofps.com/manual/extend-index.html

NeoFPS Wizards

Overview

NeoFPS comes with a number of item creation wizards to simplify the setup of common objects such as characters and weapons.
These can be found in the Wizards section of the NeoFPS Hub, which is available through Unity's menus at
Tools/NeoFPS/NeoFPS Hub. Each wizard (with the exception of the script creation wizard) allows you to create an object and/or

save a template for use when creating your next weapon.

Available Wizards

The following wizards are available to use now:

Modular Firearm Wizard

The modular firearm wizard runs through the setup of a modular firearm, from assigning a view model to picking the relevant
firearm modules, and even adding advanced features such as weapon overheat, bullet penetration and sprint animations. The
wizard does not set up an animator controller for the weapon, but if you have one available then you can attach it and hook up
the parameters through the wizard.

Player Character Wizard

The player character wizard allows you to build a playable character prefab. This includes setting up health, inventory and more
advanced features such as stamina. The end result can be added to a spawner, and spawned at runtime immediately after setup.

Melee Weapon Wizard

The melee weapon wizard runs you through the creation of a basic melee weapon prefab for use in NeoFPS. This includes setting
up the weapon itself, how it appears in the inventory, and more advanced settings such as sprint animations. The wizard can also
create a new animator controller for you based on the weapon's settings, allowing you to pick specific animation clips to use.
Alternatively, you can hook up an existing animator controller so the correct parameters are used.

Thrown Weapon wizard

The melee weapon wizard runs you through the creation of a basic thrown weapon prefab for use in NeoFPS. This includes
setting up the weapon itself, how it appears in the inventory, and more advanced settings such as sprint animations. The wizard
can also create a new animator controller for you based on the weapon's settings, allowing you to pick specific animation clips to

use. Alternatively, you can hook up an existing animator controller so the correct parameters are used.

Pickup Wizards

The pickup wizard is used to create pickups / powerups that the player character can use. The available pickup types are:

Wieldable items such as melee or thrown weapons.

Modular firearm drops (these track the ammo in the weapon when it is dropped).
Inventory item pickups.

Multi-item inventory pickups.

Health packs.

Shield boosters.

Interactive Object Wizard

The interactive object wizard allows you to add NeoFPS' interaction system to objects to allow the player character to use them.
This includes assigning geometry and physics, highlighting when looked at, as well as some preset interactions such as playing
animations or audio. You can then use the events on the created prefabs' InteractiveObject component to trigger your own code
or components.

Script Creation Wizard

The script creation wizard provides a number of template scripts for various NeoFPS features that you can use as a starting point.
This includes motion graph elements, firearm modules, save system formatters, and input behaviours. To use the wizard:

e Select the script type from the dropdown.

e Giveita name and a namespace.

e Fill in any script specific properties that appear.

e Select output folders for the generated scripts. If these are not set, then the new scripts will be created in the root of the

Assets folder, while any editor scripts will be created in Assets/Editor.
Coming Soon
The following wizards are coming soon:

e Firearm AnimatorController Wizard will take a modular firearm prefab, and create and set up an AnimatorController

based on the modules it has attached.

See Also

Getting Started

Game Modes

Overview

Game modes in NeoFPS are intended to control the flow of a game. This means creating a player object, spawning and
respawning characters and attaching them to the player. They are derived from the FpsGameMode base behaviour which is an

abstract class and therefore cannot be placed in the scene without a specific implementation.

In this version of NeoFPS the only implementation available is called FpsSoloGameMinimal. This implementation simply spawns
both a player and character from prefabs on start. On a character's death, the FpsSoloGameMinimal can be set to either spawn a
new character, reload the scene, return to the main menu, or load the last valid save game (for more information on save games,
see Save Games. The minimal implementation is designed for testing and development of prototypes and as a template for

implementing a custom game mode for your own game.

The game mode also handles persisting data such as player health and inventory between scenes, also using the save game

system. This can be toggled on or off.

Game modes will be expanded in future versions of NeoFPS to provide a simple starting point when developing common types of

FPS games.

See Also

Working With NeoFPS

Save Games

Generated Constants

Overview

To meet the goals of enabling developers to achieve their vision and create complex mechanics without rewriting code, a flexible
way of referencing objects and states is required. It would be easy to implement something using strings for keys, but the
performance and memory impact of this can be a problem if the system is used in a lot of places or many times a frame. NeoFPS
gets around this by providing a simple interface for creating constants similar to Unity's layers. These constants are turned into

code that makes them easy to use in scripts as well as using them for properties in the inspector.

(_g MNeoFPSConstants

Add constant

FpsCharacterAudio

Generate

a -

The ConstantsSettings scriptable object specifies constants to generate for your game. You can have as many of these settings
files as you like and add new constants as required. If you do plan to add your own constants then it is best to create a new
constants settings file in case the one that comes with NeoFPS is modified in a future version. It is also important to consider
whether it is best to use a constant or a string. If the situation involves a set of keys or IDs that are referenced frequently, but will
rarely be changed then generated constants are a good fit. If there is a high chance that new keys will be needed or the keys will

be changed regularly, then it might be better to use strings for the ID and a dictionary to store items.

Generated Constants Limitations

The biggest limitation with generated constants is that they are serialized by index. This means that reorganising the values will

not be reflected in the inspector.
As an example, let's say you have a Vehicle constant with the following values:

1. Bike
2. Car
3. Truck

You also have a monobehaviour that stores a vehicle as a serialized field and in the inspector it is set to Car. Later on you decide
to add a number of new values as follows:

1. Bike
2. Motorbike
3. Car

4. Van
5. Truck

Looking at the previous monobehaviour in the inspector, it would now be set to Motorbike. This is because the monobehaviour
only actually references the number 2, not the word "Car". You can work around this by making sure to keep the order the same
and only add new values to the end.

If you remove values instead of adding, then any serialized properties that reference values beyond the new limit will be reset to
the first constant value. It is best practice to reserve the first value (0) as a default with a name that reflects this.

Generated Constants In Scripts

You can use constants in scripts as though you were working with an enum. For example, the FpsInputAxis constant can be used
like so:

FpsInputAxis axis = FpsInputAxis.MouseX;

Constants can also be implicitly cast as in the following examples:

FpsInputAxis axis = FpsInputAxis.MouseX;
var element = inputAxisArray[axis];

and:
FpsInputAxis axis = 2;

This makes them very efficient as keys to store items. If you were using strings, you would need to store and reference objects
from a dictionary as follows:

var dictionary = new Dictionary<string, MyObject>();

//...
MyObject result = dictionary[myStringKey];
This is a relatively expensive operation as the string needs to be hashed, and then the dictionary searched for the key value pair

that the key references. If the key is not found then this code would throw an exception so you would also want to add extra error
checking for safety. With constants the object can be stored and referenced in an array as follows.

var array = new MyObject[MyConstant.count];
//...

MyObject result = array[myConstantKey];

This is a much faster operation as you are simply accessing an array by index. By allocating an array that is the size of the constant
(count is a preset property in the constants templates included with NeoFPS) you are guaranteed that accessing via a constant key
will never be out of bounds. Preallocating like this is a good speed optimisation, but if the constant has a lot of values, and the
array is sparsely populated then it would be wasteful to implement in this way. If so then you could either use the string option, or
a dictionary with constant keys to save the string hashing step.

How They Are Generated

constants are generated by taking a template script and replacing sections with values in the settings file. The following keys are
defined which will be replaced:

KEY DESCRIPTION

%NAME% The generated constants container name.

%NAMESPACE% The namespace for the generated constants container.

%TYPE% The underlying type for the value (for example int, ushort, byte).

%VALUES% The values to be added. These will be written as a number of const values of the specified type.

An array of strings to be populated with the value names. This is used for the inspector value dropdown among other

%VALUE_NAMES% .
things.

%COUNT% The number of values written.

The generation process requires 2 templates. One for the output constant, and one for an editor drawer that draws the constant in
the inspector as a dropdown.

See Also

ConstantsSettings

Layers and Tags

Overview

NeoFPS has a number of systems that require objects to be filtered using layers. The following is the layer set-up required by

NeoFPS, along with an overview of some useful features for working with layers in code.

NeoFPS Layers

NAME DESCRIPTION

PostProcessingVolumes Trigger volumes used by the Unity post processing system to define override volumes.

EnvironmentRough Low detail mesh and primitive colliders used for character motion and traversal.
EnvironmentDetail High detail mesh and primitive colliders used for weapon impacts.

MovingPlatforms Low detail mesh and primitive colliders used for character motion on moving platforms.
DynamicProps Dynamic rigidbody props. Used for larger objects that could affect characters such as barrels.
CharacterControllers Used for character controller root objects.

CharacterFirstPerson Character geometry and objects visible from the first person view.

CharacterExternal Character geometry and objects visible from the external views.

NAME

CharacterPhysics

CharacterPhysics

CharacterNonColliding

WieldablesFirstPerson

WieldablesExternal

TriggerZones

InteractiveObjects

DoorPhysics

SmallDynamicObjects

Effects

AVisibility

NeoFPS Tags

NAME

Al

DESCRIPTION

Character body colliders, used for things like bullet impact detection.

Character body colliders used for ragdolls, so set up to collide against the ground but not detail physics.

Used for objects that are tested against using Physics casts, but not the Unity collision system.

First person geometry and colliders for weapons and other wieldable objects.

Geometry and colliders for weapons and other wieldable objects when seen from an external view.

Trigger volumes that act on character triggers.

Low detail trigger volumes used for detecting interactive objects.

Colliders for door objects.

Small rigidbody objects that should not noticably affect characters. A character can push them around, but they
can't really push a character.

A layer used for debris and particle effects.

Low detail colliders used by Al for visibility checks.

DESCRIPTION

Used to tag Al characters.

Layer Collision Matrix

The layer collision matrix is used to define which layers can interact with each other in the Unity physics system. Keeping a
minimum of layers from colliding with each other is important to maintaining performance as well as for keeping interactions
between different systems clean.

In the above example image, the green objects are character blockers on the CharacterRough and EnvironmentRough layers that
are used for moving characters around the scene. The red objects are bullet blockers on the EnvironmentDetail layer that are used
for bullet hits.

In code you can use the PhysicsFilter type to define filters when performing physics operations. This also has a number of

preset constants for aiding in writing code.
PhysicsFilter.LayerIndex contains the layer indices matching the layers as specified in the layers and tags settings.

PhysicsFilter.LayerFilter contains a number of preset physics filters matching the layers as specified in the layers and tags
settings.

PhysicsFilter.Masks contains a number of filters for commonly used groups of layers as follows:

NAME DESCRIPTION

BulletBlockers Layers that bullet raycasts can hit.
CharacterBlockers Layers that characters traverse. Includes larger props and platforms.
DynamicCharacterBlockers Layers that characters traverse. Excludes static environment physics.
Interactable Colliders attached to interactive objects, along with environment colliders that can block them from view.
SpawnBlockers Any dynamic objects that can block spawn points.
ShowDecals Objects that can accept decals.
AiVisibilityCheck Al visibility markers and environmental colliders that can block them from view.
See Also

Unity Tags and Layers

Unity Layer Based Collision

https://docs.unity3d.com/Manual/class-TagManager.html
https://docs.unity3d.com/Manual/LayerBasedCollision.html

Game Settings

Overview

NeoFPS exposes various game settings to players through text based settings files. This provides much more flexibility for players

than the existing system of build settings that Unity hides for runtime builds.

The following settings files are created by a NeoFPS project when it is run:

NAME FILENAME DESCRIPTION

Audio Audio.settings Contains settings for volumes (spatial effect, music and global.

Graphics Graphics.settings Contains various graphics and quality settings such as resolution, vsync and antialiasing.
Gameplay Gameplay.settings Contains miscellaneous gameplay settings such as crosshair colour.

Input Input.settings Contains settings for mouse and keyboard input including sensitivity, smoothing and acceleration.
Gamepad Gamepad.settings Contains settings for gamepad input such as profile preset and analog sensitivity.

Key Bindings KeyBindings.settings Contains individual key bindings for the different inputs.

If any of these files are found when the game starts, then the game settings will be based off these. The individual settings are

mapped to the following scriptable objects:

NAME BEHAVIOUR

Audio FpsAudioSettings
Graphics FpsGraphicsSettings
Gameplay FpsGameplaySettings
Input FpsInputSettings
Gamepad FpsGamepadSettings
Key Bindings FpsKeyBindings

If no settings file is found for one of the above, then the settings will default to those in the scriptable object asset located in the
NeoFPS/Resources folder. These assets can be customised to set the default settings. Modifying the settings inn game and via the

"settings" files will not modify the assets.

If any of the settings are changed at runtime then the "settings" file is saved again and an event is fired. This event allows objects
to interact to changes of settings. For example, if the crosshair colour is changed in the gameplay settings is changed then the
HUD crosshair can immediately change to reflect this.

These settings behaviours and files are intended as a basis for your own projects. Add any new settings as required and use these
files as an example though be aware that these files will change in future versions of NeoFPS to reflect new features such as
HDRP and post-processing settings potentially being added to the graphics settings.

See Also

Working With NeoFPS

NeoFPS Shaders

Overview

NeoFPS contains a number of shaders that have been created for the built-in (standard) render pipeline. It does not
support the SRPs such as HDRP or URP out of the box.

The NeoFPS shaders were created using Amplify Shader Editor. If you own this asset then you should be able to load the shaders
up in ASE and convert most of them to your target SRP by changing the shader type in the output node and re-attaching the

relevant connections.

Available Shaders

All of the NeoFPS shaders are currently located in the folder: Assets\NeoFPS\Samples\Shared\Effects\Shaders

They include the following:

NeoFPS_DissolveTrail_... are used for hitscan bullet trail. They start as a solid tracer line and then dissipate. The edge blend
shaders fade off the tracer texture at the edges of the trail's line renderer.

NeoFPS_DistortionTrail is another bullet trail which provides a shockwave style distortion.

NeoFPS_FireballSheet... can be used for particle effects and pull flipbook style greyscale fireballs from the individual
channels of a texture and use a gradient to add colour.

NeoFPS_FirstPersonWeapon_Stencil... are used for the first person weapon models that you need to be stencilled out
when looking through stencil scopes (such as the scope mounting geometry).

NeoFPS_HeatHaze is an animated distortion which is used to add a rippling heat haze effect.

NeoFPS_PowerupGlow overlays a colourful animated shimmer over a standard shader to highlight objects in the scene.
NeoFPS_Shockwavce_Standard provides a noisy distortion effect around the edges of a shockwave. The shockwave
strength is influenced by vertex colour, making it useful for particle effects (start white and fade to black over lifetime).
NeoFPS_Water is a simple water surface shader used for the swimming demo scenes.

NeoFPS_WaterCaustics is a caustics volume shader that can be used to add a caustics lighting effect when underwater.
This shader is only compatible with deferred rendering.

Glow/NeoFPS_Glow... shaders add a heat glow to first person weapons when overheating. The glow can be masked by
position ranges, distance from a point (both object space) or using an alpha mask.
Highlight/NeoFPS_InteractiveHighlight adds a shimmer effect to a standard shader to help highlight interactive objects
in the scene.

Optics/NeoFPS_HoloSightReticule is used for stencil based reticules that can only be seen through the glass of a
holographic or red-dot sight. It also adds brightness and colour controls through the material.
Optics/NeoFPS_HoloSightStencil is used to define the area you can see the reticule through. It is not otherwise visible.
Optics/NeoFPS_HoloSightStencilGlass is used to define the area you can see the reticule through. It also uses a standard
transparent base.

Optics/NeoFPS_LaserPointerBeam defines an animated noisy like with a stronger central line for a laser look.
Optics/NeoFPS_RedDotReticule is similar to the holosight reticule, but without the need for a reticule mask texture.
Optics/NeoFPS_RenderTextureScope displays a render texture, adding a parallax scope ring and fading to an opaque,
reflective glass based on how far off the scope object axis the camera is.

Optics/NeoFPS_StencilScopelnner... are used for the parallax effect when looking through stencil scopes. Objects using
this shader will only be visible through the lens of the scope.

Optics/NeoFPS_StencilScopelens defines the stencil that the scope inner surfaces can be seen through, and which the
NeoFPS_FirstPersonWeapon_Stencil... cannot.

NB: The stencil scope shaders are currently not working properly with deferred rendering. A solution is
being investigated

Converting To HDRP / URP

There is no official support for HDRP/URP in NeoFPS, but it should be possible to convert the shaders to your target SRP using

http://assetstore.unity.com/packages/tools/visual-scripting/amplify-shader-editor-68570?aid=1011l58Ft

[Amplify Shader Editor][asset-amplify].

You can find more information on using Amplify Shader Editor with the SRPs via the documentation, and in their Youtube video:
Getting Started with ASE - SRP Pitfalls.

For the NeoFPS shaders, you will need to pay special attention to the SubShader / Pass section of the output node properties,
making sure to recreate the Depth, Blend Mode and Stencil:

Blend Alpha

Blend Cp Alpha

ynt
ZFail Front

Tags

You can swap the shader type by using the Shader Type property at the top of the Common Properties. For example, to switch
an Unlit shader to HDRP, you will need to swap the shader type to HD/Unlit. This will automatically update the depth and blend
mode settings.

Due to the way that the SRPs handle stencils and grabbing screen pixels, the stencil based shaders such as the holographic sights
and stencil scopes will not convert directly. You will need to write custom pass scripts to achieve this. How these work can vary
between HDRP and URP, and between different versions as well. The same goes for distortion shaders such as the shockwave and
heat haze shaders.

There is a future task for adding SRP compatibility to NeoFPS that aims to address these limitations and provide SRP support out
of the box.

See Also

Modular Firearms

[Amplify Shader Editor][asset-amplify]

http://wiki.amplify.pt/index.php?title=Unity_Products:Amplify_Shader_Editor/Scriptable_Rendering_Pipeline
https://www.youtube.com/watch?v=0W7D6NoEe5E&t=223s

FpsSoloGameMinimal MonoBehaviour

Overview

The minimal game setup is intended for testing and development purposes. It simply spawns the specifed player and character,

and can be set to perform various actions on the player character's death.

Inspector

h ¥ Fps Solo Game Minimal (Script)

Properties
NAME TYPE DESCRIPTION
Spawn On Start Boolean Should the game mode automatically spawn a player character immediately on start.

Death Sequence

. Float The time in seconds between the player character dying and respawning.
Duration play ying P 9

What to do if the player character is killed. Available options are:
® Respawn will spawn a new player character at the next available spawn point
® ReloadScene will reload the scene from fresh, resetting everything
Death Action Dropdown ® MainMenu will unload the scene and take the player back to the main menu
® ContinueFromSave will load the last save (based on the SaveGameManager
settings) if available and reload the scene if not.

Player Prefab FpsSoloPlayerController The player prefab to spawn if no player exists (players are persistant).
Character Prefab FpsSoloCharacter The character prefab to spawn.

An optional inventory loadout for the character on spawn (this will replace their starting

Starting Loadout FpsInventoryLoadout .
9 psinv y . items).

See Also

FpsSoloPlayerController
FpsSoloCharacter

FpsinventoryLoadout

ConstantsSettings ScriptableObject

Overview

The ConstantsSettings asset is used to generate and maintain arbitrary constants for a game. The generated output script contains
a wrapped constant that acts in code like an enum, but can intrisically convert to its base type. A drawer is also generated that
shows a dropdown with the constant values when the generated constant is serialized in the inspector. These constants have a

number of uses such as object IDs or keys, without the overhead of using strings and dictionaries.

See Generated Constants for more information.

Inspector

Add constant

Properties
Output

NAME TYPE DESCRIPTION
TargetDirectory Folder Where the generated constant script should be output.
EditorDirectory Folder Where the generated constant editor script should be output.

Source Templates

NAME TYPE DESCRIPTION
ByteConstant TextFile The text file to use when generating byte constants.*
ByteDrawer TextFile The text file to use when generating a byte constant editor script.*

IntConstant TextFile The text file to use when generating integer constants.*

NAME TYPE DESCRIPTION

IntDrawer TextFile The text file to use when generating an integer constant editor script.*
UlntConstant TextFile The text file to use when generating unsigned integer constants.*

UlntDrawer TextFile The text file to use when generating an unsigned integer constant editor script.*
ShortConstant TextFile The text file to use when generating short constants.*

ShortDrawer TextFile The text file to use when generating a short constant editor script.*
UShortConstant TextFile The text file to use when generating unsigned short constants.*

UShortDrawer TextFile The text file to use when generating an unsigned short constant editor script.*

* For more information on how the template is turned into a script see Generated Constants.

Controls

The Generate All button will output a script file and a drawer script file to the specified directories for each constant, overwriting
any existing files with the same name.

The Add Constant button will add a new constant settings entry to this scriptable object
Constant settings
Each constant has a number of common controls:

The Generate button will output a script file and a drawer script file to the specified directories, overwriting any existing files with

the same name.
The Remove button will remove this constant from the scriptable object. Any existing generated files will not be touched.

Each constant also has the following properties:

NAME TYPE DESCRIPTION
Class Strin The name for the output constant. This will also be the output script file name, while the output drawer script
Name 9 will be named Drawer.

Class . .
String The namespace for the output scripts.
Namespace
Base Type Dropdown This value specifies which source templates should be used to generate the constant.
Constant String A sequential array of constant value names. These must be valid names, and not duplicated. Use the + and -
Values Array buttons to add or remove values, or reorder by dragging the handle on the left of the array entry.

See Also

FpsAudioSettings ScriptableObject

Overview

The FpsAudioSettings asset specifies the default audio settings and loads / saves them to a .settings file on disk for player editing.

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Inspector

Properties
NAME TYPE DESCRIPTION
Master Volume Float The overall game volume.
Effects Volume Float The volume for in game effects.
Ambience Volume Float The volume for ambience effects.
Music Volume Float The volume for music.

See Also

Audio Systems

FpsGamepadSettings ScriptableObject

Overview
The FpsGamepadSettings asset specifies the default gamepad settings and loads / saves them to a .settings file on disk for player

editing.

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Inspector

Properties
NAME TYPE DESCRIPTION
Use Gamepad Boolean Should gamepad input be registered.
Profile Index Int The gamepad profile to use.
Analog Sensitivity H Float The horizontal gamepad aim sensitivity.
Analog Sensitivity V Float The vertical gamepad aim sensitivity.
Invert Look Boolean Invert the gamepad vertical aim.

See Also

FpsGameplaySettings ScriptableObject

Overview

The FpsGameplaySettings asset specifies the default gameplay settings and loads / saves them to a .settings file on disk for player
editing.

Inspector
(_g FpsSettings_Gameplay

Delete User Settings File

Player

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME TYPE DESCRIPTION
Player Name String The default player name.

Player Colour

Int The default player colour.

Code Pay
Crosshair Colour Color The default crosshair colour.

The ratio of head vs item bob. Head bob looks more natural when close to scenery, but some people can
Head Bob Float L

find it uncomfortable.
Auto Switch . . T
V\;Je:povr\wnsc Boolean Should the player character automatically switch to a better weapon when picking it up.

See Also

FpsGraphicsSettings ScriptableObject

Overview

The FpsGraphicsSettings asset specifies the default graphics settings and loads / saves them to a .settings file on disk for player

editing.

Inspector
(_g FpsSettings_Graphics

® I

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME TYPE DESCRIPTION
Vertical) . . .) _
FoV Float The field of view vertically of the player camera. This is how field of view is saved.
Horizontal The horizontaly field of view on a 16:9 monitor. This is actually calculated from the vertical FoV, and when it is
Float . . o
16:9 changed, the vertical FoV is modified.
See Also

Unity Graphics

Unity Quality Settings

https://docs.unity3d.com/Manual/Graphics.html
https://docs.unity3d.com/Manual/class-QualitySettings.html

FpsinputSettings ScriptableObject

Overview

The FpsinputSettings asset specifies the default input settings and loads / saves them to a .settings file on disk for player editing.

Inspector

(_3 FpsSettings_Input

Delete User Settings File

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME TYPE DESCRIPTION
Mouse Sensitivity H Float The horizontal mouse look sensitivity.
Mouse Sensitivity V Float The vertical mouse look sensitivity.
Invert Mouse Boolean Invert the mouse vertical aim.

Mouse smoothing takes a weighted average of the mouse movement over time for a smoother
effect.

Enable Mouse Smoothing Boolean

Mouse Smoothing Float The amount of mouse smoothing to add.

Enable Mouse

. Boolean Mouse acceleration amplifies faster mouse movements.
Acceleration

Mouse Acceleration Float The amount of mouse acceleration to add.

See Also

NeoFPS Input System

FpsKeyBindings ScriptableObject

Overview

The FpsKeyBindings scriptable object specifies the default input key bindings settings and loads / saves them to a .settings file on
disk for player editing.

Inspector

(_3 FpsSettings_KeyBindings

Settings File

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties

No properties are exposed in the inspector. The default key bindings are specified in the NeoFpsInputManager instead.

See Also

Unity Input Settings

https://docs.unity3d.com/Manual/class-InputManager.html

FPS Characters

Overview

In NeoFPS, a first person character is split into two parts: the character and a controller. If a character dies then the controller
persists and can be attached to a new character. Controllers can also be persisted between scenes if the game design requires.

o~ P
p \ N\
() I e
\ D J (/ -
\ / : y
b 4 9 r

Player

l Controller

! J
../ e
™
|
\ \

Characters

An FPS character ties together all the systems of NeoFPS into a single unit. Characters implement the ICharacter interface, which

means you are free to define your own implementations of the character without being fixed to a specific base class.

A typical character hierarchy is as follows:

dyDamageCollider

The root object is the most complex, containing the majority of components for the character:

The ICharacter component
Capsule Collider
Rigidbody
NeoCharacterController
MotionController
AimController

Inventory

Interaction handler

Character audio handler

Input behaviours
The player camera root is another object with a number of components:

e First person camera

e Additive transform handler and effects

There are also a number of damage handlers in the hierarchy for detecing incoming damage. These can be very simple, or more
complex such as hit boxes on an animated character skeleton.

Controller

The FPS controller is persistent and can be attached to one character at any time. This system helps decouple the characters'
mechanical implementation from their behaviour. In a multiplayer game there would be multiple player controllers or there could
be a mix of player and Al controllers if bots were required. It also helps data such as stats persist between character deaths.

See Also

FpsSoloCharacter

FpsSoloPlayerController

https://docs.unity3d.com/Manual/class-CapsuleCollider.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

Spawning

Overview

The NeoFPS player character should not be added to your scenes directly. Instead is uses a spawner system that allows you to
place a number of spawn points around your map. This allows for greater flexibility in game mechanics such as:

Spawn at one of a number of random locations

Respawn on death without resetting the scenes

Activate and deactivate spawn points as you move through a level so that respawning drops you closer to where you died
Add a Ul menu to choose a character on start

Use multiple spawn points in case your preferred spawn is blocked

To make getting started easy, the SimpleSpawnerAndGameMode prefab contains a spawn point and a simple game mode that
handles player spawning on start, as well as respawn on death. You can find this prefab at:
Assets\NeoFPS\Samples\SinglePlayer\Prefabs\SimpleSpawnerAndGameMode.prefab

Spawn Points

Spawn points are objects that are placed in the scene and positioned as required. By default, they will register themselves with the
spawn manager as soon as the object is enabled, and unregister themselves as soon as the object is disabled.

You can also use an OrderedSpawnPointGroup behaviour to enforce a specific order to the registration of your spawn points. This

is useful when using the Round-Robin spawn mode which iterates through the spawn points, spawning in order, or the First
Valid spawn mode which will iterated through the points in order and spawn at the first one that isn't blocked by an overlapping
physics object. To control which is the active spawn mode, you can add a SpawnManager behaviour to an object in your scene.

Prototype Character

The NeoFPS samples also include a spawnerless player character that can be placed directly in your scenes. If the character dies
then the scene is reloaded. This character is intended for rapid prototyping, and not for final production games.

You can find the prototype character prefab at the following location:
Assets\NeoFPS\Samples\SinglePlayer\Prefabs\PrototypeSpawnerlessCharacter.prefab

See Also

FPS Characters

Game Modes

Stamina

Overview

The stamina system in NeoFPS allows you to model various fatigue effects on your player character. Fatigue can be used to alter

movement speed, to drive weapons' procedural animation (breathing), and to set thresholds where exhaustion sets in.

Movement & Stamina

The stamina system implementation provided can act as a motion graph data override. This means that the motion data used to
specify movement speed will be overridden by values that the stamina system specifies. You can use animation curves on the
StaminaSystem behaviour to blend between difference speeds as the character gets tired.

Animation

The current stamina level is used to specify a breathing rate and strength for the character. NeoFPS uses a number of procedural
animation effects for animating weapons, including the BreathingEffect. This applies position and rotation animation with each
breath, making aiming harder as the character gets tired.

Modifying Stamina

There are a number of example ways to modify the character's stamina provided out of the box. The DrainStamina and
ModifyStamina motion graph behaviours allow you to modify the stamina based on the current state of the Motion Graph. The
FirearmAimFatigue monobehaviour is attached to modular firearms and applies a stamina drain whilst aiming down sights.

The stamina system also has a setting to recharge stamina over time. An example stamina implementation would be to give both
the character's walking state and the firearm aiming a stamina drains that are each smaller than the stamina system's refresh rate,
but are larger when combined. This would mean that the player could move or aim without getting tired, but doing both together
would cause them to slowly fatigue.

You can add your own systems to modify the character's stamina via a simple API. You can directly alter the stamina and max
stamina values on the system by using the following methods:

void IStaminaSystem.SetStamina(float amount, bool normalised = false);

void IStaminaSystem.IncrementStamina(float amount, bool isFactor = false);
void IStaminaSystem.DecrementStamina(float amount, bool isFactor = false);

The normalised and isFactor parameters are used to specify if the value you are applying is directly to the stamina value

(false), or as a factor of stamina divided by max stamina (true).

You can also add stamina drain delegates to the system that allow you to modify the stamina over time based on any number of

outside influences. You do this using the following methods:

void IStaminaSystem.AddStaminaDrain(StaminaDrainDelegate drain);
void IStaminaSystem.RemoveStaminaDrain(StaminaDrainDelegate drain);

Where the StaminaDrainDelegate is defined as:

public delegate float StaminaDrainDelegate(IStaminaSystem system, float modifiedStamina);

Here the parameters are the stamina system itself, and the current stamina (this might not match the stamina value on the system
as this stamina drain delegate might be one of many, and the altered stamina is passed to each delegate in sequence before it is
applied to the system). The delegate returns the amount to reduce the stamina by this frame.

See Also

The Motion Graph

Modular Firearms

Additive Transforms And Effects

FpsSoloPlayerController MonoBehaviour

Overview

The FpsPrototypePlayerController is a version of the player character controller which can be added to the character object

directly to bypass the spawning system.
If the player is killed then the scene will be reloaded.

This controller is intended purely for prototyping and testing. If more complex behaviour is required such as respawning or

loading from saves, then use the spawn system as in the demo scenes.

Inspector

Fps Prototype Player Controller (Script)

Properties

The FpsSoloPlayerController has no properties exposed in the inspector.

See Also

FPS Characters

FpsSoloCharacter MonoBehaviour

Overview

FpsSoloCharacter is the base character behaviour for single player games. Handles impact and landing damage and audio, and

specifies the transform handlers for reacting events.

Inspector

¥ Fps Solo Character (Script)

Properties

NAME TYPE
Head
Transform AdditiveTransformHandler
Handler

Body
Transform AdditiveTransformHandler
Handler

Damage
Audio Float
Threshold
A

pply Fall Boolean
Damage

Landing

Min Force Float
Landi

anding Full Float
Force

Body

Impact Boolean

Damage

W ' %

dditiveTransformHand @
itiveTransformHandler)

DESCRIPTION

The additive transform handler attached to the head hierarchy of this character (used for
things like weapon recoil and impacts). The spring effects here affec the camera but not the
carried items.

The additive transform handler attached to the body hierarchy of this character (used for
things like weapon recoil and impacts). The spring effects here affec the camera and the
carried items.

The amount of damage to take in a single hit before playing a character damage audio clip.

Should the character be subject to damage from landing impacts (impacts where the character
capsule is hit in the bottom hemisphere).

The minimum landing impact magnitude before any damage is applied.

The landing impact magnitude where a full 100 damage will be applied.

Should the character be subject to damage from body impacts (impacts where the character
capsule is hit in the central cylinder).

NAME TYPE DESCRIPTION

Body Min

Force Float The minimum body impact magnitude before any damage is applied.
Body Full
Fgrc):a ! Float The body impact magnitude where a full 100 damage will be applied.
Head . . .
Should the character be subject to damage from head impacts (impacts where the character
Impact Boolean S .
capsule is hit in the top hemisphere).
Damage
Head Mi -
Foerace n Float The minimum head impact magnitude before any damage is applied.
Head Full
Fc?race . Float The head impact magnitude where a full 100 damage will be applied.
Soft . Surface audio library used to trigger the correct sound when the character lands below the
. SurfaceAudioData ., o
Landings hard landing" threshold.
Hard. SurfaceAudioData Surfz'ace audio library used to trigger the correct sound when the character makes a heavy
Landings landing.
Min
Landing Float The magnitude of the landing force below which no landing sound will be played.
Threshold
Hard
Landing Float The magnitude of the landing force above which to play a hard landing sound.
Threshold
Max R
.ax o Float The maximum downward ray length for a ground test.
Distance
Ray Offset Float The vertical offset from the absolute bottom of the character to start the ground test raycast.
See Also

AdditiveTransformHandler

SurfaceAudioData

FpsSoloPlayerController MonoBehaviour

Overview

The FpsSoloPlayerController is the base player character controller for single player games.

Inspector

h Fps Solo Player Controller (Script)

Properties

The FpsSoloPlayerController has no properties exposed in the inspector.

See Also

FPS Characters

OrderedSpawnPointGroup MonoBehaviour

Overview

The OrderedSpawnPointGroup behaviour is used to enforce a spawn order for multiple spawn points. The order that Unity calls
Start() on multiple objects can be unpredictable, so this behaviour allows you to add the spawn points to a list and rearrange the

order. This works best with the SpawnManager set to use the "Round Robin" spawn mode.

Inspector

Group (Script)
v

B SpawnPaint (S

Properties
NAME TYPE DESCRIPTION
Register On Awake Dropdown Should the spawn points be registered with the manager as soon as this object is awoken.
Spawn Points SpawnPoint Array The spawn points to register in order.

See Also

SpawnManager

SpawnPoint

SimpleBreathHandler MonoBehaviour

Overview

The SimpleBreathHandler is attached to a character to give them a constant breathing rate. This is used to drive the
BreathingEffect procedural animation on weapons. You can alternatively use a StaminaSystem behaviour for a more complex

breathing system that adapts to character fatigue.

Inspector

H + Simple Breath Handler (Script)

Breath Interval 4

Breath Strength

Properties

NAME TYPE DESCRIPTION

Breath Interval Float The time in seconds between breaths.

Breath Strength Float The strength of the character's breathing (0 = non-existant, 1 = heaving/panting).
See Also

BreathingEffect

StaminaSystem

SoloPlayerCharacterEventWatcher MonoBehaviour

Overview

The SoloPlayerCharacterEventWatcher behvaiour attaches to an event that is fired when the player character changes. It then
passes that change on to its subscribers. An example use is in the player HUD, where it is used to bind various HUD elements such

as health and inventory to the player character.

Inspector

¥ Solo Player Character Event Watcher (Script)

Properties

The SoloPlayerCharacterEventWatcher behaviour has no properties exposed in the inspector.

See Also

AdditiveTransformHandler

SurfaceAudioData

SpawnManager MonoBehaviour

Overview

The spawn manager is used to spawn characters. Spawn points register with the manager on start and deregister when disabled
or destroyed. You do not need this behaviour in your scene, but adding it will allow you to change the spawn behaviour by setting

the behaviour properties.

Inspector

H Spawn Manager (Script)

Round Robin

Properties

NAME TYPE DESCRIPTION

How the next spawn point is chosen:
® RoundRobin picks each spawn point in sequence.
Spawn Mode Dropdown o FirstValid starting at the first registered spawwn point and iterating until a valid one is found
e Random picked at random until a valid point is found.

See Also

[SpawnPoint][1]

SpawnPoint MonoBehaviour

Overview

The SpawnPoint behaviour specifies where characters are spawned. It will register with the SpawnManager when active and
enabled, and deregister when deactivated or destroyed. It is recommended to have more than one in the scene in case one or

more is blocked.

Inspector

B @ spawn Point (Script) W 5

Group None (Orderec n Point Group)

List is Empty

Properties
NAME TYPE DESCRIPTION
Register Should the spawn point be registered with the SpawnManager immediately on awake? This option will be
Boolean . . s .
On Awake disabled if the spawn point is part of a OrderedSpawnPointGroup.
Reuse . .
Delay Float How long before the spawn point can be used again.
Overlap Dropdown The collider volume type for checking if the spawn point is clear or overlapped by another object. Options are
Test P Box, Capsule, None.
Bounds . . .
Height Float The vertical height of the bounding volume for overlap checks.
Bounds
. Float The horizontal dimension of the bounding volume for overlap checks.
Horizontal
Reorient Boolean Should the character's gravity be reoriented to match the spawn point. If the spawn is tilted on one side, this
Gravity will make the character's down direction equal to the spawn point's.
On Spawn Event A UnityEvent fired when a character is spawned at this point. Allows for simple triggering of spawn audio and
visual effects.
See Also
SpawnManager

OrderedSpawnPointGroup

StaminaSystem MonoBehaviour

Overview

The StaminaSystem behaviour is attached to a character and used to model various fatigue and exertion effects.

Stamina regenerates at a preset rate and can be drained or modified via a simple APIl. NeoFPS includes examples such as the
FirearmAimFatigue behaviour which drains stamina while aiming down sights, or the DrainStaminaBehaviour and
ModifyStaminaBehaviour motion graph behaviours which can be used to drain stamina over time in a specific motion state such

as sprinting, or on entering a state such as jumping.

Stamina can be used to drive the BreathingEffect procedural animation on weapons. You can specify the breathing rate and

strength based on fatigue using animation curves for each.

Stamina can also be used to control movement speed, slowing the character as they get tired. There is an optional exhaustion
setting which can be tied to the motion graph to prevent the character from sprinting once they reach the exhaustion threshold,
and re-enable sprinting once stamina has recovered to a certain point.

Inspector

E; + Stamina System (Script)

alking

Properties

Stamina

NAME TYPE DESCRIPTION

Stamina Float The current stamina of the character. This acts as the starting stamina and changes at runtime.
Max Stamina Float The maximum stamina of the character.

Stamina Refresh Rate Float The rate that stamina increases over time when no drains are applied.

Movement Speed

NAME TYPE DESCRIPTION
Affect
Should the stamina system modify movement speed based on current stamina. The other settings will
Movement Boolean . e
be hidden if this is false.
Speed
Min Walk
Ml;]ltiplaier Float A multiplier applied to the walking speed at minimum stamina.
Min Sprint .- . - . .
M:Tlti;ir;rr‘ Float A multiplier applied to the sprinting speed at minimum stamina.
Mi h
M:Tlticprl(i)eL:c Float A multiplier applied to the crouching speed at minimum stamina.
Move Speed Unity A curve that defines the character speed based on stamina. The X axis is the normalised stamina
Curve AnimationCurve (stamina / max), while the Y axis is the min to max lerp value (O = min, 1 = max).
Walk Speed . . . '
D;ta pee String The name of the motion data property on the motion graph that defines walk speed.
Aim Walk . . .) .
String The name of the motion data property on the motion graph that defines walk speed when aiming.
Speed Data
Sprint Speed . . . ' .
Data String The name of the motion data property on the motion graph that defines sprint speed.
Aim Sprint . . .) . .
String The name of the motion data property on the motion graph that defines sprint speed when aiming.
Speed Data
Crouch . . . '
String The name of the motion data property on the motion graph that defines crouch movement speed.
Speed Data
Aim Crouch Strin The name of the motion data property on the motion graph that defines crouch movement speed
Speed Data 9 when aiming.
Breathing
NAME TYPE DESCRIPTION
Breathe
Slow Float The time in seconds between breaths (when breathing slow).

Interval

https://docs.unity3d.com/Manual/EditingCurves.html

NAME TYPE

DESCRIPTION

Breathe
Fast Float The time in seconds between breaths (when breathing fast).
Interval
Breathing
Rate Unity A curve that defines the breathing rate based on stamina. The X-axis is the normalised stamina (stamina /
Curve AnimationCurve max stamina), and the Y-Axis is a lerp between slow and fast breathing rate (0 = slow, 1 = fast).
Breathing Unit A curve that defines the breathing strength based on stamina. The X-axis is the normalised stamina
Strength Anir:ationCurve (stamina / max stamina), and the Y-Axis is the strength of the character's breathing (0 = non-existant, 1
Curve = heaving/panting).

Exhaustion
NAME TYPE DESCRIPTION

Use Exhaustion

Exhaustion Threshold
Recover Threshold

Exhausted Motion
Parameter

Sprint Motion
Parameter

On Exhausted

On Recovered

See Also

BreathingEffect

Should the character suffer an exhaustion effect on hitting a specific stamina threshold. The other

Bool . . . L
properties will be hidden if this is false.
Float The stamina level below which the character will become exhausted.
Float The character will stop being exhausted once their stamina has recovered above this value.
. The name of the switch motion graph parameter that the graph uses as a condition for preventing
String s
sprinting.
String The name of the switch motion graph parameter that the character input handler sets to tell the

motion graph to start sprinting.

UnityEvent An event which is fired when the character hits the exhaustion threshold.

UnityEvent An event which is fired when the character recovers from exhaustion.

Motion Graph Parameters And Data

Modular Firearms

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/EditingCurves.html

First Person Camera

Overview

The first person camera in NeoFPS is a companion component for the Unity camera and adds a number of useful features for first

person shooters.
Field of View
The NeoFPS camera adds additional functionality for controlling the field of view.

Firstly, it allows a horizontal field of view to be specified instead of the default vertical field of view. This is considered a standard
in first person shooters, and a number of players will have their preferred FoV settings that they apply in and FPS games they

play.

Secondly, it allows the field of view to be modified and animated using multipliers for zoom effects such as aiming down sights.
You can modify and reset the FoV in your scripts using the following methods:

public void FirstPersonCamera.SetFov (float targetFovMult, float aimTime);

public void FirstPersonCamera.ResetFov (float aimTime);

The setFov method takes an FoV multiplier that multiplies based on the standard field of view settings, along with an aim time
that controls the duration of the animation from the existing FoV to the new FoV. The ResetFov method takes the same aim time

parameter which controls how long it takes to return to the standard field of view settings.

Camera Offset

The camera offset is a position and rotation offset that can be applied and removed to move and animate the camera within the
hierarchy. An example use is the modular firearms' HeadMoveAimer which actually moves the head down to the weapon instead
of the weapon up to the camera. This allows a lean angle to be added and for the camera rotation to be modified making for an
interesting aim effect. You can modify and reset the offset in scripts using the following methods:

public void FirstPersonCamera.SetOffset (Vector3 posOffset, Quaternion rotOffset, float aimTime);

public void FirstPersonCamera.ResetOffset (float aimTime);

These methods take offset parameters, along with an aim time parameter that controls how long it takes to reach the offset and

return.

Events

The first person camera also contains the following event:

public static event FirstPersonCamera.UnityAction<FirstPersonCamera> onCurrentCameraChanged;

Subscribing to this event will notify when the camera changes (when it is being looked through or not). This can be used for

things such as enabling a scene or spectator camera if the player dies.

See Also

FirstPersonCamera Behaviour
additive-Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html

Aim Controllers

Overview

Aim controllers take input and control a character's look direction before additive effects are applied.

Turn Rate

The aimer turn rate can be altered using the turnRateMultiplier property. This is used when setting the first person camera

field of view, for example when aiming down sights.

Setting Yaw And Pitch

You can modify the aim controller's rotation from scripts using the following methods:
void AddYaw (float rotation);
void AddPitch (float rotation);

void AddRotation (float y, float p);

Aim Constraints

The aim controller can be constrained to a specific range of rotations on either the vertical or horizontal axes or both. This is used
in situations such as climbing ladders or using a mounted turret, where it would be unnatural for the character to be able to turn a
full 360 degrees.

If the aim controller rotation is outside of the constraints when they are set, then it uses a damped rotation to smoothly turn into

the constraints.

Since the fps character is able to change their up direction, the yaw constraint must use a direction vector for the constraints
center. This means that as the character tilts, they can still constrain to the direction. Camera pitch is relative to the character.

In order to set the aim controller constraints from a script you can use the following methods on the aim controller component:
void SetYawConstraints(Vector3 forward, float range);
void SetPitchConstraints(float minimum, float maximum);
void ResetYawConstraints();

void ResetPitchConstraints();

See Also

FirstPersonCamera Behaviour
additive-Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html

Additive Transforms and Effects

Overview

NeoFPS uses a system called additive transforms to manage camera and object transform effects such as recoil and shake. In

order to make use of additive transforms, the AdditiveTransformHandler is added to an object and then various additive effects

are attached to it. It is very simple to write custom additive effects, but a number of useful effects are included with NeoFPS

including:

NAME

AdditiveKicker

Additiveliggle

BodyLean

BodyTilt

BreathingEffect

CameraShake

CharacterMovementSway

CharacterRecoilEffect

HeadBob

HeadBobV?2

HeadDuck

FirearmRecoilEffect

OverShoulder

PeekVertical

DESCRIPTION

A simple knock and spring return. Triggered by the CharacterEventKickTrigger and
ImpactHandlerKickTrigger.

A simple rotation around the z-axis with a bouncy spring return.

Lean to either side

Tilt the body in an arbitrary direction

Applies a breathing motion to the selected weapon.

Apply continuous and one-off shakes to the camera.

A position and rotation offset applied to the weapon based on character velocity.

Applies recoil spring animation to the character. Driven by a BetterSpringRecoilHandler firearm
module.

(Deprecated) Position bob using curves

An enhanced head bob with more control over animation curves, aim compensation, and in-
game strength settings.

A simple lowering of the head used for charged jumps

Applies recoil spring animation to a modular firearm. Driven by a BetterSpringRecoilHandler
firearm module.

Rotate the head to look backwards, while leaving the weapon and body pointing forwards.

Peek over or under obstacles by moving the head up or down.

Any

Any

Body

Body

Weapon

Camera

Weapon

Body

Camera

Body

Camera

Weapon

Camera

Camera

NAME DESCRIPTION

Position bob using curves. Syncs and blends bob between head and weapon based on player

PositionBob . . :
H settings by sharing bob settings with a PositionBobData scriptable object.
RotationBob Rotation bob using curves.
Matches the offset of one transform relative to another. Used to blend keyframe animation in
TransformMatcher

with procedural effects.

WeaponAimAmplifier Multiplies the movement of the camera back onto the held weapon to add weight and

momentum.
WeaponBob (Deprecated) A bob effect for weapons, similar to the head bob but with rotation too.
WeaponMomentumSway Similar to the WeaponAimAmplifier, but changes the position instead of the rotation.

Camera
And
Weapon

Weapon

Camera

Weapon

Weapon

Weapon

The AdditiveTransformHandler will check each of the effects every tick (the update frequency can be set in the component

properties) and then layer them on top of each other in order to create a combined offset. Translation and rotation are handled

separately, meaning that the rotation offset of an effect will not alter the position offset of another effect further along the chain.

This makes the outcome more predictable when a number of effects are applied at once.

You can also specify a pivot point for the resulting transform if desired.

Footstep driven animation such as head or weapon bob is driven through a step tracking system attached to the character's

motion controller. This ensures that any animations like this sync up, are only active while in the correct movement state, and are
correctly driven by the character's velocity. The character's stride length (and therefore bob speed while moving) is controlled by
adding a TrackSteps motion graph behaviour to the relevant states or sub-graphs in your character's motion graph.

See Also

AdditiveTransformHandler

FirstPersonCamera

Additiveliggle MonoBehaviour

Overview

The additive jiggle is used to knock the object's rotation (roll) and then spring back.

Inspector

H + Additive Jiggle (Script)

Properties
NAME TYPE
Full Twist Angle Float
Can Flip Boolean
Lead In Float
Duration Float
See Also

Additive Transforms

AdditiveKicker

DESCRIPTION

The angle (either side of the axis) of a full strength jiggle.

If true, the jiggle could rotate in either direction.

The time taken to ease into the jiggle.

The time taken for the jiggle spring to ease out.

AdditiveKicker MonoBehaviour

Overview

The additive kicker is used to knock the camera or object and then spring back. Pair it with CharacterlmpactKicker and

KickerImpactHandler behaviours in order to consume character impact events.

Inspector

B @ additive Kicker (Script)

Properties
NAME TYPE
Lead In Float
Ret!Jrn AnimationCurve
Spring
See Also

Additive Transforms
CharacterImpactKicker
KickerlmpactHandler

Unity AnimationCurve

DESCRIPTION
The time taken to ease into the kick.

The return spring is an animation curve that dictates how the kicker returns from the kick angle/position (1
on the y-axis) to its original state (0 on the y axis).

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

AdditiveTransformHandler MonoBehaviour

Overview

The AdditiveTransformHandler behaviour sums together all the additive transform effects applied to it and uses them to
transform an object such as the camera.

In The Scene View

With a gameobject selected that uses an AdditiveTransformHandler component, the guide handle will be visible in the scene view.
This represents the point the target transform will rotate around.

Inspector

Properties
NAME TYPE DESCRIPTION
Target
Transform The transform that the handler affects.
Transform

Pi
()I:fZ(tet Vector3 The offset from the transform origin for the pivot point to rotate around.
Undate When should the additive transform effects be calculated and applied. Options are: Update, LateUpdate,
WFl)1en Dropdown FixedUpdate, FixedAndLerp, FixedAndLateLerp (The "Lerp" options calculate in fixed update and then
interpolate between results during Update/LateUpdate for smooth results).
See Also

Additive Transforms

https://docs.unity3d.com/Manual/class-Transform.html

WeaponBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html

BodyLean MonoBehaviour

Overview

The BodyLean behaviour is used to lean the character body to either side.

Inspector

H v Body Lean (Script)

Properties
NAME TYPE DESCRIPTION
Max Lean Angle Float The angle to lean to either side when lean power is set to 1 or -1.
Pivot Offset Float The downward offset for the pivot point from the transform origin.
Lean Speed Float The speed of transitioning from 1 lean value to another. 1 is nearly instant.
Weapon Tilt Float How much of the lean rotation is reflected in the weapon.
Head Counter Tilt Float A counter rotation of the head compared to the weapon.
. The distance to check from the center line for clearance space to lean. The lean amount will be capped
Required Clearance Float
based on the result.
Cancel If Blocked Boolean If there is no clearance space then return the lean amount to 0 until manually re-applied.

Reset Speed

Standing Float The maximum speed the character can travel before the lean is cancelled. (0 = no max speed).
Reset Speed . .
. Float The maximum speed the character can travel before the lean is cancelled. (0 = no max speed).
Crouching
Can Lean Key String The key to a motion graph switch parameter that dictates if the character can lean or not.
Is Crouching Key String The key to a motion graph switch parameter that dictates if the character is crouching or standing.
See Also

Additive Transforms

Motion Graph Parameters And Data

HeadBob MonoBehaviour

Overview

The BodyTilt behaviour is used to lean the character body based on an input vector.

Inspector

< Body Tilt (Script)

Properties
NAME TYPE DESCRIPTION
Max Tilt Angle Float The maximum angle the character can tilt. Angles above this will be capped.
Tilt Speed Float The speed of transitioning from 1 tilt value to another. 1 is nearly instant.
Required Float The distance to check from the center line for clearance space to lean. The lean amount will be capped based
Clearance on the result.
See Also

Additive Transforms

Motion Graph Parameters And Data

BoxShakeZone MonoBehaviour

Overview
The BoxShakeZone behaviour defines a 3D box area with a constant shake value used by the CameraShake additive transform

effect.

Inspector
B 7 Box shake Zone (Script)

gth

Falloff Distance

Properties
NAME TYPE DESCRIPTION
Strength Float The strength of the shake.
Size Vector The dimensions of the box along each axis (centered on position).
Falloff Distance Float The distance outside of the box that the strength falls off to zero.
See Also

Additive Transforms

CameraShake

BoxShakeZone2D MonoBehaviour

Overview
The BoxShakeZone2D behaviour defines a 2D box area (on the x-y plane) with a constant shake value used by the CameraShake

additive transform effect.

Inspector

B @ Box Shake Zone 2D (Script)

Properties
NAME TYPE DESCRIPTION
Strength Float The strength of the shake.
Size Vector The dimensions of the box along each axis (centered on position).
Falloff Distance Float The distance outside of the box that the strength falls off to zero.
See Also

Additive Transforms

CameraShake

BreathingEffect MonoBehaviour

Overview

The BreathingEffect behaviour applies a procedural breathing animation based on a character's breath handler.

Example breath handlers include the SimpleBreathHandler which has a constant breathing rate, or the StaminaSystem which

modifies the breathing rate and strength based on fatigue.

Inspector

H + Breathing Effect (Script)

Pitch Max

Properties

NAME
Pitch Max
Yaw Max
Vertical Max

Horizontal Max

See Also

Additive Transforms
SimpleBreathHandler

StaminaSystem

TYPE

Float

Float

Float

Float

DESCRIPTION

The maximum pitch rotation at breathing strength 1.

The maximum yaw rotation at breathing strength 1.

The maximum vertical position offset at breathing strength 1.

The maximum horizontal position offset at breathing strength 1.

CameraShake MonoBehaviour

Overview

The CameraShake behaviour is used to add constant and one-shot shake effects to the first person camera.

Constant shake effects can be applied using shake zones such as the BoxShakeZone, BoxShakeZone2D, SphereShakeZone and

CircleShakeZone. You can also set the global shake value directly with scripts using the following code:

ShakeHandler.globalShake = shakeAmount;

Where shakeAmount is a float value between 0 (no shake) and 1 (maximum shake).

You can apply a one-shot shake using the following method:

public static void ShakeHandler.Shake(Vector3 position, float innerRadius, float falloffDistance, float
strength, float duration, bool requiresGrounding = false)

Inspector

H ¥ Camera Shake (Script)

Yo o

Properties

NAME
Shake Distance
Shake Twist
Continuous Damping
Concussion Lead In

Continuous Only
Grounded

See Also

Additive Transforms

TYPE DESCRIPTION
Vector The distance the camera can move either side of the origin on each axis at a shake strength of 1.
Vector The max rotation (in each direction) for a shake strength of 1.

Float Damping smooths the blend between different continuous shake strengths.

Float The time it takes for the shake to go from 0 to 1.

Should continuous shake only be applied while the character this is attached to is grounded (if there

Boolean .
is a character).

CharacterEventKickTrigger MonoBehaviour

Overview

The CharacterEventKickTrigger consumes character impact events such as landings and bullet hits, and uses them to drive an
additive kicker effect.

Inspector

B @ character Event Kick Trigger (Script)

B PlayerCameraR o dditiveKicker)

Properties
NAME TYPE DESCRIPTION
Kicker AdditiveKicker The additive kicker used to react to the force.
Kick Duration Float The time taken to recover from the kick.
Max Kick Distance Float The downward position kick distance at max impulse.
Max Kick Angle Float The forward kick angle at max impulse.
Min Ground Impact Float A ground impact impulse with magnitude lower than this will be ignored.
Max Ground Impact Float The ground impact impulse magnitude that gives the maximum kick.
Min Head Impact Float A head impact impulse with magnitude lower than this will be ignored.
Max Head Impact Float The head impact impulse magnitude that gives the maximum kick.
Min Body Impact Float A body impact impulse with magnitude lower than this will be ignored.
Max Body Impact Float The body impact impulse magnitude that gives the maximum kick.
See Also

Additive Transforms

AdditiveKicker

CharacterRecoil Effect MonoBehaviour

Overview

The CharacterRecoilEffect behaviour is a part of the modular firearm recoil system and applies the character (body and head)
based component of the recoil animation. This is paired with the FirearmRecoilEffect behaviour to apply the firearm component of

the animation, and controlled by the BetterSpringRecoil firearm module.

Inspector

h « Character Recoil Effect (Script)

Properties

NAME TYPE DESCRIPTION

See Also

Additive Transforms
FirearmRecoilEffect

BetterSpringRecoil

CharacterMovementSway MonoBehaviour

Overview

The CharacterMovementSway behaviour adds an offset to the held weapon based on the character's velocity. This can help

exaggerate movement and make the weapon feel more dynamic.

Inspector

B @ character Movement Sway (Script)

Properties
NAME TYPE DESCRIPTION
Damping Time Float Approximately the time it will take to reach the target sway. A smaller value will reach the target faster.
Aiming Multiplier Float A multiplier applied to the offset when aiming down sights. This helps make the weapon more controlled

There are also 4 sway limit sections - one for each direction. When moving diagonally, the sway will blend between the closest 2.

Each of these section has the following properties:

NAME TYPE DESCRIPTION
Offset Vector The position offset to apply to the weapon when at or above the target speed for this direction.
Roll Float The rotation around the weapon's forward axis when at or above the target speed for this direction.
Speed Float The speed in this direction at or above which the full offset and roll will be applied.

See Also

Additive Transforms

CircleShakeZone MonoBehaviour

Overview

The CircleShakeZone behaviour defines a 2D circular area (on the x-y plane) with a constant shake value used by the

CameraShake additive transform effect.

Inspector

B 7 circle Shake Zone (Script)

Properties
NAME TYPE DESCRIPTION
Strength Float The strength of the shake.
Inner Radius Float The inner radius of the circle. Inside this, the strength is constant.
Falloff Distance Float The distance outside of the box that the strength falls off to zero.
See Also

Additive Transforms

CameraShake

CutsceneCamera MonoBehaviour

Overview

The CutsceneCamera behaviour is used to switch camera from a first person character to an externally controlled camera. It
handles disabling the player character's input, and hiding the HUD. Once the camera is disabled again, control is restored and the

HUD is re-enabled.

Inspector

=ne Camera (Script)

Properties
NAME TYPE DESCRIPTION
Can Skip Boolean Can the cutscene be skipped by holding the use button.
Skip Hold Float The amount of time the use button must be held to skip the cutscene.
On Skip UnityEvent An event fired when the cutscene is skipped.
See Also

Additive Transforms

https://docs.unity3d.com/Manual/UnityEvents.html

FirearmRecoilEffect MonoBehaviour

Overview

The FirearmRecoilEffect behaviour is a part of the modular firearm recoil system and applies the character (body and head) based
component of the recoil animation. This is paired with the CharacterRecoilEffect behaviour to apply the body and head

components of the animation, and controlled by the BetterSpringRecoil firearm module.

Inspector

B @ Firearm Recoil Effect (Script)

Properties

NAME TYPE DESCRIPTION

See Also

Additive Transforms
CharacterRecoilEffect

BetterSpringRecoil

FirstPersonCamera MonoBehaviour

Overview

The FirstPersonCamera MonoBehaviour is used with the standard Unity Camera to add useful features.

Inspector

H + Standard First Person Camera (Script)

ameraspring (Transform)

PlayerCameraRoot (Transform)

Unity Camera Properties

Camera

(Audio Listener)
Properties
NAME TYPE DESCRIPTION
Camera Camera The main camera for the first person view.

The transform to use for accurate shooting. If you add extra spring effects to the camera that don't affect

Aim Ti f Transf
m franstorm ranstorm the gun, you might want to set this to something higher up the hierarchy.

Previous What to do with the main camera in the scene? Use this to prevent wasted render cycles and multiple
. Dropdown

Camera Action listeners. Options: DeactivateGameObject, DisableComponent, DestroyGameObject, Ignore.
Default FoV Float The default vertical field of view. This will also change the horizontal fov below.
Horizontal .) . - .
169 Float The default horizontal field of view for a 16:9 screen. This will also change the vertical fov above.
Offset . . . - .
Transform Transform The offset from standard upright position for moving the head. Used for aiming down sights, etc.
Aim Position
Effect Float The multiplier applied to additive spring effects while aiming.
Multiplier
Aim Rotation
Effect Float The multiplier applied to additive spring effects while aiming.
Multiplier

See Also

Additive Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html

HeadBob MonoBehaviour (Deprecated)

Overview

The HeadBob behaviour is used to move the camera in sync with character movement. This behaviour has been deprecated and
replaced with the PositionBob and RotationBob systems which sync weapon and head bobbing, and allow player settings to

reduce head movement.

The head bob can tie into the moion graph and subscribe to a float parameter to allow the motion graph elements to control
when the bob occurs and the bob rate. Without this, the bob occurs whenever the character is grounded, and the bob rate is

based on movement speed.

Inspector

bobInterval

Properties

NAME TYPE DESCRIPTION

Horizontal Bob

Range Float The maximum position offset along the x-axis in either direction.
Vertical Bob . " L N
Range Float The maximum position offset along the y-axis in either direction.
Bob Curve AnimationCurve The curve over one step cycle for the weapon bob.
Bob Interval . . .
Param Key FloatParameter The name of a float parameter on the character motion graph that sets the bob interval distance.
(Fallback) Bob Float The distance travelled for one full bob cycle. If the parameter key above is set then this value will
Interval only be used if the parameter can not be found.

See Also

Additive Transforms
WeaponBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

HeadBobV2 MonoBehaviour (Deprecated)

Overview

The HeadBobV2 behaviour is a new spring effect which uses the character step tracking system to sync complex head bob to the

character. Alongside simple position bob it adds the following features:

e In-game strength settings via the gameplay options or quick-options popup
e Individual animation curves for horizontal offset, vertical offset and roll
e Aim compensation which adds a counter rotation to keep the crosshair fixed on objects as the head moves

Despite the name, the HeadBobV2 component is intended to be applied to the upper body spring so that the weapon moves with
it.

Inspector

B @ Head Bob V2 (Script)

pring (Transform)

Properties
NAME TYPE DESCRIPTION
Min Lerp . .
Float At or below this speed the bob will be scaled to zero.
Speed
Max Lerp . . .
speed Float At or above this speed the bob will have its full effect.

N The maximum position offset along the horizontal axis in either direction. The horizontal axis of the
. AnimationCurve L . L .
Horizontal + Float animation curve goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y
axis is a multiplier for the float value next to the animation curve.

The maximum position offset along the vertical axis in either direction. The horizontal axis of the
Vertical AnimationCurve animation curve goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y
axis is a multiplier for the float value next to the animation curve.

The maximum angle to roll the camera in either direction. The horizontal axis of the animation curve
Roll AnimationCurve goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y axis is a
multiplier for the float value next to the animation curve.

Use Aim Boolean Aim compensation involves rotating the camera so that the crosshair stays fixed on the same point in
Compensation space.
Aim . .

Transform The transform to use for camera/crosshair casting.

Transform

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-Transform.html

NAME TYPE DESCRIPTION

Aim Layers LayerMask The layers to check against for aim depth.

The minimum distance to compensate against. At very close distances, the bob will have to rotate

Min Distance Float oL
larger angles to keep the crosshair fixed on target.
Max Distance Float The maximum distance to compensate against.
A damping against the crosshair target. Prevents objects crossing the camera at close ranges from
Damping Float . ping a9 . J g 9 g
causing sudden shifts.
See Also

Additive Transforms

Unity AnimationCurve

https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/EditingCurves.html

HeadDuck MonoBehaviour

Overview

The HeadDuck effect lowers the head. It is used in charged jumps.

Inspector

H v Head Duck (Script)

Duck Height

Properties

NAME TYPE DESCRIPTION

Duck Height Float The distance to duck the head downwards.

See Also

Additive Transforms

ImpactHandlerKickTrigger MonoBehaviour

Overview

The ImpactHandlerKickTrigger behaviour is used to drive the AdditiveKicker.

Inspector

Impact Handler Kick Trigger (Script)

dditivekicker)

Properties

NAME
Kicker

Max Strength

Kick Duration

Position Kick Multiplier

Rotation Kick Max Angle

See Also

Additive Transforms

AdditiveKicker

TYPE

AdditiveKicker

Float

Float

Float

Float

DESCRIPTION

The additive kicker used to react to the force.

The strength cap. Above this strength, the kick will not increase.

The time taken to recover from the kick.

The camera moves along the direction of the force by strength * position multiplier.

The rotation kick angle at full strength.

OverShoulder MonoBehaviour

Overview

The OverShoulder behaviour allows you look over your shoulder, keeping your weapon pointing in its original direction.

Inspector

H ¥ Over Shoulder (Script)

Motion Graph Key

Properties

NAME
ReferenceTransform
OverShoulderTarget
TurnTime

MotionGraphKey

See Also

Additive Transforms

TYPE

Transform

Transform

Float

String

(Transform)

DESCRIPTION

The transform to use as the un altered aim direction.

The transform to look down (forwards) when looking over shoulder.
The time taken to turn.

The key to a motion graph switch parameter that dictates if the character can peek or not

Motion Graph Parameters And Data

PeekVertical MonoBehaviour

Overview

The PeekVertical behaviour allows you to peek over or under obstacles by moving the head up/down.

Inspector

H v Peek Vertical (Script)

Properties
NAME TYPE DESCRIPTION
Peek Distance Float The distance up or down to move the camera when peeking up or down.
Peek Speed Float The speed the character can change lean amount.
Max Move Speed Float The maximum speed the character can travel before the peek is cancelled. (0 = no max speed).
Motion Graph Key String The key to a motion graph switch parameter that dictates if the character can peek or not.
See Also

Additive Transforms

Motion Graph Parameters And Data

PositionBob MonoBehaviour

Overview

The PositionBob behaviour is used to apply a bob effect to the player character's head and weapon. The bob syncs steps with the
RotationBob effect and the various sprint handlers. It can also blend the bob effect between the head and weapon object to keep a

consistent effect while reducing head movement for people that find it causes them motion sickness. This is controlled via the

head bob setting in the FpsGameplaySettings.

Inspector

h ¥ Position Bob (Script)

W DefaultBobData (PositionBobData)

Item

Properties
NAME TYPE DESCRIPTION
Bob Data PositionBobData The bob animation data, shared between the head and the item/weapon.
Is this bob being applied to the head or the item (allows the effect to blend between the 2 with similar
Bob Type Dropdown .
results based on game settings).
Min Lerp . .
Float At or below this speed the bob will be scaled to zero.
Speed
Max Lerp . . .
Float At or above this speed the bob will have its full effect.
Speed
See Also

Additive Transforms
RotationBob

Gameplay Settings

PostProcessLayerFix MonoBehaviour

Overview

The PostProcessLayerFix behaviour adds the PostProcessLayer component to any cameras on start at runtime.

The Unity Post Processing Stack V2 has a number of bugs relating to how it serializes and deserializes references its shared
resources. This makes it very difficult to use in an asset because on first import it can lead to bugs ranging from post-processing
effects not being applied, to errors being spammed to the console. The fixes for this involve manually editing every camera object,
and so this behaviour was added in an attempt to shift the requirement for this away from the end user.

Inspector

Post Process Layer Fix (Script)

Properties

The PostProcessLayerFix behaviour has no properties exposed in the inspector.

See Also

Post Processing Stack V2

PostProcessLayerSettings

https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing

RotationBob MonoBehaviour

Overview

The RotationBob behaviour is used to apply a bob effect to the player character's weapon. The bob syncs steps with the
PositionBob effect and the various sprint handlers. Rotation bob should be used sparingly and not applied to the character body

or head as it can be very disorientating.

Inspector

h + Rotation Bob (Script)

Rotation Range

Properties
NAME TYPE DESCRIPTION
Rotation Vector The maximum rotation on each axis at the peak of the bob. Negative values essentially offset
Range the timing for that access to the other foot.
Bob AnimationC ity-
© [r.nma. lonCurve]funity The curve over one step cycle for the bob effect.
Curve animationcurve]
Min L
n Lerp Float At or below this speed the bob will be scaled to zero.
Speed
Max Lerp . . .
Float At or above this speed the bob will have its full effect.
Speed
See Also

Additive Transforms

PositionBob

SphereShakeZone MonoBehaviour

Overview

The SphereShakeZone behaviour defines a spherical area with a constant shake value used by the CameraShake additive

transform effect.

Inspector

B @ sphere Shake Zone (Script)

Properties
NAME TYPE DESCRIPTION
Strength Float The strength of the shake.
Inner Radius Float The inner radius of the sphere. Inside this, the strength is constant.
Falloff Distance Float The distance outside of the box that the strength falls off to zero.
See Also

Additive Transforms

CameraShake

TransformMatcher MonoBehaviour

Overview

The TransformMatcher behaviour is an additive effect that matches the position and rotation of one transform relative to another.

It is useful for layering keyframed animation in with the procedural animation of the other additive effects.

Inspector

¥ Transform Matcher (Script)

Properties
NAME TYPE DESCRIPTION
Weight Float The strength of the effect. 1 matches the movement absolutely, while 0 is no movement.
Blend Duration Float The time it takes to blend in or out of the movement when the transforms are changed.
See Also

Additive Transforms

FirearmTransformMatchSetter

WeaponAimAmplifier MonoBehaviour

Overview

The WeaponAimAmplifier uses the camera rotation to twist and turn the held weapon, adding the illusion of weight and

momentum.

Inspector

¥ Weapon Aim Amplifier (Script)

Properties

NAME

Horizontal
Multiplier

Vertical Multiplier
Sensitivity

Damping Time

See Also

Additive Transforms

TYPE

Float

Float

Float

Float

DESCRIPTION

The multiplier for the resulting weapon rotation side to side.

The multiplier for the resulting weapon rotation up and down.

How sensitive the sway is to camera rotation. Higher sensitivity means the sway approaches its peak with
slower rotations

Approximately the time it will take to reach the target rotation. A smaller value will reach the target faster.

WeaponBob MonoBehaviour (Deprecated)

Overview

The WeaponBob behaviour is used to move the gun or held item in sync with character movement. This behaviour has been
deprecated and replaced with the PositionBob and RotationBob systems which sync weapon and head bobbing, and allow player

settings to reduce head movement.

The weapon bob can tie into the moion graph and subscribe to a float parameter to allow the motion graph elements to control
when the bob occurs and the bob rate. Without this, the bob occurs whenever the character is grounded, and the bob rate is

based on movement speed.

Inspector

boblInterval

Properties

NAME TYPE DESCRIPTION

Horizontal Bob

Range Float The maximum position offset along the x-axis in either direction.
Vertical Bob . . o N
Range Float The maximum position offset along the y-axis in either direction.
Horizontal . . o N
Float The maximum rotation offset around the x-axis in either direction.
Angle Range
Vertical Angle . . o N
Range 9 Float The maximum rotation offset around the y-axis in either direction.
Bob Curve AnimationCurve The curve over one step cycle for the weapon bob.

(Fallback) Bob The distance travelled for one full bob cycle. If the parameter key above is set then this value will

Float

Interval only be used if the parameter can not be found.
(Fallback) Bob Float The distance travelled for one full bob cycle.
Interval

See Also

Additive Transforms
HeadBob

Unity AnimationCureve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

WeaponMomentumSway MonoBehaviour

Overview

The WeaponMomentumSway behaviour is an alternative to the WeaponAimAmplifier behaviour and moves instead of rotates the
weapon. This makes it more suitable to weapons that are set to use the gun transform for the shooting direction as the weapon

will stilll be pointing forwards as it moves.

Inspector

¥ Weapon Momentum Sway (Script)

Properties
NAME TYPE DESCRIPTION
Horizontal - . . .
L Float The multiplier for the position offset side to side.
Multiplier
Vertical Multiplier Float The multiplier for the position offset up and down.
e How sensitive the sway is to camera rotation. Higher sensitivity means the sway approaches its peak with
Sensitivity Float . y g y Y app P
slower rotations
Damping Time Float Approximately the time it will take to reach the target rotation. A smaller value will reach the target faster.
See Also

Additive Transforms

PositionBobData ScriptableObject

Overview

The PositionBobData scriptable object stores bob information to be shared between multiple PositionBob behaviours. This allows
all the bob effects on a character to sync up, and for the player to blend between item and head bob if htey find head bob

uncomfortable.

Inspector
(_3 DefaultBobData

Properties
NAME TYPE DESCRIPTION
Horizontal Bob Range Float The maximum position offset along the x-axis in either direction.
Vertical Bob Range Float The maximum position offset along the y-axis in either direction.
Bob Curve AnimationCurve The curve over one step cycle for the bob effect.

See Also

Additive Transforms
PositionBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

PostProcessLayerSettings ScriptableObject

Overview

The PostProcessLayerSettings asset is used to store common post processing settings that are applied to any cameras on start.

Inspector

(':S.;‘ PostProcessLayerSettings

Properties
NAME TYPE
Anti
Aliasing Dropdown

Resources PostProcessResources

See Also

Post Processing Stack V2

PostProcessLayerFix

DESCRIPTION
The anti-aliasing option to use when adding post processing to a camera.

The post processing resources to apply to the camera. Note: on first import this property will be
null. The resources are created when the post processing package is imported and not accessible via
the inspector. When you first access play mode, this component will be retrieved and applied, and

the property will persist outside of play mode.

https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing

The Motion Graph

Overview

Movement

Add State Contact Ladder
Add Sub-Graph Dodge

Show Parent Graph Faling
., Interactive Ladder
Jump
Movement
Jump Null
Repulse

Steep Shide

Grounded Airborne

Dodge

The motion graph is the core movement system of NeoFPS. It provides a powerful but flexible tool for designers to control how
the FPS character moves, and how the character's movement state affects other Unity systems such as audio and animation. The
motion graph means designers aren't tied to a specific style of movement, and minimises the need for complex custom code

when trying to achieve a specific FPS vision (though it is also designed to be highly extensible).

The motion graph is a state machine that tracks and manages the movement state of the FPS character. It is built up of States,

Connections, Sub-Graphs, Behaviours, Parameters and Motion Data.

The NeoFPS movement system uses a MotionController behaviour attached to the FPS character, which drives a
NeoCharacterController. The MotionController has parameters to select the desired motion graph ScriptableObject, along with a
[MotionControllerData ScriptableObject][7] that the graph queries for parameters such as movement speed and strafe multipliers.
By separating the motion controller from the graph and data, NeoFPS allows for a huge amount of flexibility in creating separate
characters with unique movement styles and traits in a single game. This can be very useful if the game design involves character
classes or RPG style stats.

Graph Elements
States

https://docs.neofps.com/manual/extend-motiongraph.html

Movement

States are the building blocks of the motion graph. Each state is a style of movement and has complete control of the character's
MotionController.

The states base their movement on the motion graph Parameters and Motion Data as well as a number of properties from the
MotionController and NeoCharacterController such as ground contact and input.

For more information, see Motion Graph States.

Connections

wallMarmal

Check Velocity

Transition On

ConditionGroups

w Condition Group

wallMarmal

Transition On Any True

Connections handle the relationship between movement states. Each update tick, all of the outbound connections of the current
state are checked in sequence. If an outbound connection is found to be valid, then that state in turn is checked until the final state
in the chain is reached. That final state becomes the new "current” state, and is then updated.

In order for a connection to be valid, the conditions attached to it must return true (all or any depending on the setting).

Connections are evaluated for parent sub-graphs as well to allow for grouping logic. The connection checks are handled in order
from the highest level sub-graph containing the current state, down the sub-graph hierarchy, and lastly the current state. An
example of how his can be useful is switching between grounded and airborne movement. You can group all of the grounded
movement states (running, walking, crouching, etc) and connections together in their own sub-graph, and group all of the

airborne states and connections together in another sub-graph. Connecting these 2 sub-graphs using a ground contact check
condition means that these connections are much higher priority than the connections inside the respective sub-graphs. It doesn't
matter what connections exist and conditions are met for grounded movement if the character is no longer touching the ground.
Without this ordering and grouping of nodes into sub-graphs, every grounded movement state would require a connection to the

airborne states.

current

Conditions

Conditions are a one off test that returns either true or false. The tests can be based on the graph state, graph parameters, or
external systems such as physics and character health.

For more information, see Motion Graph Conditions.

Sub-Graphs

SubGraph

Sub-Graphs allow states to be logically grouped together into smaller graphs. They have inbound and outbound connections just
like a state and are tested before the current state in order from the graph root down to the current sub-graph and finally the
current state. This enables complex logic to designed through a simple interface. For example, most characters will have an
Airborne and a Grounded sub-graph. Inside the Grounded sub-graph will be various states handling movement such as
walking, sprinting and sliding, as well as the connections between them. If the character loses ground contact then it doesn't
matter which of those states the character is in. The sub-graph connections will handle the connection into the Airborne sub-
graph and then select the relevant airborne state.

Each sub-graph has a default state. On entering a sub-graph, all of the connections to child states are evaluated in sequence. If
none of them are valid then the default state automatically becomes the current state.

Parameters And Data

Motion graph parameters are similar to the parameters inside the Unity AnimatorController. Any number of parameters can be
added to the motion graph and then referenced by key or hash. You can also store the parameter reference for quicker access.

Certain parameters such as triggers and switches can be blocked, either by graph behaviours, or from outside the graph.

The motion graph also allows for an event parameter. This can be subscribed to from outside the graph and triggered by graph

behaviours, allowing the graph to interact with components outside of the motion graph system.

Motion data behaves similarly but cannot be changed from outside the graph, except for using an override asset. Motion data are
referenced in graph states and behaviors, and are completely optional.

For more information, see Motion Graph Parameters And Data.

Behaviours

SetTargetHeight

Enter And Exit

Motion graph behaviours add extra functionality to the graph. They can process logic on entering or exiting a state or sub-graph
and/or when a state is updated. Certain behaviours can only be attached to states, and others can only be attached to sub-graphs,
while most can be attached to both.

Motion graph behaviours allow for simple logic such as resetting or modifying parameters. They can also be complex systems on
their own, such as the motion graph behaviour based footsteps.

For more information, see Motion Graph Behaviours.

See Also

Motion Graph Editor

Motion Graph States

Motion Graph Conditions

Motion Graph Parameters And Data
Motion Graph Behaviours
MotionController Behaviour

Unity AnimatorController

Ladders

Moving Platforms

Extending The Motion Graph

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.neofps.com/manual/extend-motiongraph.html

NeoCharacterController

Overview

The NeoCharacterController is a replacement for the Unity Character Controller which adds additional functionality such as:

Moving platforms

Interpolation between fixed framerate physics movement
Arbitrary gravity and up-vector

Height change, including jump-crouching

Built-in pushing of rigidbody objects

Reaction to impacts from rigidbody objects

Physical interaction with other character controllers
Curve driven slope speed modifiers

Ledge friction property to allow sliding off ledges when overhanging

The NeoCharacterController is a kinematic character controller that uses a collide and slide technique to ensure smooth
movement and collisions, while preventing fast movement penetrating through thin objects.

For more information on the properties that are exposed in the inspector see the NeoCharacterController Behaviour.

The other classes within NeoFPS refer to the NeoCharacterController using the INeoCharacterController interface. This means
that the character controller can be replaced with another implementation, as long as that implements the correct interface.

Friction

The Slope Friction property dictates how much of the downward movement is redirected down the slope instead of cancelled
out. At a friction level of 1, any vertical movement into the slope will be cancelled out completely. At a friction level of 0, the
character will slide down the slope due to gravity.

The Ledge Friction property specifies what happens when the character is overhanging a ledge. The NeoCharacterController has
basic awareness of ground contacts that lets it know when it is in contact with an edge as opposed to a flat surface. If the
character centerpoint is overhanging a ledge, and the drop distance is large enough, then the character will slide off the ledge
depending on this setting. It can be used to prevent the character from hovering off the edge of obstacles unrealistically. If this
value is higher than the slope friction, then the slope friction will be usd instead. This prevents sliding down a slope and then
sticking on the bottom edge.

Rigidbody and Character Interaction

The NeoCharacterController can push dynamic rigidbodies, as well as react to impacts from rigidbodies.

The Low Rigidbody Push Mass is used to set a mass that the character can easily push. Any rigidbody at or below this mass will
have a proportionate force exerted on it that will achieve the same effect. Above this mass, that force will drop away to zero as the
rigidbody approaches the Max Rigidbody Push Mass. The Rigidbody Push property is the push power and can be
experimented with to get the correct effect.

Similarly, the NeoCharacterController can also push and be pushed by other NeoCharacterController objects.

Gravity and Up-Vector

The NeoCharacterController operates using its own gravity value instead of the Unity Physics gravity. This allows for more
flexibility to achieve a specific game feel. First person shooters often use a higher gravity than normal for character movement as
it feels more realistic and less floaty.

The NeoCharacterController can also have its up-vector changed. This allows for features such as walking around on relatively
small planets, or localised gravity zones. All features such as step height and slopes work the same as gravity and the up-vector
rotate.

https://docs.unity3d.com/Manual/class-CharacterController.html

By default, the up-vector will be adjusted to face the opposite direction to gravity whenever the character gravity is changed. If the
gravity is set to zero then the up-vector can be freely changed to allow for unlimited zero-g movement. A range of motion graph

states will be added to take advantage of this in a future update.

See Also

Moving Platforms
NeoCharacterController Behaviour

Unity Character Controller

https://docs.unity3d.com/Manual/class-CharacterController.html

The Motion Graph Editor

Overview

The motion graph editor is a set of tools for creating and editing NeoFPS motion graphs. It contains a viewport for navigating and
visualising the graph, along with an inspector for changing the properties of the graph and its components.

Contact Ladder Maovement Interactive Ladder
Show Sub-Graph
Set Default
Make Transition

Cut Sub-Graph
Copy Sub-Graph

Move To Sub-Graph Repulse

Delete

You can access the motion graph editor through the Unity menu: Window/NeoFPS/Motion Graph Editor. You can also access
the editor from the Show Motion Graph Editor button that appears in the inspector for a motion graph asset.

You can create a new motion graph from the motion graph editor by clicking the New button in the top bar. The new asset will be
placed in the project root folder. You can also right-click in the project and create a new motion graph through the create menu
using the following command: Create/NeoFPS/Motion Graph. Selecting a motion graph asset with the motion graph editor

open will update the editor to show the contents of the selected graph.

Motion Graph Editor Ul

trigger
2

trigger

Contact Ladder Movement Interactive Ladder
Show Sub-Graph
Set Default
Make Transition

Cut Sub-Graph
Copy Sub-Graph

Repulse Move To Sub-Graph Repulse

Delete

The following is a breakdown of what you will see when you open the editor:

1. The asset controls allow you to create and save graph assets as well as select the graph currently being edited.

2. The breadcrumb at the top shows the current sub-graph of the hierarchy that is currently visible in the viewport.
3. The side bar allows you to add and modify parameters and motion data on the graph.

4. The viewport shows the layout of the graph.

Motion Graph Viewport

Movement

Add State Contact Ladder
Add Sub-Graph Dodge

Show Parent Graph faling
o Interactive Ladder
Jump
Movement
Jump Null
Repulse

Steep Slide

Grounded Airborne

The motion graph viewport gives a visual representation of the graph, allowing you to navigate the connections, add elements
and select and modify existing elements.

To move the viewport hold the middle mouse button and drag the cursor. Alternatively, you can hold the Left Alt key and click

the left mouse button on an empty area of the viewport and then hold and drag the mouse button to move.

To open a context menu you can right click anywhere in the viewport. This menu will contain different entries depending on what
you clicked and covers actions such as navigating the graph, cut/copy/paste/deleting elements and creating transitions between
elements.

Inside the viewport, the visible elements are as follows:

e The rectangular boxes are motion graph states. These handle the movement of the character and the motion controller
depending on the motion controller's current state. Left-click a state to edit its properties in the editor inspector panel.

e The angled boxes are sub-graphs. These contain their own graph layout and can be transitioned into and out of as if they
were a state. Left-click a sub-graph to edit its properties in the inspector panel. Double-click a sub-graph to replace the
viewport contents with that sub-graph's contents.

e The green angled box is the sub-graph that is currently being shown in the viewport. You can double-click this element or
use the context menus to show its parent graph in the viewport.

e The lines with arrows between different elements are the motion graph connections. These define which states and sub-
graphs connect to each other and what conditions must be met to transition between them. Left-click the arrow on a
connection to edit its properties in the inspector panel.

You can also group select states and sub-graphs in order to perform group operations. To drag-select elements, Left-click in an
empty area of the viewport and, holding the mouse button down, drag across the desired states and sub-graphs. Releasing the
mouse button will select the states and sub-graphs within the area. Connections can not be group selected, but any group

operations will affect the connections into and out of the modified elements. You can also Control-Left-Click or Command-
Left-Click on an element to add it to the group, or Alt-Left-Click to remove it from the group.

Any selected states or sub-graphs will be highlighted in the viewport.

Inspecting Motion Graph Elements

Selecting an element in the viewport will show it in the Unity editor inspector.

Connectables (States an Sub-graphs)

Controlled

Movement

fySwitchParameter

sprint

Enter And Exit
0.5
1

] =
® SurfaceAudio_Footst (SurfaceAudiol @
1.5
0.01

Add Behaviour

The connectable inspector is used for both states and sub-graph elements due to the similarities between them.

The header of the inspector allows you to change the element's name, see (and inspect) its parent sub-graph, and in the case of
states, see its type.

Straight after the header are the connectable properties. States can have any number of properties, and in some cases might have
complex editor logic such as you would expect from a MonoBehaviour or ScriptableObject.

After the connectable properties is an Out Connections array that shows all of the connections out of the inspected element.
Each entry in the array shows the destination, along with an Inspect button. Clicking this will select the connection element and
show its properties in the inspector for editing.

Both states and sub-graphs can also have a number of behaviours attached to them. These are listed after the out connections.
Each behaviour has a foldout title bar that can be used to show or hide its properties. They also have a link to the relevant manual
reference for that behaviour, and a dropdown context menu with options for changing order, copy/paste and removal. You can
add behaviours to the state by clicking the Add Behaviour dropdown button and selecting a behaviour. For more information on

behaviours, see Motion Graph Behaviours.

Connections

wallMarmal

wallMarmal

Transition On All True

ConditionGroups

n Condition Group

wallMarmal

Transition On

The header of the connection inspector shows the source and destination elements and allows you to quickly inspect either one.

The Conditions array shows all the conditions that decide if the connection is valid. For more information on conditions, see
Motion Graph Conditions. You can add a new condition by clicking the + button at the bottom of the array and selecting the
relevant condition from the dropdown.

The Transition On dropdown species if all of the conditions must be met for control to be transferred, or if any one of the
conditions must be met.

Parameters and Data

Parameters Motion Data

Parameters
18

jump trigger

The side-bar of the editor has 2 tabs that show all of the parameters attached to the graph, and all of the motion data attached to
the graph. Parameters and data can be referenced from any state, behaviour or condition in the graph. Scripts can also get a
reference to any of the attached parameters from outside the graph, creating a flexible system for communication back and forth
between the graph and other systems.

For more information, see Motion Graph Parameters And Data.

See Also

The Motion Graph

Motion Graph States

Motion Graph Conditions

Motion Graph Parameters And Data
Motion Graph Behaviours

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html

Motion Graph States

Overview

States are the building blocks of the motion graph. Each state is a style of movement. It takes input and basic physics information

from the MotionController and returns a move vector each tick.

Included States

Ground Movement States

NAME DESCRIPTION

Dash Surge in a direction based on yaw or movement direcion.

Movement Standard ground based movements such as walking or running.

Ski Maintain ground speed and allow steering based on speed (slower speed is tighter steering).
Steep Slide Sliding on a steep slope, with some control over direction.

Airborne States

NAME DESCRIPTION
Controlled Jetpack Applies an upward force, with some air control.

Falling Air control based movement with gravity.

Fly No-clip style movement that can move in all axes.

Jetpack Applies an upward force and maintains horizontal velocity.

Instantaneous States

NAME DESCRIPTION

Boost Pad Instantly sets velocity to match a vector parameter.

Dodge As jump, but lower and further.

Impulse Instantly sets velocity based on a vector with options for space and ground alignment.
Jump An instant upward jump. Completes in one frame.

JumpDirection A jump, but the direction is rotated from the vertical based on input.
JumpDirectionV2 A jump with a fixed vertical speed and a horizontal speed based on input.

Push Off Applies velocity based on a vector parameter, with optional upward force.

Repulse An instant impulse away from a transform in the scene.

Misc States

NAME

Constant Move
Maintain Velocity
Match Transform
Move To Point

Null

DESCRIPTION

Accelerates to a fixed velocity and maintains it.

Simply returns the velocity from the previous frame.

Attaches the character (position with or without yaw and up-vector) to a transform in the scene.

Moves from the starting point to the position set in a vector parameter.

An empty state used to branch to others.

Wall Movement States

NAME

Mantle

Vertical Wall Run

Wall Run

DESCRIPTION

Climb onto a ledge.

Run directly up a wall.

Run along a wall surface.

Swimming States

NAME
Swim Smooth Surface

Swim Smooth
Underwater

Swim Stroke Surface

Swim Stroke
Underwater

Swim Submerge

Wading

Ladder States

NAME
Contact Ladder

Interactive Ladder

DESCRIPTION

Swimming state that tries to stick to a water zone's surface. Smooth movement.

Swimming state that can move in all axes. Smooth movement.

Swimming state that tries to stick to a water zone's surface. Moves in pulses.

Swimming state that can move in all axes. Moves in pulses.

Used to transition from surface to underwater states while taking the movement of the surface into account.

A variation of the movement state with speed dependent on the amount of a character's body below the water
surface.

DESCRIPTION

A basic climb state when touching a contact ladder.

A climb state constrained to an interactive ladder.

In The Viewport

Movement

Context Menu Options

NAME DESCRIPTION

Set When entering a subgraph, the motion graph checks the connections out of the sub-graph to its child nodes in sequence. If
Default none of the connections are valid then the default state or sub-graph will be chosen as a fallback.

Make Starts a connection out of this node in the viewport. Clicking on another node will form a connection from this node to the

Transition clicked node. Clicking an empty area of the viewport will cancel the connection.

Move To

Sub- This will replace the state with a sub-graph with the same name, and then make this state a child of the new sub-graph.

Graph

Cut State Removes the state from the graph and adds it to the clipboard for pasting later. Any inbound and outbound connections will
be removed. Right-click on an empty area of viewport to paste.

Copy

State Copy the state to the clipboard. Right-click on an empty area of viewport to paste.

Delete Remove the state from the graph entirely, along with any inbound and outbound connections and attached behaviours.

In The Inspector

Jurmp
Root
Type Jump

Parameters

arameter

1 Data

um Height

2nce

Each state will have its own properties visible before the Out Connections array. This array lists the connections from this state
to other connectables, allowing you to jump to inspecting each of those targets. The Add Behaviour button allows you to add
motion graph behaviours to the state which will be evaluated while the state is active.

See Also

The Motion Graph

The Motion Graph Editor

Motion Graph Behaviours

Overview

Motion graph behaviours add extra functionality to the graph. They can process logic on entering or exiting a state or sub-graph
and/or when a state is updated. Certain behaviours can only be attached to states, and others can only be attached to sub-graphs,
while most can be attached to both.

Motion graph behaviours allow for simple logic such as resetting or modifying parameters. They can also be complex systems on
their own, such as the motion graph behaviour based footsteps.

Motion graph behaviours update at the same rate as the motion controller - in FixedUpdate. This should be kept in mind if
creating new behaviours for your project.

Included Behaviours
Character Behaviours

Character behaviours act on components on the character object.
These include:

BodyTiltBehaviour
ConstrainCameraYawBehaviour
DrainStaminaBehaviour
LockInventorySelectionBehaviour
ModifyStaminaBehaviour
SetWieldableStanceBehaviour
TrackStepsBehaviour

UnlockinventorySelectionBehaviour

Graph Parameter Behaviours

Graph parameter behaviours act on motion graph parameters.
These include:

ClampFloatParameterBehaviour
ClamplntParameterBehaviour
ModifylntParameterBehaviour
ModifyFloatParameterBehaviour
ModifySwitchParameterBehaviour
ModifyTriggerParameterBehaviour
ModifyTransformParameterBehaviour
ModifyVectorParameterBehaviour
BlockSwitchParameterBehaviour
BlockTriggerParameterBehaviour

InvokeEventBehaviour

TimeOpsBehaviour

Audio Behaviours

Audio behaviours trigger audio in the scene and interact with the various audio systems.
These include:

e FootstepAudioBehaviour

SlidingAudioBehaviour
LadderAudioBehaviour
PlayCharacterAudioBehaviour
PlayAudioClipBehaviour
LoopingAudioBehaviour
SurfaceAudioBehaviour

SurfaceFootstepAudioBehaviour
Physics Behaviours

Physics behaviours modify the character physics.
These include:

e DisableColliderBehaviour
e PassiveSlideBehaviour
e SetTargetHeightBehaviour

Miscellaneous Behaviours
Miscellaneous behaviours don't fall into the above categories.
These include:

e SetTimeScaleBehaviour

In The Inspector

W =

ast (SurfaceAudioC @

Editing behaviours is very straightforward. Each one will have its own unique properties, along with the following controls as
highlighted in the above image:

1. A checkmark to enable or disable the behaviour. Disabled behaviours will not be evaluated until enabled.

2. The type of the behaviour. Click this to collapse or expand the behaviour and its properties.

3. Alink to the manual reference for the behaviour.

4. A dropdown of actions for the behaviour including changing the order on the state or sub-graph, copy / pasting properties
and removing.

See Also

Motion Graph Parameters And Data

Motion Graph Conditions

Overview

Switch Condition

Conditions are simple true/false checks that are used to specify when the motion graph changes its active state. Conditions can be
far reaching, checking against the graph, the controller, the wider character, or any external system. Connections can transition

when a single condition is met or when all conditions in a connection are met.
Condition Groups
Condition groups are used to evaluate conditions together and allow for more complex rules than just "any" and "all".

For example, when swimming on the surface of a water zone, you might transition to the underwater state if you either press
crouch or look down and press forwards. In this situation you would set the main connection to transition on any of: crouch is
pressed or the Move Down condition group is true. The Move Down condition group will be set to be true if all of: the character is
looking down and the player is pressing forward.

wallMarmal

Transition On All True

ConditionGroups

n Condition Group

wallMarmal

Any True

The above connection is used for checking if a character can climb a wall. It is set up with a condition group that checks if either
the horizontal character speed is low or the direction of movement is directly into the wall (within a certain angle range).

The results of a condition group are recorded when evaluated (reset each frame). This prevents infinite loops where 2 condition

groups reference each other.

Conditions

The following conditions are available:

Graph Conditions

These are conditions that check against the graph state.

NAME DESCRIPTION

CompletedCondition Checks if the state it is connected from has its complete flag set.

ConditionGroupCondition Used to evaluate multiple conditions together (see above).

DebugCondition Used to debug connections by specifying the value and outputting a message to the debug log.
ElapsedTime Checks if the state it is connected from has been active for a set period.

Parameter Conditions

These are conditions that check against the [parameters][3] attached to the graph.

NAME DESCRIPTION

CompareFloatsCondition Compares two float parameters attached to the graph.
ComparelntsCondition Compares two int parameters attached to the graph.
CompareSwitchesCondition Compares two switch parameters attached to the graph.

CompareTime Compares the current time with the time stored in a float parameter attached to the graph.
FloatCondition Compares a float parameter attached to the graph to a specific value.
IntCondition Compares an int parameter attached to the graph to a specific value.
SwitchCondition Compares a switch parameter attached to the graph to a specific value.
TransformCondition Compares a transform parameter attached to the graph to a specific value.
TriggerCondition Compares if a trigger parameter attached to the graph has been triggered.
VectorCondition Compares if a trigger parameter attached to the graph has been triggered.

Physics Conditions

These conditions use the physics system to check for collisions and contacts.

NAME DESCRIPTION
CapsuleCast Casts the character capsule to check for a collision.
CapsuleCast (Enhanced) Casts the character capsule to check for a collision and can store the results in parameters.

CapsuleLookahead Casts the character capsule based on its movement.

NAME DESCRIPTION

CapsuleLookahead (Enhanced) Casts the character capsule based on its movement and can store the results in parameters.

Climbable Checks if a wall has an unobstructed climbable ledge within a certain height.

RayCast Performs a ray cast ffrom a point on the character.

RayCast (Enhanced) Performs a ray cast from a point on the character and can store the results in parameters.
RayLookahead Performs a ray cast based on the movement of the character.

RayLookahead (Enhanced) Performs a ray cast based on the movement of the character and can store the results in parameters.
SphereCast Performs a sphere cast from a point on the character.

SphereCast (Enhanced) Performs a sphere cast from a point on the character and can store the results in parameters.
SphereLookahead Performs a sphere cast based on the movement of the character.

SphereLookahead (Enhanced) Performs a sphere cast based on the movement of the character and can store the results in parameters.

Character Conditions

These conditions interface with the character that is controlled by the graph.

NAME DESCRIPTION

AirTime Checks how long the character has been ungrounded.

CharacterHeight Checks the character capsule height or height multiplier (from standing).
CollisionFlags Checks the collision flags generated on the last movement frame.
Direction Checks the character's aim, input or movement direction.
GroundContact Checks if the character is touching the ground.

GroundNormal Tests against the normal vector of the ground contact.

Tests against the normal vector of the ground surface at the contact point. If the contact is an edge, this will be the

GroundsurfaceNormal normal of the top face connected to that edge.

HeightRestriction Checks if the character can reach a specific height (eg trying to stand while crouched in an air vent.
InputVector Checks against the input vector provided to the motion controller.

Pitch Checks the character's aim pitch.

ScriptedComponent Paired with a component attached to the character that implements the IScriptedComponentCondition

interface.

NAME DESCRIPTION

Velocity Checks the character's velocity in various directions.
Water Checks the character's position relative to a water zone.
See Also

The Motion Graph

Motion Graph Parameters And Data

Motion Graph Parameters And Data

Overview

The Motion Graph allows you to add parameter and data entries to the graph.

Parameters are accessible from elements inside the graph and also externally via the get and set parameters outlined below. This

enables various systems and your own scripts to feed data to the motion graph that it can use to drive and influence the character

movement.

Motion data are used inside the graph, but cannot be changed directly from outside. These values are used for things like speeds

that are consider

ed more constant than parameters. You can, however, create override assets which can be attached to the graph

at runtime and then

Parameters

Parameters
Parameters
h

jump

jumpCharge

Motion Data

trigger

transform

transform

Parameters are accessible through the motion graph editor by clicking the Parameters tab in the motion graph editor side-bar.

To add a new parameter click the + button on the list and select the type from the dropdown.

To remove a parameter select the relevant entry and click the - button on the list.

To edit a parameter use the fields in the relevant entry. The text field on the left is the desired name for the parameter. This should
be unique to this parameter or only the first entry in the list with that name will be accessible. On the right side of the name is the

default starting value. This is the value the parameter will have on initialisation and whenever it is reset.

The following parameter types are available:

NAME

Integer

Float

Switch

Trigger

Transform

Vector

Event

DESCRIPTION

The integer parameter is a decimal value.

The float parameter is a floating point value.

The switch parameter is a boolean value. It can be toggled and blocked.

The trigger parameter is a one off trigger. It will be reset when it is consumed in the graph. It can also be blocked.

The transform parameter is a reference to a Transform component.

The vector parameter is a Vector3 value.

The event parameter is a C# event that can be invoked from inside the graph and subscribed to from outside.

https://docs.unity3d.com/Manual/class-Transform.html

For parameters that can be blocked, they will always return their default value as long as there are blockers. Use
SwitchParameter.AddBlocker() to add a blocker to a switch parameter, and SwitchParameter.RemoveBlocker() to remove a

blocker. The parameter will be blocked when the number of blockers is not 0. Be careful to remove any blockers you add when no

longer needed.

Parameter jump

Parameters are referenced from within the graph using dropdowns. The user can choose to select None, Create New (another
way to add a new parameter to the graph), or any of the relevant parameters attached to the graph.

Events

The event parameter is a useful parameter for interacting with external code from within a motion graph. They can be subscribed
and unsubscribed by using the EventParameter.AddListener (UnityAction listener) and

EventParameter.RemovelListener (UnityAction listener) methods.

You can invoke an event parameter from your own code using EventParameter.Invoke () or using a InvokeEventBehaviour

motion graph behaviour.

Motion Data

Parameters Motion Data

t

Motion data are accessible through the motion graph editor by clicking the Motion Data tab in the motion graph editor side-bar.
To add a new data entry click the + button on the list and select the type from the dropdown.
To remove a data entry select the relevant entry and click the - button on the list.

The Create Override Asset button will create a new MotionGraphDataOverrideAsset in the same folder as the edited motion
graph and with the same name.

Strafe Multiplier <lNone Selected>

(8B

Value -]

Various properties on graph states or behaviours can be assigned a motion data value using a dropdown as above. The user can
choose to select None, Create New (another way to add a new motion data entry to the graph), or any of the relevant motion
data entries attached to the graph. If the dropdown is set to None then a separate Value field will be visible below. In simple
cases you can use this value directly, but setting the property to a motion data entry allows you to share a single data entry across
multiple properties, and also to override from an asset later.

Accessing Parameters

Parameters are accessed from the motion graph root object. They can be set directly with the following methods:

int MotionGraphRoot.GetInt (string parameterName);

int MotionGraphRoot.GetInt (int hash);

void MotionGraphRoot.SetInt (string parameterName, int value);
void MotionGraphRoot.SetInt (int hash, int value);

float MotionGraphRoot.GetFloat (string parameterName);

float MotionGraphRoot.GetFloat (int hash);

void MotionGraphRoot.SetFloat (string parameterName, float value);
void MotionGraphRoot.SetFloat (int hash, float value);

bool MotionGraphRoot.GetSwitch (string parameterName);

bool MotionGraphRoot.GetSwitch (int hash);

void MotionGraphRoot.SetSwitch (string parameterName, bool value);
void MotionGraphRoot.SetSwitch (int hash, bool value);

Transform MotionGraphRoot.GetTransform (string parameterName);

Transform MotionGraphRoot.GetTransform (int hash);

void MotionGraphRoot.SetTransform (string parameterName, Transform value);
void MotionGraphRoot.SetTransform (int hash, Transform value);

void MotionGraphRoot.SetTrigger (string parameterName);
void MotionGraphRoot.SetTrigger (int hash);

void MotionGraphRoot.AddEventListener (string parameterName, UnityAction listener);
void MotionGraphRoot.AddEventListener (int hash, UnityAction listener);

void MotionGraphRoot.RemoveEventListener (string parameterName, UnityAction listener);
void MotionGraphRoot.RemoveEventListener (int hash, UnityAction listener);

Passing a string parameter for parameterName is more convenient, but performance can be increased by storing a hash of the
string and using that instead. You can generate a hash using Unity's Animator.StringToHash (string input) method. This is

similar to the way you would access a parameter in an animator controller graph.

If you plan to access a parameter multiple times then the most efficient way to do so is to store a reference to the parameter itself.

You can do this using the following methods:

IntParameter MotionGraphRoot.GetIntParameter (string parameterName);
IntParameter MotionGraphRoot.GetIntParameter (int hash);

FloatParameter MotionGraphRoot.GetFloatParameter (string parameterName);
FloatParameter MotionGraphRoot.GetFloatParameter (int hash);

SwitchParameter MotionGraphRoot.GetSwitchParameter (string parameterName);
SwitchParameter MotionGraphRoot.GetSwitchParameter (int hash);

TransformParameter MotionGraphRoot.GetTransformParameter (string parameterName);
TransformParameter MotionGraphRoot.GetTransformParameter (int hash);

TriggerParameter MotionGraphRoot.GetTriggerParameter (string parameterName);
TriggerParameter MotionGraphRoot.GetTriggerParameter (int hash);

VectorParameter MotionGraphRoot.GetVectorParameter (string parameterName);
VectorParameter MotionGraphRoot.GetVectorParameter (int hash);

EventParameter MotionGraphRoot.GetEventParameter (string parameterName);
EventParameter MotionGraphRoot.GetEventParameter (int hash);

This is also the way that the included motion graph elements reference parameters. If you plan to expand on the motion graph
with your own custom elements then there are a number of GUI helpers available that simplify adding custom parameter and
data selectors to inspectors. For more information see Extending the Motion Graph.

See Also

The Motion Graph
The Motion Graph Editor

Extending the Motion Graph

https://docs.neofps.com/manual/extend-motiongraph.html
https://docs.neofps.com/manual/extend-motiongraph.html

Motion Graph Ladders

Overview

Ladders have been an ubiquitous part of the first person shooter genre, with a huge range of implementations. Many FPS ladders

are hacky workarounds for what is a surprisingly complex problem, and a poor implementation can often stand out.

NeoFPS attempts to set a standard for first person shooter ladders. They come in 2 flavours: contact ladders and interactive

ladders, but both share the same underlying system.

Contact Ladders

Contact ladders are climbed automatically as soon as the player character touches them. They often allow the player to climb
sideways across the ladder, dropping off if they pass the edge. They also allow the player to turn a full 360 degrees while on the
ladder without any look constraints.

Contact ladders are often used in fast paced shooters where flow is much more important than realism.
For more information see the ContactLadder reference.

Interactive Ladders

Interactive ladders require the player to look at and use the ladder and attach to it. Once attached, the character is constrained to
moving up and down the ladder until they reach the ends, let go (by interacting again) or jump off.

Interactive ladders are more restrictive than contact ladders, keeping the character fixed to one axis of movement. They can also
constrain the camera, blocking the camera from turning too far away from the ladder if at all. Because of these features they are
often used in more realistic games or in games where pacing needs to be more controlled.

For more information see the InteractiveLadder reference.

Ladder Implementation

In NeoFPS ladders have 2 elements. The ladder surface itself, and a wrap around at the top of the ladder.

These sections are inflated from the ladder geometry by the character's radius. The system then moves a point at the bottom
center of the character collider around in this "ladder space".

This system has 2 benefits: Firstly, it is easy to stick the character to the shape, making climbing consistent both part way up the
ladder and also at the top of the ladder where some implementations can have difficulty registering contact. Secondly, the look
direction can be judged in ladder space instead of world space.

By calculating look direction in ladder space, it means that a character at the top of a ladder and looking forwards is actually
looking up the ladder. This makes changing climb direction based on aim much more intuitive than if the character had to look
straight up in this situation. Another example is if the player approaches a ladder from the top. Walking forwards while looking at
the edge will walk down the ladder. Looking away from the edge and slightly down will still be considered looking up the ladder
in ladder space, so walking backwards will climb down the ladder as expected.

See Also

ContactLadder
InteractiveLadder

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

Motion Graph Moving Platforms

Overview

A moving platform is a kinematic or dynamic rigidbody that the player can stand on. The player will move and rotate with the

moving platform.

For a demonstration of the moving platforms, you can check out the sample scene.

How To Set Up A Moving Platform

Creating a moving platform is relatively simple. The key things that need setting up correctly are the rigidbody and the object

layers.

https://docs.unity3d.com/Manual/class-Rigidbody.html

1. Scene Heirarchy
MovingPlatform
Render
2. Moving Platform Object
B ¥ MovingPlatform
b Tag Untagged ¢! Layer |MovingPlatferms

Transform
Position
Rotation

[y

® VBox Collider

v | Edit Collider

Material None (Physic Material)
Center 1] Y

i Rigidbody

Mass

Crag

Angular Drag

Use Grawity

Is Kinematic

Interpolate Interpolate
Collision Detection Discrete
Constraints

H + Simple Moving Platform (Script)

*osition
nent Duration
use Duration

3. Render Geometry
B F Render
-
Tag | Untagged - viranmentDetail

Transform
Position ¥ 0 f
Rotation i f

Scale ® f

B Demo Facility_Prop_Moving Platform Horiz (Mesh Filter)
Mesh M DemoFacility_Prop_MovingPlatformHoriz

! + Mesh Renderer
Lighting
Light Probes Blend Probes

Anchor Override None (Transform)

a In Deferred Shading, all

Cast Shadows

Per Object Motion

Lightmap Static

Materials
1
Element 0 ® MAT_DemoFacilityPalette
Dynamic Occluded v
B Z Mesh Collider

Convex

oking Options Mixead ...

Material None (Physic Material)

Mesh M DemoFacility_Prop_MavingFlatformHoriz

MAT _DemoFacilityPalette

Shader |Standard

In the above image there are 2 objects. The first is the physical platform that the character interacts with. This uses one or more
primitive colliders to define a rough shape and should be set to use the Moving Platform layer. It also requires an object that
derives from the IMovingPlatform interface or BaseMovingPlatform abstract class. These communicate with the
NeoCharacterController to smoothly move the character. Moving platform movement should always be handled through the
Rigidbody move and rotate methods. NeoFPS relies on rigidbody interpolation to get smooth interpolation between the fixed
update frames. You should use Rigidbody.MovePosition() and Rigidbody.MoveRotation() instead of setting the position and

rotation directly. If you don't do this, then the platforms will appear to stutter when you ride them.

The second object is the render geometry. This should be set to use the EnvironmentDetail layer and the collider should match

the render geometry as closely as possible.

When a character is in contact with the moving platform it will match any change of position or rotation of the platform each

frame. Any character movement will be additive on top of this.

Example Moving Platform Behaviours

NeoFPS comes with the following moving platform types already implemented, though it is easy to add more with scripting:
NAME DESCRIPTION

The SimpleMovingPlatform behaviour is used to create a platform that moves between 2 points at set

SimpleMovingPlatform .
intervals.

SimpleRotatingPlatform The SimpleRotatingPlatform behaviour is used to create a platform that rotates at set intervals.
ConstantRotatingPlatform The ConstantRotatingPlatform behaviour is used to create a platform that constantly turns at a set rate.

The DrivenMovingPlatform behaviour is added to a rigidbody that is driven by physics or a script and turns it

DrivenMovingPlatform . . - . .
g into a moving platform. See the above note on rigidbody interpolation.

The WaypointMovingPlatform behaviour is used to create a platform that moves between a set of waypoints

W intMovingPlatf . .
aypointiviovingriatiorm in sequence or directly.

The ElevatorMovingPlatform behaviour is used to control the movement of an elevator cab. It is attached to

ElevatorMovingPlatform . Lo .
9 the kinematic rigidbody that acts as the elevator cab or platform, and moves the character smoothly with it.

See Also

NeoCharacterController
The Motion Graph

The Motion Graph Editor

https://docs.unity3d.com/Manual/class-Rigidbody.html

Motion Graph Swimming

Overview

Swimming in NeoFPS is broken down into 3 sets of states: surface, underwater, and wading. The motion graph has the flexibility
to craft a range of swimming movement styles using any of those states, while controlling things like capsule height and camera
effects using the various graph behaviours.

Water Zones

Water zones are used in the scene to define a volume that the character can swim in. The BasicWaterZone behaviour is placed on
an object with a trigger box collider and will notify any character that enters it.

The water zone provides the motion graph with details of the water surface height and normal, as well as the flow velocity, at a
specific point.

The BasicWaterZone simply returns the top face of the attached box collider, along with a constant flow vector. More complex

water zone behaviours can be created by inheriting from the Iwaterzone interface. This requires the following methods:

Vector3 FlowAtPosition(Vector3 position);
WaterSurfaceInfo SurfaceInfoAtPosition(Vector3 position);

Surface Swimming

The surface swimming states will try to keep the character's head at a certain height above the water surface. If the surface level
rises too fast, or the character is already moving up/down too quickly, then the head can breach the water's surface. In this case,
you can use the Water MotionGraphCondition to check the submerged depth of the character and transition into an underwater
state.

The available surface swimming states are:

e SwimSmoothSurfaceState which moves smoothly along the water surface
e SwimStrokeSurfaceState which moves in pulses to simulate swimmming strokes. The pulse frequency is based on

movement direction.

Underwater Swimming

The underwater swimming states move in the direction of the character's aim (including pitch), while jump and crouch are used to
move straight up and down.

The available underwater swimming states are:

e SwimSmoothUnderwaterState which moves smoothly
e SwimStrokeUnderwaterState which moves in pulses to simulate swimmming strokes. The pulse frequency is based on
movement direction, while jump/crouch driven movement is smooth.

Wading

The Wading state is a variation of the Movement state which is used for walking and swimming. It changes the target speed based
on how much of the character is below the water surface.

Drowning

Drowning can be implemented simply by recording the time spend in underwater states in a float parameter on the graph and
acting based on its value. The DrowningMotionGraphWatcher monobehaviour is attached to the character and applies damage

once a parameter reaches a certain value and at set increments therafter.

Future Development

The current implementation of swimming in NeoFPS should be considered version 1. Version 2 will extend this with extra features
and behaviour such as:

Swimming hand animations

Options to prevent shooting while underwater
Audio effects

Waves

Better underwater visuals and post-processing
Bouyancy and bouyant objects

Better handling of multiple overlapping water zones

See Also

The Motion Graph

The Motion Graph Editor

Motion Debugger

Overview

Min: 0.000

Sho
Frame

Output
Motion State ! Falling Sprint
Motion S ype te Fallin

0.114, 0.000)

Input
(0,000, -0.110, 0.000) (0,000, -0.114, 0.000)

unded=

Parameters

The motion debugger is use to help diagnose unexpected and unwanted movement behaviour by the NeoFPS Motion Graph. It
allows you to chart movement details in real time, pause, and focus in on a specific moment to inspect the input and output of the
motion graph and NeoCharacterController

Accessing The Motion Debugger

The motion debugger can be found in the menus at Tools/NeoFPS/Motion Debugger or via the Attach Debugger button on the
[MotionController][3] component attached to the character. If the character is in the scene and the game is playing then this
button will attach the selected character to the debugger and start recording its movement data. Alternatively, you can select
Attach Automatically at the top of the motion debugger, and it will attach to the local player character whenever it spawns.

Each time a new character is attached to the debugger, it resets the recorded data, so if the problem movement results in the
death of the character then you will either need to pause the game before the character respawns, or disable the automatic
attachment.

Output Graph

The graph will chart the value selected in the Graph Readout dropdown just above. Values are recorded regardless of whether

they are displayed, so changing this value does not reset the graph.

The vertical axes of the graph will resize dynamically based on the minimum and maximum value recorded in the time range.
These min and max values are displayed to one side of the graph.

If the game is paused or play mode has ended, then you can click and drag on the graph to inspect a specific frame. The selected
frame number along with the charted value at that point will be displayed alongside a vertical marker showing your position on
the graph.

Scene View Ghost

Scrubbing the graph while the game is paused will show a representation of the character at that frame in the scene view. You can
use this to help find the exact point that the character did something unexpected, and then use the readout values to diagnose the
problem. Due to the way that Unity draws object gizmos in the scene, this can only be done in pause mode and not after exiting
play mode to editor mode, though the recorded values will persist until a new character is attached to the debugger.

Readout

Underneath the graph is a readout of the various variables for the current frame and previous frame. You can filter which values
are visible using the Show Details dropdown at the top of the list.

Output

The outputs are the values the motion graph sent to the NeoCharacterController on the inspected frame. This includes the state,
target move vector and whether gravity and ground snapping should be applied.

Inputs

These are the variables the NeoCharacterController provided to the motion graph to base its decisions from. Most of these are the
result of the previous frame's movement.

Parameters

These are the values of the motion graph parameters at the point the output was sent to the NeoCharacterController. These can
help diagnose which of the conditions were valid that frame, though bear in mind that these can be modifed by the conditions
and behaviours on the graph, as well as external sources.

See Also

ContactLadder

InteractiveLadder

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

Adaptiveletpack MotionGraphState

Overview

The Adaptiveletpack state adds an upward force to the character while allowing some control over direction.

Inspector

Type Jetpack (Adaptive)

Parameters

Properties

NAME
Jetpack Fuel
Jetpack Force

Horizontal
Acceleration

Top Speed
Strafe Multiplier

Reverse Multiplier

Mode

jetpackFuel

TYPE

FloatParameter

FloatData

Float Data

Float Data

Float Data

Float Data

Dropdown

DESCRIPTION

An optional parameter for the jetpack fuel. Will be consumed based on output.

An acceleration force (ignores mass) upwards for the jetpack

The input driven acceleration while falling. This can either be set as a value, or by referencing a
float data entry.

The top horizontal movement speed (for keyboard input or max analog input). This can either be
set as a value, or by referencing a float data entry.

The multiplier applied to the max movement speed when strafing. This can either be set as a
value, or by referencing a float data entry.

The multiplier applied to the max movement speed when moving in reverse. This can either be
set as a value, or by referencing a float data entry.

How the jetpack should work. Smooth reduces power as approaching the max vertical speed.
Burst sets a minimum jetpack burst duration and gap between bursts to create a bouncier
hover.

NAME

m_MaxVerticalSpeed

m_SpeedFalloff

m_Hysteresis

m_FuelBurnRate

m_FuelDamping

m_MinFuelBurn
Clamp Speed

Damping

See Also

The Motion Graph

TYPE

Float

Float

Float

Float

Float

Float

Boolean

Float

The Motion Graph Editor

Motion Graph States

DESCRIPTION

The maximum vertical speed, at which the jetpack stops pushing upwards. A speed of zero is
hovering.

The speed below the max at which jetpack power (and fuel consumption) starts to fall off. The
power will fade out exponentially the closer you get to the max speed. Only shown if the "Mode"
dropdown is set to Smooth.

A speed differential where the jetpack will switch on/off. Max + half this = off. Max - half this =
on. Only shown if the "Mode" dropdown is set to Burst.

The amount of fuel burned per second at full burn. Only shown if the "Jetpack Fuel" parameter is
not null.

A damping amount for the fuel consumption to smooth it out. Set to zero for direct feedback.
Only shown if the "Jetpack Fuel" parameter is not null.

The fuel burn rate when at the target speed, as opposed to accelerating towards it. Only shown
if the "Jetpack Fuel" parameter is not null.

Should the speed of the character decelerate to top speed.

The amount of damping to apply when changing direction.

AnimCurveDash MotionGraphState

Overview

The AnimCurveDash state is a simple movement state that layers a directional dash with speed based on an animation curve, on

top of a basic movement system. This gives a lot of control over the feel of the dash, and also allows the player to have some

control over the exit speed and dash distance.

Inspector

Properties

NAME

Dash Speed

m_MaxControlSpeed
Strafe Multiplier

Reverse Multiplier

Acceleration

Dash Direction

Dash Angle

Dash In Time

TYPE

FloatData

FloatData

Float Data

Float Data

Float Data

Dropdown

Float

Float

7]
Inspect

DESCRIPTION

The target speed for the dash to reach. This will be layered on top of the control speed.

The maximum speed the character can reach under motor control (driven by input). The dash velocity
will be layered on top of this.

The multiplier applied to the max movement speed when strafing. This can either be set as a value, or
by referencing a float data entry.

The multiplier applied to the max movement speed when moving in reverse. This can either be set as
a value, or by referencing a float data entry.

The input driven acceleration.

The direction to base the dash off. This can be Yaw Relative or Move Relative.

The angle offset for the dash direction. For example, yaw relative and an angle of 90 will dash to the
right. -90 will dash to the left.

The amount of time it takes to reach the dash speed. At this point, the animation curve kicks in to
ease out of the dash. A Dash In Time of 0 is instant.

NAME TYPE
Dash Out Time Float
Dash Out Curve Animation
Curve
Apply Gravity Boolean
Control Damping Float

See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

DESCRIPTION

The amount of time it takes for the animation curve kicks to ease out of the dash.

The ease out curve for the dash velocity. This should start at 1. Dipping below zero will mean the
dash is moving backwards.

Should the character fall with gravity during the dash.

The amount of damping to apply to the controlled velocity when changing direction.

https://docs.unity3d.com/Manual/EditingCurves.html

AnimCurveWallDash MotionGraphState

Overview

The AnimCurveWallDash state is a simple movement state that layers a directional dash with speed based on an animation curve,
on top of a basic movement system. This gives a lot of control over the feel of the dash, and also allows the player to have some

control over the exit speed and dash distance.

Inspector

ash (Anim Curve) [

Ungrounded Inspect

Anim-Curve Wall Dash

wallMormal

Properties
NAME TYPE DESCRIPTION
Dash -
speed FloatData The target speed for the dash to reach. This will be layered on top of the control speed.
Wall
Normal Vector Parameter The wall normal parameter, as used by the wall run states.
Dash In Float The amount of time it takes to reach the dash speed. At this point, the animation curve kicks in to
Time ease out of the dash. A Dash In Time of 0 is instant.
Dash
Out Float The amount of time it takes for the animation curve kicks to ease out of the dash.
Time
Dash L . . L .
out [Animation Curve] The ease out curve for the dash velocity. This should start at 1. Dipping below zero will mean the
[unity-animationcurve] dash is moving backwards.
Curve
Ya N . S
.W Should the yaw direction of the character be turned if the character must change directions to curve
With Boolean
Curve with the wall. It's easy to become disoriented with this disabled.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

BoostPad MotionGraphState

Overview

The BoostPad state is a simple one frame movement state which sets the character's velocity to the velocity vector scaled.

Inspector

Boost Pad

jumpPad

<HMone Selected>

ak

Properties
NAME TYPE DESCRIPTION
Boost VectorParameter The movement velocity to appl
Vector y 1o appy.-
Boost How the boost vector is applied to the character. Options are: Absolute sets the character velocity,
Mode Dropdown Additive adds the boost to the character velocity, MaintainPerpendicular sets the velocity in the

direction of the boost, but keeps any velocity along the plane perpendicular to the boost.

Multiplier FloatData A multiplier for the movement velocity.

See Also

The Motion Graph
The Motion Graph Editor
Motion Graph States

[MotionControllerData ScriptableObject][6]

ConstantMove MotionGraphState

Overview

The ConstantMove state accelerates to a set velocity and then maintains it indefinitely.

Inspector

tractorBeam

List is Empty

Properties
NAME TYPE DESCRIPTION
Move Direction VectorParameter A vector parameter used to define the direction in world space.
Move Speed FloatData The target movement speed. This can also be negative to move back along the direction vector.
Acceleration FloatData The maximum acceleration.
Damping Float The amount of damping to apply when changing direction or speed.
See Also

The Motion Graph
The Motion Graph Editor
Motion Graph States

[MotionControllerData ScriptableObject][6]

ContactLadder MotionGraphState

Overview

The contact ladder state handles climbing up and down physics ladders. As soon as the character walks into one of these ladders,
the ladder TransformProperty will be set. You should set up an in-bound connection to this state with a TransformCondition that

checks if the property is not null, and an outbound connection with another that checks if the property is null.

The character can exit the ladder by jumping or moving past the ladder limits (horizontal and vertical). Doing either of these will

set the ladder TransformProperty to null and the state completed flag to true.

Inspector

&
R Inspect
Contact Ladder

contactladder

Selectad=
e Selacted>
Selectad=

e Selectad=

List is Empty

Add Behaviour

Properties
NAME TYPE DESCRIPTION
Transform . .
Parameter TransformParameter The transform parameter on the graph that is used to attach to ladder transforms in the scene.
Climb Float Data The maximum climb speed (based on input and aim). This can either be set as a value, or by
Speed referencing a float data entry.
Ground Float Data The top movement speed with ground under foot (top and bottom of the ladder). This can either be
Speed set as a value, or by referencing a float data entry.
Strafe Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value,
Multiplier or by referencing a float data entry.
Reverse Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set
Multiplier as a value, or by referencing a float data entry.

Acceleration Float Data The maximum acceleration. This can either be set as a value, or by referencing a float data entry.

NAME TYPE DESCRIPTION

Should the direction of the camera aim influence the vertical move direction?
® IgnoreAimer = No

Use Aimer e AimerAbsolute = Direction of aim changes direction of move
Vv Dropdown ® AimerSmooth = Direction of aim changes direction and speed of move

e AimerHeading = Direction and speed based on yaw only (factors in both input axes)

e AimerAllAxes = Direction and speed based on yaw and pitch (factors in both input axes)
Center Float For AimerAbsolute, the angle past the horizontal you need to aim to flip directions. For
Zone AimerSmooth or AimerAllAxes, the angle past the horizontal that reaches full speed.

Should the camera aim influence the horizontal move direction?

® IgnoreAimer = No
Use Aimer ® AimerAbsolute = Direction of aim changes direction of move
H Dropdown e AimerSmooth = Direction of aim changes direction and speed of move

e AimerHeading = Direction and speed based on yaw only (factors in both input axes)

e AimerAllAxes = Direction and speed based on yaw and pitch (factors in both input axes)

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

ControlledJetpack MotionGraphState

Overview

The ControlledJetpack state adds an upward force to the character while allowing some control over direction.

Inspector

<Meone Selected=

=[ane Selectad=

Properties

NAME TYPE
Jetpack Power FloatParameter
Jetpack Force FloatData
Hori

orlzontz?l Float Data
Acceleration
Top Speed Float Data
St

raf? . Float Data
Multiplier
R

ever S? Float Data
Multiplier
Clamp Speed Boolean
Damping Float

See Also

DESCRIPTION

An optional parameter that acts as a multiplier for the jetpack force (0.5 is half power, etc)..

An acceleration force (ignores mass) upwards for the jetpack

The input driven acceleration while falling. This can either be set as a value, or by referencing a
float data entry.

The top horizontal movement speed (for keyboard input or max analog input). This can either be set
as a value, or by referencing a float data entry.

The multiplier applied to the max movement speed when strafing. This can either be set as a value, or
by referencing a float data entry.

The multiplier applied to the max movement speed when moving in reverse. This can either be set as
a value, or by referencing a float data entry.

Should the speed of the character decelerate to top speed.

The amount of damping to apply when changing direction.

The Motion Graph
The Motion Graph Editor

Motion Graph States

Dash MotionGraphState

Overview

The Dash state is a simple movement state that surges in a specific direction. The direction can be based off the character's yaw

forward or the direction it is currently moving, along with an angle offset.

Once the dash has attempted to move a specific distance it will signal completion.

Inspector

Yaw Relative

Properties
NAME TYPE DESCRIPTION
Dash Speed FloatData The target speed for the dash to reach.
Dash .
FloatData The acceleration to reach the target dash speed.

Acceleration

Dash Distance FloatData The distance to dash before the state completes.
Dash L . . .
Direction Dropdown The direction to base the dash off. This can be Yaw Relative or Move Relative.
Dash Angle Float The aTngIe offset for the dash direction. For example, yaw relative and an angle of 90 will dash to the right. -
90 will dash to the left.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

Dodge MotionGraphState

Overview

The dodge state adds a simple directional impulse to the character for a single tick and then sets its completed flag. You should

add an out-bound connection from this state that uses the CompletedCondition, connecting to an airborne state.

Inspector

7]
Root Inspect

Dod qge

dodgeDirection

<Meone Selected=

10

List is Empty

Add Behaviour

Properties
NAME TYPE DESCRIPTION
Vertical Speed Float Data The vertical dodge speed. This can either be set as a value, or by referencing a float data entry.
Horizontal
speed Float Data The horizontal dodge speed. This can either be set as a value, or by referencing a float data entry.

The dodge direction is a simple compass heading relative to the character's forward direction. It is set
in one of the graph properties and conforms to the following:
1. North
North East
East
South East
South
South West
West
North West

Dodge Direction
Parameter

IntParameter

© N VAW

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

Falling MotionGraphState

Overview

The falling state behaves as the name suggests, but provides some level of control when in the air.

Inspector

on Data

celeration

Properties

NAME

Horizontal
Acceleration

Top Speed

Strafe Multiplier

Reverse
Multiplier

Clamp Speed

Damping

See Also

The Motion Graph

TYPE

Float
Data

Float
Data

Float
Data

Float
Data

Boolean

Float

Motion Graph States

Inspect

DESCRIPTION

The input driven acceleration while falling. This can either be set as a value, or by referencing a
float data entry.

The top horizontal movement speed (for keyboard input or max analog input). This can either be set as a
value, or by referencing a float data entry.

The multiplier applied to the max movement speed when strafing. This can either be set as a value, or by
referencing a float data entry.

The multiplier applied to the max movement speed when moving in reverse. This can either be set as a
value, or by referencing a float data entry.

Should the speed of the character decelerate to top speed.

The amount of damping to apply when changing direction.

Motion Graph Parameters And Data

Fly MotionGraphState

Overview

The Fly state is a simple noclip style flying style. The character moves based on their aim direction. Jump moves up, while crouch

moves down.

Inspector

Root Inspect

List is Empty

Properties
NAME TYPE DESCRIPTION
Jump Hold SwitchParameter The crouch hold parameter (used for flying up).
Crouch Hold SwitchParameter The crouch hold parameter (used for flying down).
Top Speed FloatData The top movement speed (for keyboard input or max analog input).
Strafe Multiplier FloatData The multiplier applied to the max movement speed when strafing.
Reverse Multiplier FloatData The multiplier applied to the max movement speed when moving backwards.
Up Down Multiplier FloatData The multiplier applied to the max movement speed when moving up/down.
Acceleration FloatData The maximum acceleration.

How does the camera pitch affect the movement. The available options are:
® Up Down Ignores means jump/crouch move straight up or down.
Pitch Mode Dropdown o Affects All Axes means that up/down are along the camera up axis.
® |gnore only takes yaw into account for all movement

Damping Float The amount of damping to apply when changing direction or speed.

See Also

The Motion Graph

The Motion Graph Editor

Motion Graph States

GrappleSwing MotionGraphState

Overview

The GrappleSwing state pulls the character towards a grapple point and swings as though tethered to it with a springy rope. One
option for setting the grapple point is by using the GrappleToolModule with the wieldable tools system

Inspector

Properties
NAME TYPE DESCRIPTION
Grapple Point VectorParameter The point in space that the grapple is tethered to.

Target Distance When entering the state, a target distance will be calculated based on multiplying the current

Float

Multiplier distance to the grapple point by this multiplier.
Min Distance Float Below this distance from the grapple point, the character will actually be pushed away.
Acceleration Per
Meter Float The acceleration towards the grapple point per meter distance above the target distance.
Max Accel Float The maximum acceleration towards the grapple point.

See Also

The Motion Graph
The Motion Graph Editor
Motion Graph States

GrappleToolModule

Impulse MotionGraphState

Overview

The Impulse state is a one frame state that adds or sets the character velocity. An example use is at the start of a crouch-slide to

add an instantaneous speed boost.

Inspector

Root
Impulse

crouchDashImpulse

Additive

List is Empty

Properties
NAME TYPE DESCRIPTION
Impulse VectorParameter The velocity impulse to apply.
Frame Of Dropdown The coordinate space to apply the impulse in. Options are Self and World
Reference P P PPy P P ’
Impulse Dropdown How should the impulse be applied. Additive will add the impulse velocity to the original velocity.
Mode P Replace Velocity will ignore the original velocity and use the impulse alone.
Ground . . .
Boolean If true, the impulse vector will be aligned onto the ground surface normal plane.

Constrained

See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

InteractiveLadder MotionGraphState

Overview

The InteractiveLadder state handles climbing up and down interactive ladders. These are ladders are simple obstacles until
interacted with, at which point the ladder TransformProperty will be set. You should set up an in-bound connection to this state
with a TransformCondition that checks if the property is not null, and an outbound connection with another that checks if the

property is null.

The character can exit the ladder by interacting with it again, jumping, or moving past the ladder limits. Doing any of these will set

the ladder TransformProperty to null and the state completed flag to true.

The state has various properties for how the character climbs the ladder, along with camera constraints.

Inspector

Root
Interactive Ladder

interactiveLadder

Aimer Up Down

15

v

Add Behaviour

Properties
NAME TYPE DESCRIPTION
Transform . .
Parameter TransformParameter The transform parameter on the graph that is used to attach to ladder transforms in the scene.
Climb Float Data The maximum climb speed (based on input and aim). This can either be set as a value, or by
Speed referencing a float data entry.

. The acceleration when on the ladder or attching / dismounting. This can either be set as a value, or
Acceleration Float Data .
by referencing a float data entry.

Should the direction of the camera aim influence the vertical move direction?
® IgnoreAimer = No

Use Aimer o
Vv Dropdown e AimerUpDown = Only direction
e AimerSmooth = Direction and speed
Center For AimerUpDown, the angle past the horizontal you need to aim to flip directions. For

Float . .
Zone AimerSmooth, the angle past the horizontal that reaches full speed.

NAME TYPE DESCRIPTION

How long is the character blocked from stepping straight off the ladder using up/down? For

Dismount . . ;
Dela Float example, if they attach to the top of the ladder then they should not immediately step off by
y pressing up.
Constrain If true, constrain the camera's horizontal rotation to a maximum range from looking directly at the
Boolean
Camera ladder.

The angle range (degrees) that the camera can turn from looking straight at the ladder (180 = 90

Look R Float . .
ook Range oa degrees to either side).

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

Jetpack MotionGraphState

Overview

The Jetpack state maintains horizontal velocity and adds an upward force.

Inspector

Jetpack

jetpackUpForce

Properties
NAME TYPE DESCRIPTION
Power FloatParameter An optional parameter that acts as a multiplier for the jetpack force (0.5 is half power, etc).
Force FloatData An acceleration force (ignores mass) upwards for the jetpack

See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

Jump MotionGraphState

Overview

The jump state adds a simple upward impulse to the character for a single tick and then sets its completed flag. You should add
an out-bound connection from this state that uses the CompletedCondition, connecting to an airborne state.

Inspector

Root
Jump

jumpic

on Data

m H-:—i-_:||'|t =[one Selectad=

Minimum Height
lue

d Influence

Properties
NAME TYPE DESCRIPTION
Charge The charge property is a float with value 0 to 1 that defines how high to jump. If no graph property is

FloatParameter . . .
Parameter selected, the jump will always be performed with full strength.

The height the player will jump when fully charged. Note: Changes to gravity or physics multiplier after

Maximum . . o . .
Height Float Data start will affect this. Also does not take step height into account. This can either be set as a value, or by
9 referencing a float data entry.

Minimum Float Data The smallest height the player will jump (at the equivalent of a zero tap - actually unattainable). This can
Height either be set as a value, or by referencing a float data entry.
Ground Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal. This
Influence can either be set as a value, or by referencing a float data entry.

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

JumpDirection MotionGraphState

Overview

The jump direction state adds a jump direction to the Jump state. You should add an out-bound connection from this state that
uses the CompletedCondition, connecting to an airborne state. This state should be replaced with the JumpDirectionV2 motion

graph state instead, as it gives more predictable results with analogue controllers.

Inspector

- Jump Directional
Parent Ungrounded
Type Jump (Directional)

Motion Data

<Meone Selected=
10

=lone Selaectad=

Influence
lue

this-=Falling

Properties
NAME TYPE DESCRIPTION
Jump Speed Float Data The instant speed of the jump.

Maximum Height Float Data The angle the jump direction will be tilted in the character input direction when input scale is 1.
Ground Influence Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal.

How should the velocity be applied. Available options are:
e Additive will add the jump velocity to the original velocity.
Velocity Mode Dropdown ¢ Absolute will ignore the original velocity.
® Minimum will boost the character velocity if it is less than the jump speed in the jump direction.

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

JumpDirectionV2 MotionGraphState

Overview

The JumpDirectionV2 state adds a jump direction to the Jump state. This version gives a more consistent result with analogue

controllers than the original JumpDirection motion graph state and should be used in its place.

Inspector

2. Jump Direc
]

Pa

Type Jump (Directional V2)

Motion Data

Influence

Minimum

Properties
NAME TYPE DESCRIPTION
Horizontal Speed Float Data The horizontal speed of the jump.
Vertical Speed Float Data The upward speed of the jump.

Ground Influence Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal.

How should the velocity be applied. Available options are:
e Additive will add the jump velocity to the original velocity.
Velocity Mode Dropdown ¢ Absolute will ignore the original velocity.
® Minimum will boost the character velocity if it is less than the jump speed in the jump direction.

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

MaintainVelocity MotionGraphState

Overview

The MaintainVelocity state is a utility state that simply moves the character at the same velocity as last frame. This will be affected

by collisions.

Inspector

Properties

NAME TYPE DESCRIPTION

Ground Snapping Boolean Should ground snapping be applied.

Apply Gravity Boolean Should gravity force be applied.

Ignore Platforms Boolean Should the character inherit movement from platforms it's touching.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

Mantle MotionGraphState

Overview

The Mantle state is used to climb a wall ledge onto its top surface. It is paired with the Climbable condition to test if a wall impact

is climbable.

Inspector

Root Inspect
Mantle

Wall Mormal wallMormal

Motion Data

Properties
NAME TYPE DESCRIPTION
Wall Normal VectorParameter The normal of the wall to climb. This value will be read from and written to each frame.
Wall Check The cast distance for the initial wall check. Using a motion data entry allows the value to be
. FloatData . . o
Distance shared with the Climbable condition.
Climb Speed FloatData The movement speed while climbing the surface.
Wall Collisi
M:sk ofiston LayerMask The collision mask to use when checking the wall normal.
Starting Speed . - .
ar |ng pee Float The climb speed multiplier (for the data value above) on entering the state.
Multiplier
Ending Speed
I\/rl‘ullt?sliefee Float The climb speed multiplier (for the data value above) on completing the ledge mantle.
Overshoot . .
. Float The distance to move past the edge onto flat ground before completing.
Distance
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

MatchTransform MotionGraphState

Overview

The MatchTransform state makes the character move as though it is attached to a transform in the scene. This allows you to sync

the character to animated cut-scenes or create complex on-rails movement systems for certain situations.

Inspector

"
Inspect

Parameters

Target Transform matchTarget

Match Transform Properties

ons
Out C ctions

List 15 Emipty

Properties
NAME TYPE DESCRIPTION
Target Transform

The transform to match to.
Transform Parameter

What transform components to match. Options are: Position (match the position but ignore rotation),

Matching PositionAndUp (match the position and keep the character up-vector aligned but ignore yaw),
Dropdown] L }
Mode PositionAndDirection (match position and yaw direction or heading, but maintain the character's up vector),
and All (match position, up vector and heading).
Blend In . . .
Time Float The time taken to blend from current position and velocity to match the transform.
Disable . . .
. Boolean Should collisions be disabled for the duration of the movement.
Collisions
See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

Movement MotionGraphState

Overview

The movement state handles basic ground based movement such as walking, sprinting and sneaking.

Inspector

Grounded

Movement

Properties
NAME TYPE DESCRIPTION
The top movement speed (for keyboard input or max analog input). This can either be set as a value,
Top Speed Float Data P . peed (y P g input)
or by referencing a float data entry.
Strafe Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value, or
Multiplier by referencing a float data entry.
Reverse Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set as a
Multiplier value, or by referencing a float data entry.
Acceleration Float Data The maximum acceleration. This can either be set as a value, or by referencing a float data entry.

The maximum deceleration (when no input is applied). This can either be set as a value, or by

Deceleration Float Data .
referencing a float data entry.

Slope Speed an optional slope speed curve which controls the movement speed on sloping surfaces. Without this,
SlopeSpeedCurve) .

Curve the character controller will handle the speed change automatically.

Gravity When to apply gravity to the resulting move vector. Options are: Always Apply, When Not
Dropdown

Mode Grounded and Never Apply.

Damping Float The amount of damping to apply when changing direction.

See Also

The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

SlopeSpeedCurve ScriptableObject

MoveToPoint MotionGraphState

Overview

The MoveToPoint state is used to move directly from the starting point to a target point with various interpolation options.

Inspector

o Point
Root
Move To Point

targetPosition

List 1s Empty

Properties
NAME TYPE DESCRIPTION
Target Vector .
g . The position to move to.
Position Parameter
Duration Float The time required to reach the target.
. The interpolation method from start to end. Options are: Linear, EaseOutQuadratic, EaseOutCubic,
Interpolation Dropdown .
Spring and Bounce.
Disable . . .
. Boolean Should collisions be disabled for the duration of the movement.
Collisions
See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

Null MotionGraphState

Overview

The null state is only used to branch to other states in the graph. The state always has the completed flag set, so it is best practice
to set the last outbound connection from this state to one that uses the CompletedCondition. This would act as a default

connection if none of the others are valid.

Inspector

Null
Parent Root
Type MNull

Connections

List 1s Empty

Add Behaviour

Properties

NAME TYPE DESCRIPTION

Name String The name of the state as visible in the graph viewport.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

PushOff MotionGraphState

Overview

The PushOff state is a one frame state which adds velocity based on a direction vector and can add an optional extra vertical

boost.

Inspector

Root
Push Off

wallMormal

=[one Selectad=

Properties
NAME TYPE DESCRIPTION
Push L . - . L
Direction VectorParameter The world direction to push in (you can fill this parameter using enhanced cast conditions).
Push Up FloatData An additional upward rotation applied to the push direction. Resulting direction won't rotate past
Angle up/down.
Push Speed FloatData The speed to along the rotated push direction.
Additive Boolean Should the resulting velocity be added to the original character velocity or replace it.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

Repulse MotionGraphState

Overview

The repulse state adds a simple directional impulse away from the repulsor transform to the character for a single tick and then
sets its completed flag. You should add an out-bound connection from this state that uses the CompletedCondition, connecting to

an airborne state.

Inspector

7]
Root Inspect

Repulse

Parameters
Repulsor Transform interactive
Motion Data

ladderdumpOff

v

Out Connections

this-=Movement

Add Behaviour

Properties
NAME TYPE DESCRIPTION
Repulsor . . .
Transform TransformParameter The transform parameter on the graph that is used to specify which transform to repulse from.
Nullify Transform Boolean Should the transform be nullified after use?
Repulsion Vector Vector3 The velocity vector to apply to the character relative to the repulsor transform.
Repulse Float Data A multiplier for the repulsion vector. This can either be set as a value, or by referencing a
Multiplier float data entry.
See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

Ski MotionGraphState

Overview

The Ski state maintains forward velocity and allows the player to steer left and right. Steering turn rate is based on movement

speed, with slower movement speed allowing turning in tighter circles.

Inspector

Root

List is Empty

Properties
NAME TYPE
Max Turn FloatData
Rate

Deceleration FloatData

Gravity

FloatDat
Effect oatata

See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

DESCRIPTION

The maximum turn rate in degrees per second.

A constant deceleration (meters per second squared) while skiing. Once the character speed reaches zero, the
state completes.

A multiplier for gravity which affects speed on slopes.

SteepSlide MotionGraphState

Overview

The steep slide state handles sliding down slopes that are too steep to walk on. The character has some degree of control while
sliding, but only in the horizontal direction. They can't affect the speed of the slide down the slope.

Inspector

7]
Root Inspect
Steep

inimum
Maximum
tion Minimum

tion Maximum

al Speed Limit

Acceleration

Out Connections

List is Empty

Add Behaviour

Properties

NAME TYPE DESCRIPTION

Float The angle above which a character loses motor control and is in pure slide mode. This can either be set as a value,

Slide Angle .

o Data or by referencing a float data entry.
Speed Float The sliding speed the character will reach (downwards only) at the lowest slope angle for a full slide. This can
Minimum Data either be set as a value, or by referencing a float data entry.
Speed Float The fastest possible sliding speed the character can reach (downwards only) during a near vertical slide. This can
Maximum Data either be set as a value, or by referencing a float data entry.
Acceleration Float The down-slope acceleration multiplier applied to a character during a shallow slide. This can either be set as a
Minimum Data value, or by referencing a float data entry.
Acceleration Float The down-slope acceleration multiplier applied to a character during a near vertical slide. This can either be set as
Maximum Data a value, or by referencing a float data entry.
Horizontal Float The top speed the character can reach against the slide (side to side).This can either be set as a value, or by
Speed Limit Data referencing a float data entry.
Horizontal Float The across slope accleration when trying to redirect slide sideways (0 is instant).This can either be set as a value,
Acceleration Data or by referencing a float data entry.

See Also

The Motion Graph
Motion Graph States

Motion Graph Parameters And Data

SwimSmoothSurfaceState MotionGraphState

Overview

The SwimSmoothSurfaceState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the

recovering.

Inspector

mSurface
Root
Swim Surface (Smooth)

ne Parameter waterZone

List is Empty

Properties
NAME TYPE DESCRIPTION
Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.
Swim Speed FloatData The top movement speed (for keyboard input or max analog input).
Acceleration FloatData The maximum acceleration.
Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.
Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving
backwards.
Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.
T t Head
Haeri?;t el Float A target for the distance the character capsule should be above the surface.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

SwimSmoothUnderwaterState MotionGraphState

Overview

The SwimSmoothUnderwaterState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the

recovering.

Inspector

Parameter

List is Empty

Properties
NAME TYPE DESCRIPTION
Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.
Jump Hold SwitchParameter A switch parameter which tracks if the jump button is held (swim up).
Crouch Hold SwitchParameter A switch parameter which tracks if the crouch button is held (swim down).
Swim Speed FloatData The top movement speed (for keyboard input or max analog input).
Acceleration FloatData The maximum acceleration.
Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.
Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving backwards.
Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.
Up Down Speed FloatData The maximum movement speed and acceleration due to up or down input.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

SwimStrokeSurfaceState MotionGraphState

Overview

The SwimStrokeSurfaceState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the

recovering.

Inspector

Inspect
Swim Surface (Stroke)

waterZone

Vultiplier

1 Multipli

Properties
NAME TYPE DESCRIPTION
Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.
Stroke Speed FloatData The top movement speed (for keyboard input or max analog input).
Acceleration FloatData The maximum acceleration.
Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.
The multiplier applied to the max movement speed and acceleration when movin
Reverse Multiplier FloatData P PP P 9
backwards.
Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.
Target Head Height Float A target for the distance the character capsule should be above the surface.
. The length of time a swimming stroke lasts (will be scaled by strafe / reverse
Stroke Duration Float . .g ! wimming (wi y /rev
multipliers).
. The length of time in between swimming strkes (will be scaled by strafe / reverse
Recovery Duration Float

multipliers).

Recovery Speed Multiplier Float A multiplier applied to the speed in between strokes.

NAME TYPE

Recovery Acceleration

Fl
Multiplier oat
Slow Input Time Scale Float
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

DESCRIPTION

A multiplier applied to the acceleration (and deceleration) in between strokes.

At the minimum input amount, how much slower are strokes and recovery.

SwimStrokeUnderwaterState MotionGraphState

Overview

The SwimStrokeUnderwaterState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the

recovering.

Inspector

Inspect

Properties
NAME TYPE DESCRIPTION
Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.
Jump Hold SwitchParameter A switch parameter which tracks if the jump button is held (swim up).
Crouch Hold SwitchParameter A switch parameter which tracks if the crouch button is held (swim down).
Stroke Speed FloatData The top movement speed (for keyboard input or max analog input).
Acceleration FloatData The maximum acceleration.
Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.
Reverse Multiplier FloatData 'It')f;ikr;::tc;?ier applied to the max movement speed and acceleration when moving
Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.
Up Down Speed FloatData The maximum movement speed and acceleration due to up or down input.
Stroke Duration Float The length of time a swimming stroke lasts (will be scaled by strafe / reverse

multipliers).

NAME
Recovery Duration

Recovery Speed Multiplier

Recovery Acceleration
Multiplier

Slow Input Time Scale

See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

TYPE

Float

Float

Float

Float

DESCRIPTION

The length of time in between swimming strkes (will be scaled by strafe / reverse
multipliers).

A multiplier applied to the speed in between strokes.

A multiplier applied to the acceleration (and deceleration) in between strokes.

At the minimum input amount, how much slower are strokes and recovery.

SwimSubmergeState MotionGraphState

Overview

The SwimSubmergeState state is used to transition from surface to underwater swimming while adapting to a moving water

surface (eg waves).

Inspector

Root

Swim Submerge

Properties

NAME TYPE DESCRIPTION

Water Zone Parameter TransformParameter The transform parameter which contains the transform of the water zone object.

Submerge Distance Float The distance below the surface of the water to submerge.
Duration Float The time to take while submerging (will be instant if already below submerge distance).
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

VerticalWallRun MotionGraphState

Overview

The VerticalWallRun state is used to make a character run up a wall when they run and jump into it. The state completes once the

upward speed reaches zero.
The VerticalWallRun state is often paired with the PushOff state, using the wall normal to jump away from the wall.

Inspector

Wall Run Up

Parent Ungrounded
Type Wall Run (Up)

wallMormal

=[ane Selectad=

Properties
NAME TYPE DESCRIPTION
Up Boost FloatData An upward speed boost applied when entering the state.
Max Boost Speed FloatData The upward speed can not be boosted above this value (though it can start higher than this).
Gravity Multiplier FloatData A multiplier that is used to reduce the effects of gravity when running up the wall.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

Wading MotionGraphState

Overview

The Wading state is a variation of the Movement state which slows the character down based on how much of their capsule is

below the water line.

Inspector

7]
Inspect

ne Parameter

1 Data

List is Empty

Properties
NAME TYPE DESCRIPTION
Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.
Name FloatData The multiplier for the standard movement speed when submerged to min speed depth.
Name Float The depth the character must be submerged to move at minimum speed.
Name Float The submersion depth of the character where their speed is not affected.
See Also

The Motion Graph
The Motion Graph Editor

Motion Graph States

WallRun MotionGraphState

Overview

The WallRun state sticks the character to a wall and runs along it. It maintains the horizontal velocity and reduces gravity so that
the character slowly moves down the wall. The state completes when the wall angles away from its initial plane, but you can also
use conditions to transition out for things like downwards velocity over a certain threshold or input away from the wall.

The WallRun state is often paired with the PushOff state, using the wall normal to jump away from the wall.

Inspector

- Wall Run Ac
]

P t Ungrounded
Type Wall Run

Parameters

Wall Mormal wallMermal

ion Data

Target Speed

Capped
vy
Out Connections
this

this-=Push Off Hard

Properties
NAME TYPE DESCRIPTION
Wall Normal VectorParameter The vector parameter containing the wall normal. This will be read and written to each frame.
Climb
Gravity FloatData A multiplier applied to gravity acceleration when moving up the wall.
Multiplier
Fall Gravit -
Multipliery FloatData A multiplier applied to gravity acceleration when moving down the wall.
Vertical The target vertical speed. Visible if Horizontal Mode is set to CappedBoost, Minimum or

FloatDat
Target oatbata FixedSpeed.

NAME

Vertical
Boost

Max Fall
Speed

Horizontal
Speed

Acceleration

Deceleration

Horizontal
Mode

Horizontal
Damping

Vertical
Mode

Cap Fall
Speed

See Also

TYPE

FloatData

FloatData

FloatData

FloatData

FloatData

Dropdown

Float

Dropdown

Boolean

The Motion Graph

The Motion Graph Editor

Motion Graph States

DESCRIPTION

An upward speed boost when first entering the state. Visible if Horizontal Mode is set to Vertical
Boost or CappedBoost.

The maximum downward speed the character can reach while wall running. This property is only visible
if Cap Fall Speed is set to true.

The target horizontal speed. Only visible if Horizontal Mode is set to TargetSpeed or
MinimumSpeed.

The acceleration up to the target speed. Only visible if Horizontal Mode is set to TargetSpeed or
MinimumSpeed.

The deceleration down to the target speed. Only visible if Horizontal Mode is set to TargetSpeed.

How the horizontal wall run speed is calculated. MaintainExisting keeps the horizontal speed from the
previous frame, TargetSpeed accelerates / decelerates to a set horizontal speed, MinimumSpeed
accelerates up to the minimum speed if falling below it, but does not decelerate if faster.

The amount of damping to apply when changing direction or speed. Only visible if Horizontal Mode
is set to TargetSpeed or MinimumSpeed.

How the vertical speed is calculated when entering the wall run. VerticalBoost adds an upward speed
boost, CappedBoost adds an upward boost up to a maximum vertical speed, Minimum raises the
vertical speed up to the minimum, MaintainExisting uses the vertical entry speed with no changes,
FixedSpeed sets the vertical speed to a specific value

Should the downwards fall speed be limited .

AddForce MotionGraphBehaviour

Overview

The AddForce behaviour adds a force to the character at specific points. This can have a variety of uses, but one key one is as an

alternative way to handle jumping that doesn't require interrupting other states like the jump motion state does.

Inspector

¥ 7 AddForceBehaviour
When On Enter

Parameter

Impulse

Properties
NAME TYPE DESCRIPTION
When Dropdown When should the force be added to the character. Options are OnEnter, OnExit and WhenTriggered.
Trigger Trigger A trigger that will be checked each frame, and the force applied if the trigger is set. This property is only visible
Parameter Parameter if "When" is set to WhenTriggered.
Force Vector

The f I he ch .
Parameter Parameter e force to apply to the character

Force Vector The force to apply to the character. This property is shown if a "Force Parameter" has not been chosen.

Force ForceMode How should the force be applied. Options are Force (takes mass and time into account), Impulse (takes mass

Mode into account), VelocityChange (mass and time are irrelevant), Acceleration (takes time into account).
See Also

NeoCharacterController

Motion Graph Parameters And Data

AnimatorinputVector MotionGraphBehaviour

Overview

The AnimatorinputVector behaviour outputs the current move input of the character to animator controller parameters for use in

blend trees.

Inspector

odyAnimator

Properties
NAME TYPE DESCRIPTION
. Transform . L.
Animator Transform Parameter A parameter that points to the transform of the character's animator component.
Forward Param
Name String The animator parameter name the forward input value should be written to.
. The animator parameter name the strafe input value should be written to. (positive =
Strafe Param Name String . P P (p
right).
See Also

NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

AnimatorSpeed MotionGraphBehaviour

Overview

The AnimatorSpeed behaviour outputs the current move speed of the character to an animator controller parameter for use in

blend trees or clip speeds.

Inspector

dyAnimator

Properties
NAME TYPE DESCRIPTION
Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.
Speed Param Name String The animator parameter name the speed value should be written to.

See Also

NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

AnimatorVelocity MotionGraphBehaviour

Overview

The AnimatorVelocity behaviour outputs the current velocity of the character (in local space) to animator controller parameters

for use in blend trees.

Inspector

odyAnimator

e Param Mame

Properties
NAME TYPE DESCRIPTION
. Transform . L.
Animator Transform Parameter A parameter that points to the transform of the character's animator component.
Forward Param
Name String The animator parameter name the forward input value should be written to.
. The animator parameter name the strafe input value should be written to. (positive =
Strafe Param Name String . P P (p
right).
See Also

NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

BlockSwitchParameter MotionGraphBehaviour

Overview
The BlockSwitchParameter behaviour will block the specified switch parameter, meaning that it can only return false for the

duration of the block.

Inspector

o BlockSwitch

Properties

NAME TYPE DESCRIPTION

Parameter SwitchParameter The parameter to modify.

Whether to block or unblock the parameter on entering the state. Options are Block, Unblock, Nothing.

OnEnter Dropdown
OnEnter Dropdown Whether to block or unblock the parameter on exiting the state. Options are Block, Unblock, Nothing.
See Also

Motion Graph Parameters And Data

BlockTriggerParameter MotionGraphBehaviour

Overview

The BlockTriggerParameter behaviour will block the specified trigger parameter, meaning that it cannot fire. This is useful for

situations like preventing jump triggers while crouched.

Inspector

¥ 7 BlockTrigger

Properties

NAME TYPE DESCRIPTION

Parameter TriggerParameter The propery to modify.

Whether to block or unblock the parameter on entering the state. Options are Block, Unblock,

OnEnt Dropd
nEnter ropdown Nothing.
OnEnter Dropdown Whether to block or unblock the parameter on exiting the state. Options are Block, Unblock, Nothing.
See Also

Motion Graph Parameters And Data

BodyTilt MotionGraphBehaviour

Overview

The BodyTilt behaviour tilts the character based on the specified tilt mode. Some example uses are:

e [tis used in the parkour demo to tilt away from the wall by using the wall normal

e |tis also used in the parkour demo to tilt back when crouch sliding by setting the mode to velocity, and the tilt angle to
negative

e |tis used to add a bob to the swimming in the swimming demo by setting the mode to velocity

Inspector

BodyTilt

Properties
NAME TYPE DESCRIPTION
Tilt Angle Float The angle to tilt.

Normalised Tilt

Point Float The point on the character to tilt from. 0 is the bottom, 1 is the top.
How the tilt direction is calculated:

® Character Relative uses a vector parameter to specify a tilt vector relative to the character.
® World Space does the same but in world space.

Tilt Mode Dropdown ® Velocity tilts in thg direction _Of movement of the character. . o
® Velocity Lateral tilts left or right based on the speed of the character in those directions.
® |nput tilts based on the player input and the direction the character is facing.
® |nput Lateral tilts left or right based on the player input.

S Vector The direction to tilt in. This property is only shown if the tilt mode is set to Character Relative or
Direction Vector
Parameter World Space.

Velocity Based Boolean If set then the tilt angle will be based on the speed of the character.

Min Speed Float The speed below which the tilt angle will be 0.

Max Speed Float The speed above which the tilt will reach the full tilt angle specified above.

See Also

NeoCharacterController

Motion Graph Parameters And Data

CameraliggleSpring MotionGraphBehaviour

Overview

The CameraliggleSpring behaviour triggers the player character's camera jiggle spring additive effect with the supplied strength.

Inspector

gagleSpringBehaviour

Cn Enter

Jiggle Strength

Properties
NAME TYPE DESCRIPTION
Switch L . .
L SwitchParameter An optional switch condition that defines if the jiggle should be triggered.
Condition
Trigger N . .
Condition TriggerParameter An optional trigger condition that defines if the jiggle should be triggered.
When Dropdown When should the camera jiggle spring be triggered.
Andle Float The strength of the jiggle effect (max angle is set in the Additive Jiggle component on the camera
9 spring transform).
Angle Float Should the CW/CCW direction of the jiggle be chosen at random each time.
See Also

MotionController
Motion Graph Parameters And Data

Additive Transforms and Effects

CameraKickSpring MotionGraphBehaviour

Overview
The CameraKickSpring behaviour triggers the player character's camera kick spring additive effect with the supplied offset and

rotation.

Inspector

¥ Y CameraKickSpringBehav

On Enter

Kick Duration

Properties
NAME TYPE DESCRIPTION
Switch L . .
.. SwitchParameter An optional switch condition that defines if the kick should be triggered.
Condition
Trigger
Condition TriggerParameter An optional trigger condition that defines if the kick should be triggered.
When Dropdown When should the camera kick spring be triggered.
Position Vector3 The position offset for the camera at the strongest point of the kick. Keep these values small (cm, not
Kick meters) or you risk clipping scenery or weapon geometry.
Rotation Vector3 The rotation offset for the camera at the strongest point of the kick. Positive X nods forwards. Positive Y
Kick turns right. Positive Z tilts counter-clockwise.
Kick . .
. Float The amount of time the kick effect should last.
Duration
See Also

MotionController
Motion Graph Parameters And Data

Additive Transforms and Effects

CameraPulseFoV MotionGraphBehaviour

Overview

The CameraPulseFoV behaviour can apply a brief pulsed multiplier to the player camera's field of view. This is great for quick

acceleration and impact effects.

Inspector

CameraPulseFoVBehaviour

On Enter
152

0.5

Properties
NAME TYPE DESCRIPTION
When Dropdown When should the camera FoV pulse be triggered.
FovMultiplier Float The FoV multiplier to apply to the camera when the animation curve Y-axis is at 1.
PulseDuration Float The duration in seconds for the pulse to last.
PulseCurve Animation A curve for the strength of the pulse. X is normalised time. Y = 0 means the FoV is 1x (no effect), Y = 1
Curve means the FoV is the target FoV multiplier.
See Also

MotionController

Additive Transforms and Effects

https://docs.unity3d.com/Manual/EditingCurves.html

CameraShake MotionGraphBehaviour

Overview

The CameraShake behaviour adds a constant shake to the camera whilst in the current state or sub-graph. You can also use the

shake multiplier to fade in or out the effect over time.

Properties
NAME TYPE DESCRIPTION
Shake An optional float parameter to multiply the shake value by. This allows for increasing shake while
L FloatParameter .
Multiplier falling, etc.
Shake Float The strength of the jiggle effect (max angle is set in the Additive Jiggle component on the camera
Strength spring transform).
See Also

MotionController
Motion Graph Parameters And Data

Additive Transforms and Effects

ClampFloat MotionGraphBehaviour

Overview

The ClampFloat behaviour can be used to clamp a float parameter within a specific range. The clamp is applied every tick.

Inspector

¥ 7 ClampFloatParameter

Parameter rallRunTime
From i]
To 1

Properties
NAME TYPE DESCRIPTION
Parameter FloatParameter The parameter to modify.
From Float The minimum parameter value.
To Float The maximum parameter value.
See Also

Motion Graph Parameters And Data

Clamplnt MotionGraphBehaviour

Overview

The Clamplnt behaviour can be used to clamp a int parameter within a specific range. The clamp is applied every tick.

Inspector

¥ 7 ClampIntParameter

Parameter airJumpCeunt
From i]
Ta 2

Properties
NAME TYPE DESCRIPTION
Parameter IntParameter The parameter to modify.
From Float The minimum parameter value.
To Float The maximum parameter value.
See Also

Motion Graph Parameters And Data

ConstrainCameraPitch MotionGraphBehaviour

Overview
The ConstrainCameraPitch behaviour is used to constrain the player character's camera to a specific pitch range direction while

inside a motion state.

Inspector

Properties
NAME TYPE DESCRIPTION
Minimum Pitch Float The minimum angle the camera can look down.

Maximum Pitch Float The maximum angle the camera can look up.

See Also

MotionController

ConstrainCameraYaw MotionGraphBehaviour

Overview

The ConstrainCameraYaw behaviour is used to constrain the player character's camera to a specific yaw direction while inside a
motion state. An example is using the wall normal vector during a wall run to prevent the character turning into the wall (and to

turn when running along curving walls).

Inspector

vy strainCameraBehaviour

Properties

NAME TYPE DESCRIPTION

Direction VectorParameter The vector parameter to use as the constraint direction.

Angle Range Float The angle range to constrain to.

Flipped Boolean Flip the direction vector.

Continuous Boolean Should the constraints be updated each frame (if the vector parameter changes).
See Also

MotionController

Debug MotionGraphBehaviour

Overview

The Debug behaviour can be used to help understand when the motion graph enters or exits a specific state or sub-graph.

Inspector

¥ 7 Debug
2n Enter Me

On Exit Message
Log Elapsed Time

Properties

NAME TYPE DESCRIPTION

On Enter Message String A message to print to the console on entering the state or sub-graph.

On Exit Message String A message to print to the console on exiting the state or sub-graph.

Log Elapsed Time Boolean If set, prints the time spent in the state or sub-graph to the console on exiting it.

DisableCollider MotionGraphBehaviour

Overview
The DisableCollider behaviour will completely disable the character's CharacterController. This is useful in situations such as

scripted or animated movements where environment collisions could interfere.

Inspector
¥ 7 DisableCollider
On Enter
On Exit
Properties
NAME TYPE DESCRIPTION
On Enter Dropdown What to do to the character collider on entering the state. Options are: Enable, Disable, Nothing.
On Exit Dropdown What to do to the character collider on exiting the state. Options are: Enable, Disable, Nothing.
See Also

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html
https://docs.unity3d.com/Manual/class-CharacterController.html

DrainStamina MotionGraphBehaviour

Overview

The DrainStamina behaviour applies a constant stamina drain to a StaminaSystem attached to the character.

Inspector

DrainStamina

Input

mit Drain

Properties

NAME TYPE
Drain Rate Float

Scale By
Input

Boolean

Limit

. Boolean
Drain

Drain
Target

Float

Drain

Falloff Float

See Also

StaminaSystem

DESCRIPTION

The rate to drain the stamina at (bear in mind the stamina system also refreshes at a certain rate too, so these can
cancel out).

Should the controller's move input scale also scale the stamina drain.

Is there a lower limit that the behaviour will drain stamina to before the drain rate falls off. The following
properties will be exposed if this is true.

The minimum level that the behaviour can drain stamina to.

The stamina drain falls away to 0 as it approaches the target level, starting at this falloff value above it.

FootstepAudio MotionGraphBehaviour

Overview

The FootstepAudio behaviour plays footsteps based on the character speed and the ground surface below them.

Inspector

Properties
NAME TYPE DESCRIPTION
Audio Data SurfaceAudioData The surface audio library for the slide audio clips.
The direction to perform the footstep surface check. Available options are:
® Down casts downwards (based on the character up vector).
® LocalVector casts based on the Cast Vector property in local space.
® WorldVector casts based on the Cast Vector property in world space.
e WorldParameter casts based on the vector value of the Vector Parameter property in world
space.
Cast Direction Dropdown e WorldParameterInverse casts based on the flipped vector value of the Vector Parameter
property in world space.
® LocalParameter casts based on the vector value of the Vector Parameter property in local
space.
® LocalParameterinverse casts based on the flipped vector value of the Vector Parameter
property in local space.
Cast Vector Vector3 The direction to cast in for footstep surface checks.
Vector - N .
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.
Step Interval Float The interval between steps. Higher numbers mean the steps are further apart.
Minimum . L
Speed Float The speed below which no footstep audio will be played.
Maximum . . e
speed Float The maximum speed that the actual speed will be clamped to. Prevents rapid fire footsteps.
Max Ra
. y Float The downward raycast length for the ground surface test.
Distance
The vertical offset above the absolute bottom of the character collider to start the downward surface
Ray Offset Float
test.
See Also

SurfaceAudioData

Motion Graph Parameters And Data

ImpactDamage MotionGraphBehaviour

Overview

The ImpactDamage behaviour enables or disables character damage on impact when entering or exiting a state.

Inspector

« " ImpactDamage

Fall Damage
Cn Enter
On Exit

Body Impact Damage

On Enter

On Exit

Head Impact Damage

Cn Enter

On Exit Ignaore

¥ 7 ModifyCharacterVelocity
When Enter Only

Properties

NAME

Fall Damage On Enter

Fall Damage On Exit

Body Impact Damage On Enter
Body Impact Damage On Exit
Head Impact Damage On Enter

Head Impact Damage On Exit

See Also

TYPE

Dropdown

Dropdown

Dropdown

Dropdown

Dropdown

Dropdown

Motion Graph Parameters And Data

Health and Damage

DESCRIPTION

Should fall damage be enabled, disabled or unchanged on entering the state.

Should fall damage be enabled, disabled or unchanged on exiting the state.

Should body impact damage be enabled, disabled or unchanged on entering the state.

Should body impact damage be enabled, disabled or unchanged on exiting the state.

Should head impact damage be enabled, disabled or unchanged on entering the state.

Should head impact damage be enabled, disabled or unchanged on exiting the state.

InvokeEvent MotionGraphBehaviour

Overview

The InvokeEvent behaviour will invoke the specified event on entering the state, on exiting or both.

Inspector

¥ 7 InvokeEvent

Parameter onDodge
When On Enter

Properties

NAME TYPE DESCRIPTION

Parameter EventParameter The event parameter to invoke.

When Dropdown When should event be invoked. Options are EnterAndExit, EnterOnly, ExitOnly.
See Also

Motion Graph Parameters And Data

LadderAudio MotionGraphBehaviour

Overview

The LadderAudio behaviour is used to trigger audio cues when climbing a ladder. This works in a similar way to the footsteps

system, but based on movement along the ladder's up axis.

Inspector

LadderAudio

Properties

NAME
Audio Data
Ladder Transform
Spacing Multiplier

Minimum Speed

See Also

Ladders

SurfaceAudioData

TYPE

SurfaceAudioData

TransformProperty

Float

Float

DESCRIPTION

The surface audio library for the slide audio clips.

The transform property holding the ladder transform.

How many rungs apart to play a sound. This is based on the ladder spacing property.

The speed below which no audio will be played.

LockInventorySelection MotionGraphBehaviour

Overview
The LockinventorySelection behaviour will lock the character's inventory selection to the specified item until unlocked by an

UnlockinventorySelection behaviour.

Inspector

¥ 7 LockInventory

Properties
NAME TYPE DESCRIPTION
When Dropdown When should the inventory selection be set. Options are: OnEnter and OnExit.
What Dropdown What to lock the inventory selection to. Options are: Nothing, Backupltem and Slotindex
Slot Index Float The quick slot to lock the selection to.
See Also
Inventory

UnlockinventorySelection

LoopingAudio MotionGraphBehaviour

Overview

The LoopingAudio behaviour plays a looping audio clip from the specified source.

Inspector

¥ 7 LoopingAudio

Audio_Footsteps_Dirt_SlideLoop

Clip
Feet

Pitch

Properties
NAME TYPE DESCRIPTION
Clip [AudioClip][unity-audioclip] The looping audio clip to play.
Source FpsCharacterAudioSource The source ID to play from (generated constant).
Pitch Float The pitch of the loop.
See Also

Generated Constants

ModifyCharacterVelocity MotionGraphBehaviour

Overview

The ModifyCharacterVelocity behaviour can change the character controller's velocity in various ways on entering or exiting the

state.

Inspector

Properties
NAME TYPE DESCRIPTION
When Dropdown When should the velocity be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

How should the velocity be modified. SetLocal sets the velocity relative to the character's current heading,
What Dropdown SetWorld applies the new velocity in world space, ClampSpeed reduces the speed to the limit value if it is
above it, and Multiply multiplies the current velocity by a value.

Local . . T L .
Velocity Vector3 The target velocity of the character controller relative to its direction. Only visible if "What" is set to SetLocal.
World . . s .
Velocity Vector3 The target velocity of the character controller in world space. Only visible if "What" is set to SetWorld.
MaX H el T "o
Speed Float The maximum speed the character can travel at. Only visible if "What" is set to ClampSpeed.
Multiplier Float A multiplier to apply to the character's velocity. Only visible if "What" is set to Multiply.
See Also

NeoCharacterController

Motion Graph Parameters And Data

ModifyFloatParameter MotionGraphBehaviour

Overview

The ModifyFloatParameter behaviour either sets or modifies the specified float parameter on entering the state, on exit or both.

Inspector

fyFloatParameter

jumpCharge

Cn Enter

Set

Properties

NAME TYPE DESCRIPTION
Parameter FloatParameter The parameter to modify.
When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

How should the parameter be modified. Options are Set, Reset, Add, Subtract, Floor (round down to the

What Dropd
@ ropdown nearest whole number) and Ceiling (round up to the nearest whole number) .
Value Float The value to set to, add or subtract based on the What parameter.
See Also

Motion Graph Parameters And Data

ModifylntParameter MotionGraphBehaviour

Overview

The ModifyIntParameter behaviour either sets or modifies the specified int parameter on entering the state, on exit or both.

Inspector

Properties
NAME TYPE
Parameter IntParameter
When Dropdown
What Dropdown
Value Int

See Also

DESCRIPTION

The parameter to modify.

When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.
How should the parameter be modified. Options are Set, Reset, Add, Subtract.

The value to set to, add or subtract based on the What parameter.

Motion Graph Parameters And Data

ModifyStamina MotionGraphBehaviour

Overview

The ModifyStamina behaviour performs an operation on the StaminaSystem attached to the character.

Inspector

¥ 7 ModifyStamina

When On Enter
What Decrement

Amount 5

Properties
NAME TYPE DESCRIPTION
When Dropdown When should stamina be modified. Options are: OnEnter, OnExit and Both.
What should the modification be. Options are: Increment, Decrement, IncrementNormalised,
What Dropdown DecrementNormalised, SetToValue, SetToValueNormalised, SetToMax, SetToZero. The normalised options
act on the stamina as a factor of max stamina.
Amount Float Value to use for modifying the stamina.
See Also

StaminaSystem

ModifySwitchParameter MotionGraphBehaviour

Overview

The ModifySwitchParameter behaviour sets the specified switch on entering the state, on exit or both.

Inspector

¥ 7 ModifySwitchParameter

Parameter crouch

On Enter False

On Exit Previous

Properties
NAME TYPE DESCRIPTION

Parameter SwitchParameter The parameter to set.

How should the parameter be modified on entering the state. Options are Unchanged, True, False,

On Enter Dropdown .
P Toggle, Reset, Previous.*

How should the parameter be modified on exiting the state. Options are Unchanged, True, False,

On Exit Dropdown
X pdow Toggle, Reset, Previous.*

* Previous is only valid on exit, and will set the switch to its state before entering.

See Also

Motion Graph Parameters And Data

ModifyTransformParameter MotionGraphBehaviour

Overview

The ModifyTransformParameter behaviour either sets or resets the specified transform parameter on entering the state, on exit or

both.

Inspector

OnE

Mullif;

Properties

NAME TYPE DESCRIPTION

Parameter TransformParameter The parameter to modify.

When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

When Dropdown
What Dropdown What is the action to do. Nullify clears the value and Find will set the value using GameObject.Find.
See Also

Motion Graph Parameters And Data

GameObject.Find

https://docs.unity3d.com/ScriptReference/GameObject.Find.html
https://docs.unity3d.com/ScriptReference/GameObject.Find.html

ModifyTriggerParameter MotionGraphBehaviour

Overview

The ModifyTriggerParameter behaviour either sets or resets the specified trigger on entering the state, on exit or both.

Inspector

< ¥ ModifyTriggerParameter

Parameter jump
When On Enter

What Set

Properties
NAME TYPE DESCRIPTION
Parameter TriggerParameter The parameter to modify.
When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.
What Dropdown What is the action to do. Options are Set and Reset.
See Also

Motion Graph Parameters And Data

ModifyVectorParameter MotionGraphBehaviour

Overview

The ModifyVectorParameter behaviour either sets or modifies the specified vector parameter on entering the state, on exit or

both.

Inspector

'WectorParameter

jumpPad

On Enter

Properties
NAME TYPE DESCRIPTION
Parameter VectorParameter The parameter to modify.
When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.
How should the parameter be modified. The available options are:
e Set will set the vector to the specified value.
Reset resets the vector to its starting value.
Add adds the specified vector to the parameter.
What Dropdown Subtract subtracts the specified vector from the parameter.

Multiply multiplies the parameter by the specified multiplier.
Normalize normalizes the parameter vector to magnitude.

o Flatten flattens the parameter vector onto the horizontal plane of the character

e ClampMagnitude clamps the magnitude to a specified maximum length | | Value | Vector3 | The value to set to, add or
subtract based on the What property. | | Multiplier | Float | A multiplier to apply to the vector if the What property is set to
Multiply. | | Clamp | Float | The magnitude to clamp the vector to if the What property is set to ClampMagnitude. |

See Also

Motion Graph Parameters And Data

PassiveSlide MotionGraphBehaviour

Overview

The PassiveSlide behaviour lowers ground friction when the character is on a steep enough slope, and is not attempting to move.
If the motion controller receives move input then the NeoCharacterController slope friction will be set to its value on entering the

state or sub-graph. If not, then the slope friction will be set to Slide Friction setting as long as this is lower than the friction

already set and the angle is steep enough.

By default, the character must be stood on a slope steeper than 30 degrees in order to slide. If the Slope Data Key corresponds
to a valid Slope MotionControllerDataEntry then the slide will be triggered when the angle is greater than its Slope Slide Angle

property.

Inspector

7 7F iveSlide

=Mone Selected=

Slide Friction

Properties
NAME TYPE DESCRIPTION
Slope Float A slope angle that chooses when to start sliding. This can either be set as a value, or by referencing a
Angle Data float data entry.
Slide Float The slope friction to apply when slidin
Friction P PRY g
See Also

NeoCharacterController

Motion Graph Parameters And Data

PlayAudioClip MotionGraphBehaviour

Overview

The PlayAudioClip behaviour plays an audio clip on entering the state, on exiting, or both.

Inspector

¥ 7 PlayAudioClip

Audio_Char_BoneBreal

Properties
NAME TYPE DESCRIPTION
Clip AudioClip The audio clip to play.
Volume Float The volume to play the clip at.
Where Vector3 The offset from the character controller transform position to play the clip at.
When Dropdown When should the clip be played. Options are EnterAndExit, EnterOnly, ExitOnly.
See Also

Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

PlayCharacterAudio MotionGraphBehaviour

Overview

The PlayCharacterAudio behaviour will play an audio clip on entering the state, exiting the state, or both.

Inspector

¥ 7 PlayCharacterAudio

Audio Pain
When On Enter

Properties

NAME TYPE DESCRIPTION

Audio FpsCharacterAudio The audio ID to play (generated constant).

When Dropdown When should the audio be played. Options are EnterAndExit, EnterOnly, ExitOnly.
See Also

Generated Constants

RecordVelocity MotionGraphBehaviour

Overview
The RecordVelocity behaviour outputs the current velocity of the character to a vector parameter on the graph for use in other

conditions or states.

Inspector

¥ 7 Re

Properties
NAME TYPE DESCRIPTION
Vect
Parameter ector The parameter to modify.
Parameter
At what point should the velocity be recorded. Options are OnEnter, OnExit and Always. The latter records the
When Dropdown . - o
velocity each frame while in the state or subgraph it's attached to.
See Also

NeoCharacterController

Motion Graph Parameters And Data

SetAnimatorBool MotionGraphBehaviour

Overview

The SetAnimatorBool behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

SetAnimatorBool

Qn Enter Value

Properties

NAME
Animator Transform
Parameter Name
When

On Enter Value

On Exit Value

See Also

MotionController

TYPE

Transform Parameter

String

Dropdown

Boolean

Boolean

Motion Graph Parameters And Data

DESCRIPTION

A parameter that points to the transform of the character's animator component.

The name of the animator parameter to write to.

When should the parameter be modified.

The value to write to the parameter on entering the state / subgraph.

The value to write to the parameter on exiting the state / subgraph.

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorFloat MotionGraphBehaviour

Overview

The SetAnimatorFloat behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

¥ 7 SetAnimatorFloat

bodyAnimater
floatvalue

Cn Enter

Qn Enter Value

Properties

NAME
Animator Transform
Parameter Name
When

On Enter Value

On Exit Value

See Also

MotionController

TYPE

Transform Parameter

String

Dropdown

Float

Float

Motion Graph Parameters And Data

DESCRIPTION

A parameter that points to the transform of the character's animator component.

The name of the animator parameter to write to.

When should the parameter be modified.

The value to write to the parameter on entering the state / subgraph.

The value to write to the parameter on exiting the state / subgraph.

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorint MotionGraphBehaviour

Overview

The SetAnimatorint behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

« 7 SetAnimatorInt

bodyAnimater

Qn Enter Value

Properties

NAME
Animator Transform
Parameter Name
When

On Enter Value

On Exit Value

See Also

MotionController

TYPE

Transform Parameter

String

Dropdown

Integer

Integer

Motion Graph Parameters And Data

DESCRIPTION

A parameter that points to the transform of the character's animator component.

The name of the animator parameter to write to.

When should the parameter be modified.

The value to write to the parameter on entering the state / subgraph.

The value to write to the parameter on exiting the state / subgraph.

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorBool MotionGraphBehaviour

Overview

The SetAnimatorTrigger behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

SetAnimatorTrigger

bodyAnimater

myTrigger

Properties

NAME
Animator Transform
Parameter Name
On Enter

On Exit

See Also

MotionController

TYPE

Transform Parameter

String

Dropdown

Dropdown

Motion Graph Parameters And Data

DESCRIPTION

A parameter that points to the transform of the character's animator component.
The name of the animator parameter to write to.

The action to perform on entering the state / subgraph.

The action to perform on exiting the state / subgraph.

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetSteering MotionGraphBehaviour

Overview

The NeoCharacterController that NeoFPS is based on has a steering system that can decouple the aim direction from the
character's move direction. The SetSteering behaviour is used set a speed at which the body rotates to match the aim direction.

Inspector

7 1T Scale

Properties
NAME TYPE DESCRIPTION
On Enter Dropdown What to do to the steering rate on entering the state.
On Exit Dropdown What to do to the steering rate on exiting the state.
Entry Value Float The value to set the steering rate to on entering the state.
Exit Value Float The value to set the steering rate to on exiting the state.
See Also

NeoCharacterController

MotionController

SetTargetHeight MotionGraphBehaviour

Overview

The SetTargetHeight behaviour signals the desired character height multiplier for the controller to lerp to.

Inspector

¥ 7 SetTargetHeight

Properties
NAME TYPE
When Dropdown
On Enter Float
Value

On Exit Value Float

Resize

FI
Duration oat
From Point Dropdown
See Also

MotionController

DESCRIPTION
When should the target height be set. Options are EnterAndExit, EnterOnly, ExitOnly.

The character height multiplier (standing height) to set on entering this state (if when is set to EnterandExit
or EnterOnly).

The character height multiplier (standing height) to set on exiting this state (if when is set to EnterandExit
or ExitOnly).

The time taken to change heights.

Where is the character resized from. Available options are:
® Automatic will scale from the bottom if grounded and the top if airborne and crouch jumping is
enabled.
® Bottom always resizes from the bottom of the character.
® Top always resizes from the top of the character.

SetTimeScale MotionGraphBehaviour

Overview

The SetTimeScale behaviour is used to trigger slow motion effects when entering a motion state.

Inspector

< 7 SetTimeScale
Time Scale

Charge Drain

Properties
NAME TYPE DESCRIPTION
Time Scale Float The target timescale to set. Will be reset to 1 on exit.
Charge Drain Float The amount of charge drained per (real, unscaled) second.
See Also

MotionController

SetWieldableStance MotionGraphBehaviour

Overview

The SetWieldableStance behaviour is used to choose the pose that a wieldable inventory item such as a firearm or melee weapon

is held in. This can be used to telegraph when the character is crouching or falling, for example.

Inspector

¥ 7 SetWieldableStance

ance Name

Properties
NAME TYPE DESCRIPTION
Stance Strin The name of the stance to use. The wieldable item needs a WieldableStanceManager component, with a stance that
Name 9 has this name.

See Also

Inventory

SlidingAudio MotionGraphBehaviour

Overview

The SlidingAudio behaviour plays a looping audio clip based on the ground contact surface, pitch shifted based on the character

speed.

Inspector

Properties
NAME TYPE DESCRIPTION
Audio Data SurfaceAudioData The surface audio library for the slide audio clips.
Surface Test Int Every n-th frame, the behaviour will check what the ground surface is and switch the sliding
Interval audio if required.
Minimum Speed Float The speed below which the pitch will be at its minimum.
Maximum Speed Float The speed above which the pitch will be at its maximum.
Minimum Pitch Float The minimum pitch for the slide loop.
Maximum Pitch Float The maximum pitch for the slide loop.
Max Ray Distance Float The downward raycast length for the ground surface test.
The vertical offset above the absolute bottom of the character collider to start the downward
Ray Offset Float
surface test.
See Also

SurfaceAudioData

SurfaceAudio MotionGraphBehaviour

Overview

The SurfaceAudio behaviour plays an audio clip based on the current ground surface.

Inspector

¥ 7 SurfaceAudio

Cn Enter

Properties
NAME TYPE DESCRIPTION
Audio Data SurfaceAudioData The surface audio library for the audio clips.
When Dropdown When should the audio be played. Options are EnterAndExit, EnterOnly, ExitOnly.
The direction to perform the footstep surface check. Available options are:
® Down casts downwards (based on the character up vector).
® localVector casts based on the Cast Vector property in local space.
® WorldVector casts based on the Cast Vector property in world space.
e WorldParameter casts based on the vector value of the Vector Parameter property in world
space.
Cast Direction Dropdown ® WorldParameterinverse casts based on the flipped vector value of the Vector Parameter
property in world space.
® |ocalParameter casts based on the vector value of the Vector Parameter property in local
space.
® LocalParameterinverse casts based on the flipped vector value of the Vector Parameter
property in local space.
Cast Vector Vector3 The direction to cast in for footstep surface checks.
Vector - N .
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.
Max Ra
. y Float The downward raycast length for the ground surface test.
Distance
See Also
Surfaces

Audio Systems

SurfaceFootstepAudio MotionGraphBehaviour

Overview

The SurfaceFootstepAudio behaviour interacts with the [SurfaceFootstepAudioSystem][3] monobehaviour on the root of the

character to control how it processes footsteps.

Inspector

¥ 7 surfaceFootstepAudio

Properties
NAME TYPE DESCRIPTION
Audio Data SurfaceAudioData The surface audio library for the slide audio clips.
The direction to perform the footstep surface check. Available options are:
® Down casts downwards (based on the character up vector).
® localVector casts based on the Cast Vector property in local space.
® WorldVector casts based on the Cast Vector property in world space.
® WorldParameter casts based on the vector value of the Vector Parameter property in
Cast world space.
Direction Dropdown ® WorldParameterinverse casts based on the flipped vector value of the Vector Parameter
property in world space.
® |ocalParameter casts based on the vector value of the Vector Parameter property in local
space.
® lLocalParameterinverse casts based on the flipped vector value of the Vector Parameter
property in local space.
Cast Vector Vector3 The direction to cast in for footstep surface checks.
Transform A parameter containing the transform to use for the cast's space. If none is selected or the
TransformParameter . . .
Parameter parameter value is null then the cast is performed in world space.
Vector - o .
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.
Minimum . L
Float The speed below which no footstep audio will be played.
Speed
Max Ra
. y Float The downward raycast length for the ground surface test.
Distance
If persistent is true, then exiting this state or sub-graph will keep the footstep settings until the
Persistent Boolean P . 9 grap P P 9 y
are explicitly set from elsewhere.
See Also

[SurfaceFootstepAudioSystem][3]

SurfaceAudioData

Motion Graph Parameters And Data

TimeOps MotionGraphBehaviour

Overview

The TimeOps behaviour modifies a float parameter on the graph based on the Time. It can be used to record the time that specific
events occur or to track the time spent in one or more states or sub-graphs.

Inspector

¥ " TimeOps
What

Properties
NAME TYPE DESCRIPTION
How should the parameter be modified. Available options are:
® Add Elapsed Time adds elapsed time to the output parameter.
e Add Elapsed Time Scaled adds elapsed time, multiplier by a scale factor to the output parameter.
What Dropdown e Record Entry Time sets the output parameter to the current time on entering the state or sub-
graph.
® Record Exit Time sets the output parameter to the current time on exiting the state or sub-graph.
® Record Time sets the output parameter to the current time every frame.
Output FloatParameter The parameter to modify.
Multiplier Float A multiplier to apply to the output if What is set to Add Elapsed Time Scaled.
See Also

Motion Graph Parameters And Data

TrackStepsBehaviour MotionGraphBehaviour

Overview

The TrackStepsBehaviour behaviour is used to provide a consistent step count for use by the various bob effects such as
PositionBob and RotationBob. Stride length will be reset to the previous value on exiting the behaviour, so these behaviours can
be nested.

Inspector

<+ ¥ TrackSteps

Stride Length

Properties

NAME TYPE DESCRIPTION

Stride Length Float The travel distance for one stride.
See Also
PositionBob

RotationBob

UnlocklnventorySelection MotionGraphBehaviour

Overview
The UnlockinventorySelection behaviour will unlock the character's inventory selection after being locked by a

LocklnventorySelection behaviour.

Inspector

¥ T UnlockInventorySelection

On Exit

Properties

NAME TYPE DESCRIPTION

When Dropdown When should the inventory selection be set. Options are: OnEnter and OnExit.
See Also
Inventory

LocklnventorySelection

AirTime MotionGraphCondition

Overview

The AirTime condition checks against the airtime value of the character's NeoCharacterController.

Inspector

Condition

Properties

NAME TYPE DESCRIPTION

The comparison type between the airtime and value. Options are EqualTo (=), NotEqualTo (!=),

Comparison Dropdown GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also

NeoCharacterController

CapsuleCast MotionGraphCondition

Overview

The CapsuleCast condition performs a cast of the NeoCharacterController capsule in the specified direction.

Inspector

ast Condition
u .0 Z1

&

Default, EnvironmentR«

v
Properties
NAME TYPE DESCRIPTION
Cast Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be the
Vector maximum distance.
Layer Layermask The layers to check against
Mask y y 9 '
Does Hit Boolean Is the codition true if the cast hits something or does not.
See Also

Layers And Tags

CapsuleLookahead MotionGraphCondition

Overview

The CapsuleLookahead condition performs a cast of the CharacterController capsule based on either its movement, the direction
it's facing, or the input direction.

Inspector

Capsule Lookahead Condition

Properties
NAME TYPE DESCRIPTION
How the lookahead direction is calculated. The available options are:
e Velocity All Axes uses the current velocity of the character.
® Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
® Velocity Vertical uses the character velocity constrained to its up-vector.
® Direction All Axes uses the direction the character is moving in, but checks a fixed distance
Lookahead Dropdown ahead.
® Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.
Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.
Lookahead . . L
. Float The cast distance when using the Direction or Input lookahead types.
Distance
Layer Mask Layermask The layers to check against.
Does Hit Boolean Is the codition true if the cast hits something or does not.
See Also

Layers And Tags

https://docs.unity3d.com/Manual/class-CharacterController.html

CharacterHeight MotionGraphCondition

Overview

The CharacterHeight condition checks the height of the character capsule, or its multiplier compared to its standing height.

Inspector

Character Height Condition

Multiplier

Properties
NAME TYPE
Compare Dropdown

Comparison Dropdown

Value Float

See Also

NeoCharacterController

DESCRIPTION
What to check. Available options are Multiplier and Actual Height.

The comparison type between the character height and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (> =), LessThan (<), LessOrEqual (<=).

The value to check against.

Climbable MotionGraphCondition

Overview

The Climbable condition performs is a complex condition which checks if a character can climb onto a ledge. It has a number of

steps:

1. It capsule casts to find the wall surface to climb
2. It sphere casts up to check available head height
3. It casts forward into the wall plane at either the maximum climb height or the point the head cast hit in order to check that

the space is clear to climb

The condition outputs the wall normal found in step 1 to a Vector Parameter which can then be used by the Mantle state to
actually perform the climbing action. The mantle state performs its own checks each frame so you do not need to keep testing if a
wall is climbable once the mantle state has control.

Since the climbable condition uses a number of complex checks, it is worth putting any cheaper conditions ahead of it in the
transition in order to narrow down the situations where it will be checked.

Inspector

Properties
NAME TYPE DESCRIPTION
Output
P Vector
Wall The vector parameter used to store the wall normal.
Parameter
Normal
Check The direction to perform the initial wall check in Yaw Forward checks straight ahead of the character. Inverse
o Dropdown
Direction Wall Normal reads the value of the wall normal parameter above and flips it, casting back into the wall.
Check Float Data The distance of the initial capsule cast to check wall contact. It is advised to set up a motion data entry and
Distance share it with the Mantle state to ensure they have the same value.
Wall
Collision Layermask The layers to check against.
Mask
Max
Climb Float The maximum height the character can pull itself up to reach the top surface.
Height
Climb . - . .
Forward Float After reaching the top surface, this is the distance to move in past the edge before the state completes.
Output Float
Climb An optional parameter to store the climb height.

. Paramete
Height ' !

See Also

Motion Graph Parameters And Data

Layers And Tags

CollisionFlags MotionGraphCondition

Overview

The CollisionFlags condition checks the NeoCharacterController collision flags that resulted from the last movement frame.

Inspector

Properties

NAME TYPE DESCRIPTION

. Check if the NeoCharacterController collision flags Include or Exclude the "Compare To"
Comparison Dropdown

flags.
g;)mpare NeoCharacterControllerHit ~ The collision flags to check against.
Note

If you want to check against individual sides, then use the Mask values. Using the non-mask versions also sets the Sides flag

which is shared between all of them.

See Also

NeoCharacterController

CompareFloats CapsuleCastCondition

Overview

The CompareFloats condition compares two float parameters.

Inspector

eFloats Condition

jumpCharge = jumpTimeout

Properties
NAME TYPE
Parameter
A FloatParameter

Comparison Dropdown

Parameter
B

FloatParameter

See Also

DESCRIPTION
The left hand side parameter of the comparison

The comparison between the two parameters for which the condition is true. Options are Equal To (=),
Not Equal To (!=), Greater Than (>), Greater Or Equal To (>=), Less Than (<), Less Than Or Equal

To (<=).

The right hand side parameter of the comparison

Motion Graph Parameters And Data

Comparelnts CapsuleCastCondition

Overview

The Comparelnts condition compares two int parameters.

Inspector

eInts Condition

jumpCount = jumpLimit

Properties
NAME TYPE DESCRIPTION
P t
Aarame e IntParameter The left hand side parameter of the comparison
The comparison between the two parameters for which the condition is true. Options are Equal To (=),
Comparison Dropdown Not Equal To (!=), Greater Than (>), Greater Or Equal To (>=), Less Than (<), Less Than Or Equal To
(<=).
P
Barameter IntParameter The right hand side parameter of the comparison
See Also

Motion Graph Parameters And Data

CompareSwitches CapsuleCastCondition

Overview

The CompareSwitches condition compares two switch parameters.

Inspector

CompareSwitches Condition

Properties
NAME TYPE DESCRIPTION
Parameter

A SwitchParameter The left hand side parameter of the comparison

The comparison between the two parameters for which the condition is true. Options are Equal To (=),

Comparison Dropdown Not Equal To (1<)

Parameter

B SwitchParameter ~ The right hand side parameter of the comparison

See Also

Motion Graph Parameters And Data

CompareTime MotionGraphCondition

Overview

The CompareTime condition is used in conjunction with the TimeOps motion graph behaviour to check the current time against

the parameter values it outputs.

Inspector

Compare Time Condition

vallRunTime

Properties
NAME TYPE DESCRIPTION
Time

FloatParameter The float parameter with the time stored in it byyt TimeOps.
Parameter

The comparison type between the parameter and value. Options are GreaterThan (>), GreaterOrEqual

Comparison Dropdown (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also

Motion Graph Parameters And Data

TimeOps MotionGraphBehaviour

Completed MotionGraphCondition

Overview

The Completed condition checks the current state's completed flag. If the state has completed, the condition is true.

Inspector

Completed Condition

Properties

The Completed condition has no properties exposed in the motion graph inspector.

See Also

ConditionGroup MotionGraphCondition

Overview

The ConditionGroup condition is used to group conditions together to allow for more complex rules than any and all. For
example, when swimming on the surface of a water zone, you might transition to the underwater state if you either press crouch

or look down and press forwards.

Inspector

Condition Gro

Condition Group MyConditionGroup

Properties

NAME TYPE DESCRIPTION

Condition Group Dropdown A dropdown that lists the available groups on the connection or allows you to create a new one.
Note

The result of a condition group is recorded when it is evaluated, so you will not be able to create infinite loops where group A

checks group B which checks group A again.

See Also

Motion Graph Conditions

Debug MotionGraphCondition

Overview

The Debug condition is only used to check the float of a motion graph. Add it to connections that are not behaving as expected,
before and after the problem condition with a message to help check when the condition is hit. Do not leave debug conditions in a

complete motion graph.

Inspector

Debug Condition

Message

Result

Properties
NAME TYPE DESCRIPTION
Message String A message to send to the debug console when this condition is checked.
Result Boolean The result the condition should give.

See Also

Direction MotionGraphCondition

Overview

The Direction condition checks the specified vector parameter against the character's direction

Inspector

Direction Condition

Target Direction wallMarmal

Yaw Ws Horizontal

Properties
NAME TYPE DESCRIPTION
Parameter VectorParameter The vector parameter to check against.
What direction to compare against the parameter. Available options are:
® YawVsVector checks the character's yaw forward direction against the parameter.
® YawVsHorizontal checks the character's yaw forward direction against the parameter aligned to
the character's horizontal plane.
® AimVsVector checks the character's aim direction against the parameter.
Compare Dropdown ® VelocityVsVector checks the character's move direction against the parameter.
® VelocityVsHorizontal checks the character's movement direction against the horizontal aligned
parameter.
® InputVsHorizontal checks the character's input direction (aligned to the character) against the
horizontal aligned parameter.
Comparison Dropdown The comparison type between the parameter and value. This can be less than "<" or greater than ">".
Angle Float The angle value to check against.
See Also

NeoCharacterController

Motion Graph Parameters And Data

ElapsedTime MotionGraphCondition

Overview

The Elapsed Time condition checks how long the motion graph has been in the current state.

Inspector

Condition

Properties
NAME TYPE DESCRIPTION
Timeout . . " . . . s .
Value Float The time after which the condition will be valid. If the parameter is set, this will be ignored.
Timeout FloatPropert An optional parameter containg a value for the time after which the condition will be valid. Selecting a
Property perty parameter will remove the value field until this parameter is removed again.

See Also

Motion Graph Parameters And Data

EnhancedCapsuleCast MotionGraphCondition

Overview

The EnhancedCapsuleCast condition performs a cast of the NeoCharacterController capsule in the specified direction and then

outputs the results to motion graph parameters for use in other conditions and states.

Inspector

Capsule Cast (Enhanced) Condition

arameter

Hit Norm

Properties

NAME TYPE DESCRIPTION

What to use for the cast vector. Available options are:

® localVector uses a preset vector relative to the character. Magnitude is distance.

e WorldVector uses a preset vector in world space. Magnitude is distance.

® localParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.

® lLocalParameterinverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.

e WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.

® WorldParameterinverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

Cast Type Dropdown

Cast The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be
Vector3 . . " .
Vector the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.
Direction L . - . .
Parameter VectorParameter The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.
Distance Float The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.
Layer Layermask The layers to check against
Mask y y 9 ’
Does Hit Boolean Is the codition true if the cast hits something or does not.
Hit Point Vector An optional graph parameter to output the capsule cast hit point to
Output Parameter P graph p P P P ’
Hit Normal Vector . .
An optional graph parameter to output the capsule cast hit normal to.
Output Parameter
Hit
Transform .)
Transform Parameter An optional graph parameter to output the capsule cast hit transform to.

Output

See Also

Motion Graph Parameters And Data

Layers And Tags

EnhancedCapsuleLookahead MotionGraphCondition

Overview

The EnhancedCapsuleLookahead condition performs a cast of the NeoCharacterController capsule based on either its movement,
the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Capsule Lookahead (Enhanced) Condition

Hit Pc
Hit Ne
Hit Transfe

Properties
NAME TYPE DESCRIPTION
How the lookahead direction is calculated. The available options are:
® Velocity All Axes uses the current velocity of the character.
® Velocity Horizontal Plane uses the character velocity constrained to its horizontal
plane.
® Velocity Vertical uses the character velocity constrained to its up-vector.
® Direction All Axes uses the direction the character is moving in, but checks a fixed
Lookahead Dropdown distance ahead.
® Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
® Direction Vertical uses the character movement direction constrained to its up-vector.
® |nput Direction uses the character input vector transformed into the character's local
space.
Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.
Lookahead . . L
. Float The cast distance when using the Direction or Input lookahead types.
Distance
Layer Mask Layermask The layers to check against.
Does Hit Boolean Is the codition true if the cast hits something or does not.
Hit Point Output Vector Parameter An optional graph parameter to output the capsule cast hit point to.
Hit Normal . .
Output Vector Parameter An optional graph parameter to output the capsule cast hit normal to.
Hit Transform Transform . .
An optional graph parameter to output the capsule cast hit transform to.
Output Parameter
See Also

Motion Graph Parameters And Data

Layers And Tags

EnhancedRayCast MotionGraphCondition

Overview

The EnhancedRayCast condition performs a raycast from the specified point on the character. The cast results are output to

motion graph parameters for later use.

Inspector

Properties

NAME TYPE
Source

. Float
Height
Cast Type Dropdown
Cast

a Vector3

Vector
Directi

rection VectorParameter
Parameter
Distance Float
Layer

Layermask

Mask y
Does Hit Boolean
Hit Point Vector
Output Parameter
Hit Normal Vector

Output

Parameter

Parameter

wallMarmal

DESCRIPTION

The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of
the capsule centerline.

What to use for the cast vector. Available options are:

® LocalVector uses a preset vector relative to the character. Magnitude is distance.

® WorldVector uses a preset vector in world space. Magnitude is distance.

® LocalParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.

® LocalParameterinverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.

® WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.

® WorldParameterinverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be
the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.

The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.

The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.

The layers to check against.

Is the codition true if the cast hits something or does not.

An optional graph parameter to output the capsule cast hit point to.

An optional graph parameter to output the capsule cast hit normal to.

NAME TYPE DESCRIPTION

Hit
Transform . .
Transform Parameter An optional graph parameter to output the capsule cast hit transform to.
Output
See Also

Motion Graph Parameters And Data

Layers And Tags

EnhancedRayLookahead MotionGraphCondition

Overview

The EnhancedRayLookahead condition performs a raycast from the specified point on the character and based on either its
movement, the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Ray Lookahead {(Enhanced) Condition

Properties
NAME TYPE DESCRIPTION
How the lookahead direction is calculated. The available options are:
e Velocity All Axes uses the current velocity of the character.
® Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
® Velocity Vertical uses the character velocity constrained to its up-vector.
e Direction All Axes uses the direction the character is moving in, but checks a fixed distance
Lookahead Dropdown ahead.
® Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.
Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.
Lookahead . . ——
. Float The cast distance when using the Direction or Input lookahead types.
Distance
. The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top
Source Height Float .
of the capsule centerline.
Layer Mask Layermask The layers to check against.
Does Hit Boolean Is the codition true if the cast hits something or does not.
Hit Point Vector An optional graph parameter to output the capsule cast hit point to
Output Parameter P graph p P P P ’
Hit Normal Vector . .
An optional graph parameter to output the capsule cast hit normal to.
Output Parameter
Hit Transform Transform .)
An optional graph parameter to output the capsule cast hit transform to.
Output Parameter
See Also

Motion Graph Parameters And Data

Layers And Tags

EnhancedSphereCast MotionGraphCondition

Overview
The EnhancedSphereCast condition performs a spherecast from the specified point on the character. The cast results are output to

motion graph parameters for later use.

Inspector

Sphere Cast (Enhanced) Condition

Parameter

wallMarmal

Di
:
| =
C

Properties
NAME TYPE DESCRIPTION
Source Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of
Height the capsule centerline.

What to use for the cast vector. Available options are:

® LocalVector uses a preset vector relative to the character. Magnitude is distance.

® WorldVector uses a preset vector in world space. Magnitude is distance.

® LocalParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.

® LocalParameterinverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.

® WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.

® WorldParameterinverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

Cast Type Dropdown

Cast Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be
Vector the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.
Direction L . - . .
Parameter VectorParameter The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.
Distance Float The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.
Layer Layermask The layers to check against

Mask y 4 9 '

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point Vector An optional graph parameter to output the capsule cast hit point to

Output Parameter P graph p P P P ’

Hit Normal Vector

An optional graph parameter to output the capsule cast hit normal to.
Output Parameter P graph p P P

NAME TYPE DESCRIPTION

Hit
Transform . .
Transform Parameter An optional graph parameter to output the capsule cast hit transform to.
Output
See Also

Motion Graph Parameters And Data

Layers And Tags

EnhancedSphereLookahead MotionGraphCondition

Overview

The EnhancedSphereLookahead condition performs a spherecast from the specified point on the character and based on either its
movement, the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Sphere Lookahead {(Enhanced) Condition

Properties
NAME TYPE DESCRIPTION
How the lookahead direction is calculated. The available options are:
e Velocity All Axes uses the current velocity of the character.
® Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
® Velocity Vertical uses the character velocity constrained to its up-vector.
e Direction All Axes uses the direction the character is moving in, but checks a fixed distance
Lookahead Dropdown ahead.
® Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.
Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.
Lookahead . . ——
. Float The cast distance when using the Direction or Input lookahead types.
Distance
. The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top
Source Height Float .
of the capsule centerline.
Layer Mask Layermask The layers to check against.
Does Hit Boolean Is the codition true if the cast hits something or does not.
Hit Point Vector An optional graph parameter to output the capsule cast hit point to
Output Parameter P graph p P P P ’
Hit Normal Vector . .
An optional graph parameter to output the capsule cast hit normal to.
Output Parameter
Hit Transform Transform .)
An optional graph parameter to output the capsule cast hit transform to.
Output Parameter
See Also

Motion Graph Parameters And Data

Layers And Tags

Float MotionGraphCondition

Overview

The Float condition checks the specified parameter against a value.

Inspector

Float Condition

jumpCharge

Properties
NAME TYPE DESCRIPTION
Parameter FloatParameter The parameter to check.
Comparison Droodown The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
P P GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).
Value Float The value to check against.
See Also

Motion Graph Parameters And Data

GroundContact MotionGraphCondition

Overview

The GroundContact condition checks if the character is airborne or touching the ground.

Inspector

GroundContact Condition

around Contact equals

Properties

NAME TYPE DESCRIPTION

Equals Boolean Is the condition true if the character is touching the ground or not.
See Also

MotionController

GroundNormal MotionGraphCondition

Overview

The GroundNormal condition is used to check against the angle of the character ground contact.

This condition differs from the GroundSurfaceNormal condition in that it is only aware of the point of contact and does not take
the shape of the collision geometry into account. As a character walks off the edge of a flat surface, this angle will slope down,

whereas the ground surface normal will stay pointing straight up until the character loses contact with the surface.

Inspector

GroundMormal Condition

Properties

NAME TYPE DESCRIPTION

The comparison type. Options are GreaterThan (), GreaterOrEqual (), LessThan (), LessOrEqual (),

Comparison Dropdown EqualTo ().

Angle Float The ground slope angle in degrees from horizontal.

See Also

MotionController

GroundSurfaceNormal Condition

GroundSurfaceNormal MotionGraphCondition

Overview

The GroundSurfaceNormal condition is used to check against the slope of the ground surface the character is currently standing
on. If the character is in contact with a flat surface then the resulting angle is the angle of the slope. If the character is in contact

with an edge then the resulting angle is the slope of the top face the edge belongs to.

This condition differs from the GroundNormal condition which only takes into account the point of contact and not the shape of

the collision geometry.

Inspector

GroundSurfaceNormal Condition

Properties

NAME TYPE DESCRIPTION

The comparison type. Options are GreaterThan (), GreaterOrEqual (), LessThan (), LessOrEqual (),

Comparison ~ Dropdown EqualTo ().

Angle Float The ground slope angle in degrees from horizontal.

See Also

MotionController

GroundNormal Condition

HeightRestriction MotionGraphCondition

Overview

The HeightRestriction condition checks if the character height is restricted by a ceiling. This is useful for situations such as

preventing the character moving to a sprint state while stuck in an air vent.

Inspector

HeightRestriction Condition

Properties

NAME TYPE DESCRIPTION

Target Height Float The target height multiplier for the character to check against.

Is Blocked Boolean Is the condition true if the character height is blocked or not blocked.
See Also

MotionController

InputVector MotionGraphCondition

Overview

The InputVector condition checks against the input vector provided by the motion controller.

Inspector

Input Vector Condition

Magnitude

Properties

NAME

InputComponent

Comparison

Value

See Also

TYPE

Dropdown

Dropdown

Float

DESCRIPTION

What component of the input to check. Available options are:
e Magnitude 0 is no input, while 1 is one of the direction keys, or full tilt on an analog stick.
InputY the forward or back amount (1 is forward, -1 is back).
InputX the left or right amount (1 is right, -1 is left).
AbsoluteY the absolute forward or back amount.
AbsoluteX the absolute left or right amount.

The comparison type between the actual input vector magnitude and the value specified. Options are
greater than (>), less than (<).

The value to compare against.

Int MotionGraphCondition

Overview

The Int condition checks the specified parameter against a value.

Inspector

Integer Condition

jumpCount

Properties
NAME TYPE DESCRIPTION
Parameter IntParameter The parameter to check.
. The comparison type between the propery and value. Options are EqualTo (=), NotEqualTo (!=),
C Dropd
omparison ropdown GreaterThan (>), GreaterOrEqual (> =), LessThan (<), LessOrEqual (<=).
Value Int The value to check against.
See Also

Motion Graph Parameters And Data

Pitch MotionGraphCondition

Overview

The Pitch condition checks pitch (up/down rotation) of the character's aim controller.

Inspector

Pitch Condition

Pitch

Properties

NAME TYPE DESCRIPTION

. The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
Comparison Dropdown
GreaterThan (>), GreaterOrEqual (> =), LessThan (<), LessOrEqual (<=).

Angle Float The pitch angle value to check against. 90 is straight up and -90 is straight down.

See Also

Aim Controllers

RayCast MotionGraphCondition

Overview

The RayCast condition performs a cast in the specified direction and from the specified source.

Inspector

ast Condition

Properties

Properties
NAME TYPE DESCRIPTION
Normalise Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the
Height capsule centerline.

The direction and distance to cast relative to the character. The vector does not have to be normalised, as the

Cast Vector Vector3
magnitude will be the maximum distance.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the condition true if the cast hits something or if it does not.

See Also

Layers And Tags

RayLookahead MotionGraphCondition

Overview

The RayLookahead condition performs a raycast from the specified point on the character and based on either its movement, the

direction it's facing, or the input direction.

Inspector

Ray Lookahead Condition

Properties
NAME TYPE DESCRIPTION
How the lookahead direction is calculated. The available options are:
e Velocity All Axes uses the current velocity of the character.
® Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
® Velocity Vertical uses the character velocity constrained to its up-vector.
e Direction All Axes uses the direction the character is moving in, but checks a fixed distance
Lookahead Dropdown ahead.
® Direction Horizontal Plane uses the character movement direction constrained to its horizontal
plane.
e Direction Vertical uses the character movement direction constrained to its up-vector.
® Input Direction uses the character input vector transformed into the character's local space.
Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.
Lookahead . . L
. Float The cast distance when using the Direction or Input lookahead types.
Distance
. The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the
Source Height Float .
capsule centerline.
Layer Mask Layermask The layers to check against.
Does Hit Boolean Is the codition true if the cast hits something or does not.
See Also

Motion Graph Parameters And Data

Layers And Tags

ScriptedComponent MotionGraphCondition

Overview

The ScriptedComponent condition attaches to a component on the controller's game object. Each time the condition is checked,
the component is queried and the result returned. Valid components must implement the IScriptedComponentCondition

interface.

Inspector

ScriptedComponent Condition

Key myScriptedComponent

Properties
NAME TYPE DESCRIPTION
Key String The name of the specific component. This is used to distinguish between multiple components on the same game object.

See Also

SphereCast MotionGraphCondition

Overview

The SphereCast condition performs a cast in the specified direction and from the specified source.

Inspector

hereCast Condition

Properties
NAME TYPE DESCRIPTION
Normalise . . .
Height Float The point on the character capsule to cast from. 0 is the base of the capsule. 1 is the top of the capsule.

The direction and distance to cast relative to the character. The vector does not have to be normalised, as the

Cast Vector Vector3
magnitude will be the maximum distance.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the condition true if the cast hits something or if it does not.

See Also

Layers And Tags

SphereLookahead MotionGraphCondition

Overview

The SphereLookahead condition performs a spherecast from the specified point on the character and based on either its

movement, the direction it's facing, or the input direction.

Inspector

Sphere Lookahead Condition

Properties

NAME

Lookahead

Lookahead Time

Lookahead
Distance

Source Height

Layer Mask

Does Hit

See Also

TYPE

Dropdown

Float

Float

Float

Layermask

Boolean

DESCRIPTION

How the lookahead direction is calculated. The available options are:

e Velocity All Axes uses the current velocity of the character.

® Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.

® Velocity Vertical uses the character velocity constrained to its up-vector.

e Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.

® Direction Horizontal Plane uses the character movement direction constrained to its horizontal
plane.

e Direction Vertical uses the character movement direction constrained to its up-vector.

® Input Direction uses the character input vector transformed into the character's local space.

When using the Velocity lookahead types, the distance is based on velocity x time.
The cast distance when using the Direction or Input lookahead types.

The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the
capsule centerline.

The layers to check against.

Is the codition true if the cast hits something or does not.

Motion Graph Parameters And Data

Layers And Tags

Switch MotionGraphCondition

Overview

The Switch condition checks the value of the specified switch parameter.

Inspector

Switch Condition

Properties

NAME TYPE DESCRIPTION

Parameter SwitchParameter The parameter to check.

Equals Boolean The value of the switch that the condition should be true for.
See Also

Motion Graph Parameters And Data

Transform MotionGraphCondition

Overview

The Transform condition checks if the specified transform parameter is null or not.

Inspector

Properties

NAME TYPE DESCRIPTION

Parameter TransformParameter The parameter to check.

Is Null Boolean Is the condition true if the transform is null or not null.
See Also

Motion Graph Parameters And Data

Trigger MotionGraphCondition

Overview

The Trigger condition checks the specified trigger parameter and then resets it if triggered.

Inspector

Trigger Condition

jump

Properties
NAME TYPE DESCRIPTION
Parameter TriggerParameter The trigger to check.
See Also

Motion Graph Parameters And Data

Vector MotionGraphCondition

Overview

The Vector condition checks the specified parameter against a value.

Inspector

Vector Condition

Parameter wallMarmal

Magnitude

Properties
NAME TYPE DESCRIPTION
Parameter VectorParameter The parameter to check.
What element of the vector parameter to check against. The available options are:

e Magnitude checks the value against the magnitude of the vector.
® X checks against the vector's x axis.
® Y checks against the vector's y axis.

Compare Dropdown ® Z checks against the vector's z axis.
°

Character Horizontal checks against the magnitude of the vector after it has been projected
onto the character's horizontal plane.

® Character Up checks against the magnitude of the vector after it has been projected onto the
character's up vector.

The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),

i D
Comparison ropdown GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also

Motion Graph Parameters And Data

Velocity MotionGraphCondition

Overview

The Velocity condition checks the velocity output of the character's NeoCharacterController.

Inspector

ty Condition

al Velacit

Properties
NAME TYPE DESCRIPTION
What element of the velocity to check against. The available options are:
® Character Speed checks the magnitude of the velocity vector against the value.
® Horizontal Speed checks the velocity after it has been projected on the character's horizontal plane.
e Vertical Velocity checks the velocity after it has been projected on the character's up vector.
e Ground Speed checks the velocity after it has been projected on the ground normal plane.
e Ground Surface Speed checks the velocity after it has been projected on the ground surface normal
Compare Dropdown plane.

Yaw Velocity checks the velocity of the character along its forward vector.

® Yaw Ground Velocity checks the velocity of the character along its forward vector projected on the

Comparison Dropdown

ground normal plane.
Yaw Ground SurfaceVelocity checks the velocity of the character along its forward vector projected
on the ground surface normal plane.

The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also

NeoCharacterController

Water MotionGraphCondition

Overview

The Water condition checks the character's position relative to a water zone.

Inspector

Water Condition

Water Zone

Checl Above Water Greater Than

Properties
NAME TYPE DESCRIPTION
Water The transform parameter with the transform of the water zone object. If this is null, the condition
TransformParameter
Zone returns false.
The comparison type between the character and the water zone. Available options are:
® Above Water Greater Than checks if the height of the character above the water line against
the value.
® Above Water Less Than checks if the height of the character above the water line against the
Check Dropdown value.))))
e Below Water Greater Than checks if the height of the character below the water line against
the value.
e Below Water Less Than checks if the height of the character below the water line against the
value.
Value Float The value to check against.
See Also

Motion Graph Parameters And Data

BasicWaterZone MonoBehaviour

Overview
The BasicWaterZone behaviour is used to communicate water properties to the motion graph, including surface height and

normal, and flow vectors.

The water zone uses a box collider to detect when the character enters or leaves the zone.

Inspector

Basic Water Zone (Script)

waterZone

Properties
NAME TYPE DESCRIPTION
Parameter strin The name of the transform parameter on the motion graph for any character that enters the water zone. This wil
Key g be set with the water zone's transform.
Flow Vector3 A flow velocity (m/s) for the water zone.
See Also

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-BoxCollider.html

CharacterEventKickTrigger MonoBehaviour

Overview
The CharacterlmpactHandler consumes impact events such as bullet hits, and uses them to apply a force to the character's

NeoCharacterController.

Inspector

Character Impact Handler (Script)

Properties
NAME TYPE DESCRIPTION
Force Multiplier Float A multiplier to apply to inbound forces for a more exagerrated effect.
Max Force Float The maximum force that can be applied to the character.

See Also

NeoCharacterController

ConstantRotatingPlatform MonoBehaviour

Overview

The ConstantRotatingPlatform behaviour is used to create a moving platform that constantly turns at a set rate.

Inspector

H + Constant Rotating Platform (Script)

Rotation Per Second 0

Properties

NAME TYPE DESCRIPTION

Rotation Per Second Vector3 The rotation in degrees on each axis per second.
See Also

Moving Platforms

ContactLadder MonoBehaviour

Overview

The ContactLadder behaviour defines a ladder in the scene.

Inspector

Contact Ladder (Script)

Properties
NAME TYPE
Trigger Zone TriggerZone
Rough Collider BoxCollider
Property Key String
Top Vector3
Spacing Float
Length Float
Width Float

See Also

Ladders

InteractiveLadder

Motion Graph Parameters And Data

DESCRIPTION

The trigger area for detecting contact with the ladder.

The box collider for the ladder geometry.

The motion graph parameter name to set the ladder to.

The top of the ladder surface relative to the transform position.

The spacing between rungs on the ladder.

The length of the ladder along the ladder transform down axis from the top offset.

The width of the ladder surface.

https://docs.unity3d.com/Manual/class-BoxCollider.html

DrivenMovingPlatform MonoBehaviour

Overview

The DrivenMovingPlatform behaviour is added to a rigidbody that is driven by physics or a script and turns it into a moving
platform. It tracks the position and rotation of the object in a way that the NeoCharacterController can use.

Inspector

B 7 briven Moving Platform (Script)

Properties

The DrivenMovingPlatform has no properties exposed in the inspector;

See Also

Moving Platforms

NeoCharacterController

https://docs.unity3d.com/Manual/class-Rigidbody.html

DrowningMotionGraphWatcher MonoBehaviour

Overview

The DrowningMotionGraphWatcher watches a float parameter on the character motion graph and if the float value exceeds the

specified amount then it starts to apply damage to the player's health manager.

Inspector

Drowning Motion Graph Watcher (Script)

Properties
NAME TYPE DESCRIPTION
Parameter Key String The name of the float parameter on the motion graph that the watcher should track.
D
ama.ge. String A descriptive name for the damage that can be used in any HUD logs.
Description
Damage Type Dropdown The damage type the drowning should be classed as. Used for filtering the damage.
Hold Breath . .
© . red Float The value the parameter needs to reach before damage is applied.
Duration
Damage Spacing Float Damage will .be applied every time the parameter passes an increment of this amount above the
drown duration.
Damage Amount Float The amount of damage to apply to the character.
See Also

Health and Damage

Motion Graph Parameters And Data

InteractiveLadder MonoBehaviour

Overview

The InteractiveLadder behaviour defines a ladder in the scene.

Inspector

H ¥ Interactive Ladder (Script)

Properties

The InteractiveLadder inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Rough Collider BoxCollider The box collider for the ladder geometry.
Property Key String The motion graph parameter name to set the ladder to.
Top Vector3 The top of the ladder surface relative to the transform position.
Spacing Float The spacing between rungs on the ladder.
Length Float The length of the ladder along the ladder transform down axis from the top offset.
Width Float The width of the ladder surface.
See Also
Ladders
Interaction
ContactLadder

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-BoxCollider.html

JumpPad MonoBehaviour

Overview

The JumpPad behaviour detects when a character touches it and passes a move vector to its motion graph.

Inspector

< Jump Pad (Script)

jumpPad

Properties
NAME TYPE DESCRIPTION
Parameter Name String The motion graph parameter name to set with the jump vector.
Boost Vector Vector3 The velocity vector to give to the character.
Boost Relative Float The space in which to apply the vector. If this is set to self, the vector will be relative to this object's
To transform.
Cooldown Float The cooldown time to prevent the jumppad registering multiple times.
See Also

Motion Graph Parameters And Data

MotionController Behaviour

Overview

The MotionController is the workhorse of the MotionGraph system. It handles the actual movement of the character, ticks the

motion graph, and sends input and information to the motion graph that it needs to react to the player and environment.

Inspector

B @ Motion Controller (S

otion Graph Editor

Attach Debugger

UpperBodyRoot (Transform)

Change ()

On Ground Impact (Vector3)

List is Empty

On Head Impac
List is Empty

The Show Motion Graph Editor button will show the motion graph editor, with this controller's motion graph opened for

editing. If the controller is attached to a character in the scene and the game in play mode, then the opened graph will update at

runtime to show the current state.

The Attach Debugger button will open the motion debugger and attach the character to start recording its movement details.

Properties
Motion Graph & Data

NAME TYPE
Moti
otion MotionGraph
Graph
Override MotionGraphDataOverrideAsset

Colliders

DESCRIPTION

The motion graph for the controller to use (a unique instance will be instantiated from
this).

The motion data override for the controller to use.

NAME TYPE

Use
Crouch Boolean
Jump

Misc

NAME TYPE
Manual

L Boolean
Initialisation
Upper Bod

PP y Transform
Root

Force Events

NAME

On Motion Graph
State Change

On Ground Impact

On Head Impact

On Body Impact

STEP TRACKING

NAME TYPE
Step Speed Float
Cap
Use Dumb
. Boolean
Stepping
See Also

The Motion Graph
Motion Controller Data

Unity CharacterController

DESCRIPTION

If this is enabled, then the collider will provide an offset that can be used to give extra height to a jump so it
appears the legs are tucked up instead of the head ducked down.

DESCRIPTION

Should the component be initialised manually or automatically in Awake and Start? Switch this on for

things like networked players.

TYPE

UnityEvent

UnityEvent

UnityEvent

UnityEvent

The root transform of the head hierarchy (used to determine heading).

DESCRIPTION

This event is called whenever the controller graph state changes (only includes the end state when
traversing multiple states in the graph).

This event is called when the controller first contacts the ground after being airborne.
Parameters = Vector3 impulse, float mass

This event is called whenever the top of the controller capsule makes initial contact with a collider.
Parameters = Vector3 impulse, float mass

This event is called whenever the sides of the controller capsule makes initial contact with a
collider.
Parameters = Vector3 impulse, float mass

DESCRIPTION

The maximum speed when calculating distance travelled for footsteps.

Switch this to true if you aren't tracking steps in the motion graph, and they will simply be counted at a
default rate whenever the character is grounded.

Unity Execution Order of Event Functions

https://docs.unity3d.com/Manual/class-CharacterController.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

NeoCharacterController Behaviour

Overview

The NeoCharacterController handles movement of characters and their interaction with the physical environment.

Inspector

' Meo Character Controller (Script)

Properties
Collisions

NAME

Depenetration
Mask

Skin Width
Slope Limit
Slope Friction

Ledge Friction

Wall Angle

TYPE

LayerMask

Float

Float

Float

Float

Float

DESCRIPTION

The physics layers that the character will depenetrate from. This cannot include anything outside of
the collision matrix for the gameobject layer. Use this to filter out small dynamic props that should
not influence the player.

When performing the move loop, the capsule is shrunk by this amount. When testing for contacts it is
grown by this amount.

The maximum distance above the ground to apply a "sticky" downforce on the frame after leaving the

ground.

The friction of ground contacts when standiong on a slope. At 1, all downward velocity will be
cancelled out. At 0, the character will slide down the slope.

The friction of ground contacts when overhanging a ledge. At 1, the character will not slide off the
ledge.

The angle (in degrees) from the vertical for a surface to be considered a wall.

https://docs.unity3d.com/Manual/LayerBasedCollision.html

NAME

Deflection
Curve

Step Height

Ground Snap
Height

Stick To
Ground

Ground Hit
Lookahead

TYPE

AnimationCurve

Float

Float

Boolean

Float

DESCRIPTION

A curve that defines the deflection drop off based on angle from normal. Y-axis is the deflection
multiplier, X-axis is the normalised angle (0 = 0 degrees, 1 = 90 degrees)

The character will traverse any ledge up to their radius in height. If the step is equal to or below the
step height then the character will not lose any horizontal speed when stepping up, and any vertical
movement does not count to the character's velocity calculations.

The maximum distance above the ground to apply a “sticky" downforce on the frame after leaving the
ground in certain conditions. This prevents leaving the ground when stepping onto down-slopes or
off low steps.

Should the character stick to the ground when walking down steep slopes or over the top of ramps.

The distance to check ahead of a contact (based on contact normal) to see if it was a slope or a step.
Set this higher if you are using physics with bevelled corners instead of primitives (naughty).

Rigidbody and Character Interaction

NAME

Push
Rigidbodies

Low
Rigidbody
Push Mass

Max
Rigidbody
Push Mass

Rigidbody
Push

Pushed By
Characters

Push
Characters

Character
Push

TYPE DESCRIPTION

Boolean Do not apply forces to non-kinematic rigidbodies if false.

Float

Any rigidbodies this mass or below will be pushed with the full push multiplier. Above this and it drops off to

zero at max mass.

Float Any rigidbodies above this mass will have zero force applied to them.

A multiplier for the push force at or below the minimum push mass. At normal gravity with no physics materials
Float applied, a Tm box will be on the threshold of moving when this is set to 10. Higher will push the box up to the
character's velocity with greater acceleration.

Boolean Can this character be pushed by other INeoCharacterControllers.

Boolean Can this character push other INeoCharacterControllers.

Float

A multiplier for the push force when pushing characters at or below this characters mass. Drops to 0 when

approaching max push mass.

Moving Platforms

NAME

Inherit

Platform Yaw

TYPE DESCRIPTION

Boolean Does the character inherit yaw changes from moving platforms.

https://docs.unity3d.com/Manual/EditingCurves.html

NAME TYPE DESCRIPTION

What component of the platform velocity should be included in the character velocity. Options are as
follows:
® None - any movement of the platform is ignored when calculating the character velocity. This
prevents exponential acceleration if the character tracks momentum.

Inherit ¢ Full - the movement of the platform is included in character velocity calculations.
Platform Dropdown e Horizontal Only - only the horizontal movement of the platform is included in character velocity
Velocity

calculations. Vertical movement is ignored.
® Vertical Only - only the vertical movement of the platform is included in character velocity
calculations. Horizontal movement is ignored.

Gravity
NAME TYPE DESCRIPTION
Gravity Vector3 The gravity vector (direction and acceleration) for the character.

If this is true, then adjusting the gravity direction will reorient the character so that down is in the

i With i Bool
OrientUpWithGravity oolean direction of gravity, and up is opposed.

UpSmoothing Float The duration (in seconds) it takes to rotate the character up vector a whole 180 degrees.

Note

Due to a change in the way ground slope collisions are resolved, the slope speed curve settings have been removed and are now
applied to the movement states in the motion graph directly.

See Also

NeoCharacterController

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

SimpleMovingPlatform MonoBehaviour

Overview

The SimpleMovingPlatform behaviour is used to create a moving platform that moves between 2 points at set intervals.

Inspector

H + Simple Moving Platform (Script)

Quadratic

Properties

NAME TYPE DESCRIPTION

Offset Position Vector3 The position to move to (offset from current position in world space).

Movement Duration Float The time it takes to move.

Pause Duration Float The pause before returning to original position or moving again.

Start Pause Float The delay before the first move.

Easing Mode Dropdown The easing mode for the movement. Options are: Linear, Quadratic, Cubic, Quartic.
See Also

Moving Platforms

SimpleRotatingPlatform MonoBehaviour

Overview

The SimpleRotatingPlatform behaviour is used to create a moving platform that rotates at set intervals.

Inspector

H ¥ Simple Rotating Platform (Script)

Properties

NAME TYPE DESCRIPTION

. The total rotation for each rotation phase (relative to the starting rotation of the phase, in world
Rotation Vector3
space).
Movement L
v . Float The time it takes to move.

Duration

Pause Duration Float The pause before returning to original position or moving again.

Start Pause Float The delay before the first move.

Easing Mode Dropdown The easing mode for the movement. Options are: Linear, Quadratic, Cubic, Quartic.
See Also

Moving Platforms

WaypointMovingPlatform MonoBehaviour

Overview

The WaypointMovingPlatform behaviour is used to create a moving platform that moves between a set of waypoints.

The waypoints include position and rotation and can be moved to in sequence or directly. The waypoints can also be set to loop

round from last back to first, or to form a broken chain.

Movement can be triggered on startup so the platform loops through waypoints, or it can be triggered via scripts and
UnityEvents. Using scripting and events you can set the platform to move to a specific waypoint, either via the intermediate

waypoints or directly, or you can start and stop the platform looping through waypoints.

Inspector

B ¥ constant Rotating Platform (Script)

Rotation Per Second

Properties
NAME TYPE DESCRIPTION
Starting . . .
- Integer The waypoint the platform starts at (will be repositioned on start).
Waypoint
Speed L L . .
Curve AnimationCurve An animation curve to apply easing to movement between waypoints.
Delay Float The delay between waypoints when moving through a sequence. The platform will stop at a waypoint for

this duration.

What to do on start. Options are as follows:
® Nothing - the platform will not do anything until another script or component triggers it.
® Loop Forwards - the platform will keep looping through all of the waypoints in order until
stopped. If the waypoints are not circular, it will change directions when it reaches the last waypoint.
® Loop Backwards - the platform will keep looping through all of the waypoints in reverse order
until stopped. If the waypoints are not circular, it will change directions when it reaches the first
waypoint.

On Start Dropdown

If the waypoints are circular then there is a direct route from the first to last waypoints without going

Circular Boolean
through the others.

The inspector then shows a list of waypoints with the following properties:

NAME TYPE DESCRIPTION
Position Vector3 The position of the platform at this waypoint.

Rotation Vector3 The rotation of the platform at this waypoint.

Time To Waypoint X Float The journey time to reach the next platform in the sequence.

Use Current Transform Button Set the position and rotation to match the platform transform in the scene.

Move To Waypoint Button Instantly move the platform transform to the position and rotation of the waypoint in the scene.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/EditingCurves.html

NAME

Up

Down
Insert After

Remove

See Also

Moving Platforms

TYPE

Button

Button

Button

Button

DESCRIPTION

Move this waypoint up in the sequence.

Move this waypoint down in the sequence.

This will insert a new waypoint immediately after this one.

This will remove the waypoint from the list.

MotionGraph ScriptableObject

Overview

The MotionGraph scriptable object contains the motion graph layout and components. During runtime, a unique instance of the

graph will be instantiated so that any modifications to the properties are unique to the character in question.

Inspector
(_3 NeoFPSMotionGraph

Show Motion Graph Editor

Properties

The MotionGraph has no properties exposed in the inspector.

The Show Motion Graph Editor button will open the motion graph editor window, editing this graph.

See Also

The Motion Graph

MotionGraphDataOverrideAsset ScriptableObject

Overview

The MotionGraphDataOverrideAsset scriptable object is created from the motion graph editor in the Motion Data section. It is
permanently attached the the graph you were editing when creating the asset, and will allow you to override each of the data

entries on the graph.

Inspector

(_3 MNeoFPSMotionGraphDataOverride

Properties

The MotionGraphDataOverrideAsset displays an override entry for each of the motion data entries on the motion graph it is

attached to. For more information see Motion Graph Parameters And Data .

See Also

The Motion Graph

Motion Graph Parameters And Data

SlopeSpeedCurve ScriptableObject

Overview

The SlopeSpeedCurve scriptable object is used by the grounded Movement state to allow more control over the character's speed
on slopes. The X axis of the curve represents the slope, from slope limit downhill at -1 to completely flat at 0 and up to the
character slope limit uphill at 1. The y value is the amount of horizontal speed that is maintained when deflected by the slope.

The Movement state aligns its target velocity to the ground surface, clamps the new move vector to the original movement speed
and then multiplies by the result of the slope speed curve at the relevant angle. This means that the character can maintain their
speed up to a set angle and then it drops off slowly as they approach the limit instead of hitting an invisible wall as the slope

angle increases.
Inspector
a DefaultSlop

Properties

NAME TYPE DESCRIPTION

The desired speed curve as specified above. Ensure that the x-axis extends from -1 to 1 and the y-axis does

Curve AnimationCurve
not go below 0.

See Also

Movement MotionGraphState

https://docs.unity3d.com/Manual/EditingCurves.html

NeoFPS Input System

Overview

NeoFPS is built from the ground up to facilitate developing first person shooters for PC and console.

In order for NeoFPS' input system to work it requires a number of custom project settings to be applied. For more information
see the Input Settings page.

Unity's existing input system has a number of shortcomings when designing a control scheme. This has led Unity to develop a

new input system which is currently in testing.
NeoFPS extends the current input system to address a number of its problems. It adds features such as:

Runtime bindable keys
Consistent gamepad profiles
Mouse smoothing and accleration

Input contexts (character, menu, etc).

Once Unity's new input system is in full release the NeoFPS system will be adapted to that. You can also completely replace the
NeoFPS input system if you have an input solution that you prefer. Look at the existing input handlers to see which properties and
methods they access and use these with your preferred system.

Input Contexts

In order to categorise inputs and control which inputs are active at any time, NeoFPS makes use of input contexts. These contexts
are defined in the FpsInputContext generated constant through the [NeoFpsinputManager][6] asset. Each input handler defines
its input context in script and its inputs will only be processed if its context is None or if no higher priority context is active.
Context priority is simply based on the constant value, with higher numbers being higher priority. A context becomes active when
one or more input handlers with that context are active. For example, if a Ul element has a InputMenu handler attached to it, then
when the Ul element is active all character input will be blocked.

Keyboard

NeoFPS is preset with a full WASD control scheme, but any keys can be remapped from the in-game menu. The available buttons
and their default key bindings can be specified in the [NeoFpsinputManager][6] asset.

Movement
Forward
Backward

Left

Right

Jump Space
Sprint (Hold)

Sprint (Toggle) LeftShift
Crouch (Hold)

Crouch (Toggle) LeftControl
Interaction

Use

Pick Up

Combat

Primary Fire Moused

Secondary Fire Mouse2

At the top of the input bindings menu is a drop down to reset to defaults. This also allows you to select a keyboard layout.
Resetting to a different keyboard layout will map the keys so that the hand positions match a Qwerty keyboard. Available
keyboard layouts currently include:

Qwerty
Azerty
Qwertz

Dvorak

Colemak

To request more keyboard layouts, please contact support via the discord, or using support@neofps.com

Mouse

NeoFPS features detailed mouse support with inverse look, smoothing and acceleration.

Horizontal Mouse Sensitivity

Vertical Mouse Sensitivity

Invert Mouse No
Mouse Acceleration Enabled
Mouse Acceleration Amount ——

Mouse Smoothing Enabled

Mouse Smoothing Amount —

Smoothing

Mouse smoothing is performed with a weighted average system. You can customise the number of frames to look back as well as
the weighting to apply in the MouseAndGamepadAimController behaviour.

Acceleration

Acceleration can be customised via the MouseAndGamepadAimController behaviour, including setting limits and whether the
acceleration is linear or quadratic.

Gamepads
Gamepad support in Unity can be quite complicated, with the same gamepad being mapped differently across platforms.
For more information see the Unity Wiki

NeoFPS maps all of the available axes and buttons of the gamepad and wraps them up into preset profiles. The player can then
choose between these profiles from the in-game menus.

Use Gamepad Yes
Gamepad Profile XBox 360
Invert Gamepad Look

Horizontal Analog Sensitivity

Vertical Analog Sensitivity

On console those profiles might be fairly minimal such as standard and south paw. On standalone builds there might be a
number more options as more individual controllers are supported. You can set up your own gamepad profiles via the
[NeoFpsinputManager][6].

See Also

Input Settings

Creating Custom Input Handlers

https://wiki.unity3d.com/index.php?title=Xbox360Controller

Input Settings

Overview

NeoFPS uses controller profiles to achieve consistent mapping for game controllers across multiple platforms. Since the button
layouts provided to Unity by the various controller drivers are not consistent, NeoFPS requires every available axis to be mapped
in the input settings and then builds the profiles in code using conditional compilation for the different platforms. Examples of the

different controller mappings can be found on the Unify Community Wiki.
For more details of how Unity handles input out of the box, see the Unity Input Settings.

A new input system is in development at Unity and available to use through the package manager in the editor. Once this is in full

release, a NeoFPS implementation will be added that makes use of it.

It should also be noted that you can use an alternative input system in NeoFPS by replacing the included input handlers with yoor

own implementations.

Required Axes

The following are the axes that NeoFPS uses:

Movement

PROPERTIES

Name = Horizontal
Negative Button = left
Positive Button = right
Alt Negative Button = a
Alt Negative Button = d
Gravity = 3.0

Dead = 0.001
Sensitivity = 3.0

Snap = true

Invert = false

Type = Key or Mouse Button
PROPERTIES

Name = Horizontal
Gravity = 0.0

Dead = 0.3

https://wiki.unity3d.com/index.php?title=Xbox360Controller
https://docs.unity3d.com/Manual/class-InputManager.html

PROPERTIES

Sensitivity = 1.0

Snap = false

Invert = false

Type = Joystick Axis

Axis = X Axis

Joy Num = Get Motion from all Joysticks

PROPERTIES

Name = Vertical

Negative Button = down

Positive Button = up

Alt Negative Button

1
wn

I
=

Alt Negative Button

Gravity = 3.0

Dead = 0.001

Sensitivity = 3.0

Snap = true

Invert = false

Type = Key or Mouse Button

PROPERTIES

Name = Vertical

Gravity = 0.0

Dead = 0.3

Sensitivity = 1.0

Snap = false

Invert = true

PROPERTIES

Type = Joystick Axis

Axis = Y Axis

Joy Num = Get Motion from all Joysticks
Mouse Controls

PROPERTIES

Name = Mouse X

Gravity = 0.0

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = X Axis

PROPERTIES

Name = Mouse Y

Gravity = 0.0

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = Y Axis

PROPERTIES

Name = Mouse ScrollWheel

Gravity = 0.0

PROPERTIES

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = 3rd Axis (Joysticks and Scrollwheel)
Ul

PROPERTIES

Name = Submit

Positive Button = return

Alt Positive Button = enter

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = false

Invert = false

Type = Key or Mouse Button

PROPERTIES

Name = Submit

Positive Button = joystick button 0

Alt Positive Button = joystick button 16

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = false

PROPERTIES

Invert = false

Type = Key or Mouse Button
PROPERTIES

Name = Cancel

Positive Button = escape
Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0
Snap = false

Invert = false

Type = Key or Mouse Button

Individual Axes

Axes 1 to 5 are mapped to generic axes with the names Gamepad Axis 1 to Gamepad Axis 5 and the following settings. The
Axis property is set to the relevant entry (1-5).

PROPERTIES
Gravity = 0.0
Dead = 0.2
Sensitivity = 1.0
Snap = false

Type = Joystick Axis

Each axis is also mapped with and inverted version called Gamepad AxisInv 1 to Gamepad Axislnv 5. As you would expect, the
non-inverse axes have the invert property set to false, while the inverse axes have the property set to true.

Individual Buttons

Gamepad buttons are mapped with the names Gamepad Button 0 to Gamepad Button 19 and the following settings. The
Positive Button property is set to joystick button , where is replaced with the corresponding button number.

PROPERTIES

Gravity = 1000.0

PROPERTIES

Dead = 0.001

Sensitivity = 1000.0

Snap = true

Invert = false

Type = Key or Mouse Button

Button Axes

On some platforms, some controller buttons are actually presented as axes. To handle these cases the buttons are mapped with
the names Gamepad AxisBtn 3 to Gamepad AxisBtn 10 with the following settings. The Axis property is set to the relevant
entry (3-10).

PROPERTIES

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = true

Invert = false

Type = Joystick Axis

There are also 2 inverse button axes called Gamepad AxisBtninv 6 and Gamepad AxisBtnInv 7 where the Invert property is
set to true.

See Also

NeoFPS Input System
Unity Input Settings

Unify Community Wiki - Gamepads

https://docs.unity3d.com/Manual/class-InputManager.html
https://wiki.unity3d.com/index.php?title=Xbox360Controller

Creating Custom Input Handlers

Overview

NeoFPS includes a number of example input handlers:

InputCharacterMotion
InputFirearm
InputGame
InputMeleeWeapon

[]
L]
[]
L]
e InputThrownWeapon
e |nputinventory

Handlers are attached to objects that require a unique control sceme. For example, each firearm has an input handler that is
different from the handlers attached to melee weapons.

Handlers are context based and will not return any input when the context is not current.

FpsinputButton

NeoFPS uses a generated constant to define the available button/key inputs. This constant can be expanded based on your game
requirements by changing the ConstantsSettings and regenerating the constant.

Take care that reordering entries in the constant will break those values in the inspector as they are stored based on index. Code
will adapt to the changes in order, but inspector properties will need checking.

Fpsinput Base Class

All input handlers derive from the FpsInput class. This controls context and exposes functions similar to Unity's Input class but

uses the FpsInputButton constant instead of key codes and button IDs in order to separate the input from the key bindings.
The following is a simple example input handler:

public class InputExample : FpsInput

{
public override FpsInputContext inputContext
{

get { return FpsInputContext.Character; }

}

void Update()

{
if (!hasFocus)

return;

if (GetButtonDown (FpsInputButton.PrimaryFire))

{
// React to the fire button
}
}
}

See Also

InputAbilityFirearm MonoBehaviour

Overview

The InputAbilityFirearm behaviour reads the Ability button and uses it to fire the ModularFirearm that it's attached to. These
firearms can be placed in the character hierarchy outside of the inventory system to create things like shoulder mounter

launchers.

Inspector

B 7 Input Ability Firearm (Script)

Properties

The InputAbilityFirearm behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input
Unity Input

Modular Firearms

https://docs.unity3d.com/Manual/class-InputManager.html

InputCharacterMotion MonoBehaviour

Overview

The InputCharacterMotion behaviour passes character input to the character motion controller.

Inspector

H + Input Character Motion (Script)

Features

L
o
o
o
o
o
o
o

Properties
NAME TYPE DESCRIPTION
Enable . N
. Boolean Should double tapping a move direction dodge the character.
Dodging
Dodge . S e .
. Float Multiple taps of a direction within this time range register as a double tap.
Timeout
Enable
Charged Boolean Does holding the jump button charge up a jump or does the character dodge as soon as the button is pressed.
Jump
Jump Charge
Time Float The time it takes to charge up a full power jump if charged jumps are enabled.
Toggle Lean Boolean Toggle leaning or hold to lean.
Jump Key String The key to the jump trigger parameter in the character motion graph.
Jump Charge Strin The optional key to the jump charge float parameter in the character motion graph. This is used for charging
Key 9 stronger jumps.
Jump Hold Strin The key to the jump hold switch parameter in the character motion graph. This is used for movement like
Key 9 swimming or flying where holding jump moves up.
Crouch Key String The key to the crouch switch parameter in the character motion graph.
Crouch Hold String The optional key to the crouch hold switch parameter in the character motion graph. This is used for

Key movement like swimming or flying where holding jump moves down.

NAME
Sprint Key

Sprint Hold
Key

Dodge Left
Key

Dodge Right
Key

Ability Key

See Also

NeoFPS Input

Unity Input

TYPE

String

String

String

String

String

The Motion Graph

DESCRIPTION

The key to the sprint switch parameter in the character motion graph.

The key to the sprint hold switch parameter in the character motion graph.

The optional key to the dodge left trigger parameter in the character motion graph.

The optional key to the dodge right trigger parameter in the character motion graph.

The optional key to the "ability" trigger parameter in the character motion graph. This can be used for a variety
of uses such as dashes, teleports, etc.

https://docs.unity3d.com/Manual/class-InputManager.html

InputCharacterSlowMo MonoBehaviour

Overview

The InputCharacterSlowMo behaviour reads the Ability button input and toggles slow-motion effects via the character's

SlowMoSystem.

Inspector

B @ Input Character Slow Mo (Script)

Featu

Properties

NAME TYPE DESCRIPTION

Time Scale Float The time-scale to use for ability based slow-mo.

Drain Rate Float The rate to drain slow-mo charge (time scale will return to normal when charge reaches zero).
See Also

NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputFirearm MonoBehaviour

Overview

The InputFirearm behaviour handles input for the modular firearms

Inspector

B 7 Input Firearm (Script)

Aiming Key aiming

Properties

NAME TYPE DESCRIPTION

Aiming Key String The property key for the character motion graph (switch parammeter).
See Also

NeoFPS Input
Unity Input

Modular Firearms

https://docs.unity3d.com/Manual/class-InputManager.html

InputGame MonoBehaviour

Overview

The InputGame behaviour is a placeholder input handler for game specific input (currently does nothing).

Inspector

H + Input Game (Script)

Properties

The InputGame behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

Inputinventory MonoBehaviour

Overview

The Inputinventory manages the character inventory.

Inspector

H + Input Inventory (Script)

Properties
NAME TYPE
Repeat Delay Float
Scroll Delay Float
See Also

NeoFPS Input
Unity Input

The Inventory

DESCRIPTION

The delay between repeating input when holding the next or previous weapon buttons.

The delay between repeating input when rolling the mouse scroll wheel.

https://docs.unity3d.com/Manual/class-InputManager.html

InputLockpick MonoBehaviour

Overview

The InputLockpick behaviour uses the NeoFPS input system to control a simple lock-picking mini-game.

Inspector

B 7 Input Lockpick (Script)

Analogue Turn Rate

Properties

NAME TYPE DESCRIPTION

Analogue Turn Rate Float The maximum turn rate of the pick object in degrees per second.
See Also

NeoFPS Input
Unity Input

LockPickPopup3D Behaviour

https://docs.unity3d.com/Manual/class-InputManager.html

InputMeleeWeapon MonoBehaviour

Overview

The InputMeleeWeapon behaviour sends input to a MeleeWeapon behaviour on the same object as this.

Inspector

h ¥ Input Melee Weapon (Script)

Properties

The InputMeleeWeapon behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputMenu MonoBehaviour

Overview

The InputMenu behaviour is added to Ul elements thst should block character input when visible. It adds an input context to the

FpsinputContext.Menu context when enabled and removes it when disabled.

Inspector

¥ Input Menu (Script)

Properties

The InputMenu behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input

InputThrownWeapon MonoBehaviour

Overview

The InputThrownWeapon behaviour sends input to a ThrownWeapon behaviour on the same game object.

Inspector

h + Input Thrown Weapon (Script)

Properties

The InputThrownWeapon behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputWieldableTool MonoBehaviour

Overview

The InputWieldableTool behaviour sends input to a WieldableTool behaviour on the same game object.

Inspector

h + Input Thrown Weapon (Script)

Properties

The InputWieldableTool behaviour has no properties exposed in the inspector.

See Also

NeoFPS Input
Wieldable Tools

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

MouseAndGamepadAimController MonoBehaviour

Overview

The MouseAndGamepadAimController behaviour handles mouse and gamepad input for moving the camera, including

smoothing and acceleration.

Inspector

B @ Mouse And Gamepad Aim Controller (Script)

Pitch Transform

Constraints

Properties

NAME
Yaw Transform

Aim Yaw Transform
Steering Rate

Pitch Transform
Max Pitch
Constraints Damping

Constraints
Tolerance

YawConstraintsFalloff

None (Transform)

(Transform)

Aimer (Transform)

TYPE

Transform

Transform

Float

Transform

Float

Float

Float

Float

DESCRIPTION

The transform to yaw when aiming. This should be a parent of the pitch transform.

This optional transform detaches the character direction from the aim direction.

The time taken to turn the character to the aim-yaw direction (if Aim Yaw Transform is set). 0
= call LerpYawToAim() manually, 1 = instant.

The transform to pitch when aiming. This should be a child of the yaw transform.

The maximum pitch from horizontal the aimer can rotate.

The amount of damping applied when rotating the camera to match constraints.

Once the angle outside constraints goes below this value, the camera will snap to the
constraints. Larger values will have a visible effect.

An angle range from the yaw constraint limits where the input falls off. This gives the effect of
softer constraint limits instead of hitting an invisible wall.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

NAME

Mouse Turn Angle
Min

Mouse Turn Angle
Max

Relative To

Mouse Smoothing
Buffer Size

Mouse Smoothing
Multiplier Min

Mouse Smoothing
Multiplier Max

Mouse Accel Speed

Multiply Min

Mouse Accel Speed

Multiply Max

Mouse Acceleration

Max

Mouse Acceleration

Type

Analog Turn Angle
Min

Analog Turn Angle
Max

Analog Curve

See Also

NeoFPS Input

Unity Input

TYPE

Float

Float

Transform

Float

Float

Float

Float

Float

Float

Dropdown

Float

Float

AnimationCurve

DESCRIPTION

Number of degrees for 1 unit of mouse movement if sensitivity is set to 0.

Number of degrees for 1 unit of mouse movement if sensitivity is set to 1.

The transform to calculate the input relative to. If the character can tilt left or right then this
transform is required to prevent tilt messing up the yaw calculations.

The number of frames to store and use for the mouse smoothing history.

The weight multiplier for the previous frame when averaging if the smoothing is set to
minimum.

The weight multiplier for the previous frame when averaging if the smoothing is set to
maximum.

The base acceleration multiplier when acceleration is set to the minimum.

The base acceleration multiplier when acceleration is set to the maximum.

The maximum multiplier acceleration can apply to the mouse input (0 means no maximum).

Does mouse speed affect the input linearly or based on the square of the speed. Options are
Linear, Quadratic.

Number of degrees per second for the gamepad analog at its limit, if sensitivity is set to 0.

Number of degrees per second for the gamepad analog at its limit, if sensitivity is set to 1.

The input curve for analog input. This can be used to define a deadzone, and damp smaller
movements.

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-InputManager.html

NeoFpsInputManager ScriptableObject

Overview
The NeoFpsinputManager scriptable object handles the

Inspector
('3 FpsManager_Input

Input Buttons

Input Axes

Input Contexts

Gamepad Profiles

Add Profile

uttonBorCircle

YorTriangle

Properties

The NeoFpsIinputManager inspector is split into multiple sections:

Input Buttons

The input buttons section defines the button or key style controls for the game, as well as their default key bindings.

NAME TYPE DESCRIPTION

Default The keyboard layout that the buttons below are set up for (the system converts to qwerty and then on to the
Keyboard Dropdown required layout when resetting to defaults. Available options are: Qwerty, Azerty, Qwertz, Dvorak,

Layout Colemak.

Each button has the following properties:

NAME TYPE DESCRIPTION
Name String The input button name, as it was referenced in code.
Display . . - .
String The name as shown in the key binding game options.
Name
Category Dropdown The category of the button, used to organise the buttons in the key binding game options.
Context Dropdown The context is used to define when key bindings can be shared by multiple input buttons. An example is

weapons that can be aimed, vs weapons that have a secondary function.

Default The primary and secondary key bindings for the input button. These will be overriden by the player's key
Dropdown(s) - .
Keys binding settings.

Changing any of the buttons in the array or adding / removing constants requires the script to be regenerated. There are also a
number of predefined buttos that will also be added for use in menus (None, Menu, Back and Cancel).

The Generate FpsinputButton Constants button will generate the button constants script. Revert To Last Generated will undo
any changes to the buttons to the values when the script was last generated. Create Snapshot will store the current button setup,
allowing you to revert back to this state using the Revert To Snapshot button, The snapshot will be reset when the script is
generated.

Input Axes

The input axes are used to track analogue and variable axes in input handlers. The input axes are a generated constants script.
Changing any of the constants in the array or adding / removing constants requires the script to be regenerated.

NAME TYPE DESCRIPTION
Mouse X Axis String The name of the mouse x axis in the Unity input settings.

Mouse Y Axis String The name of the mouse y axis in the Unity input settings.

Mouse Scroll Axis String The name of the mouse scroll wheel axis in the Unity input settings.
Constants String Array The names of the input axes.

Gamepad Profiles

Each gamepad profile under this section can be expanded to map its controls. The Name property is the profile name as shown in
the game's gamepad options. The Analogue Setup property defines what each analogue stick on the gamepad controls. The rest
of the properties are mappings for each of the gamepad buttons based on an XBox or PS4 style controller (2 analogues, triggers,
d-pad and buttons). Gamepads are detected when connected, and the primary gamepad will be mapped to the profile for player
character control. Each gamepad button can be mapped to multiple inputs. The Add Button... dropdown will show all of the valid
inputs that you can apply. If the gamepad button already has an input then this will only show inputs that are able to clash with
this one.

Input Contexts

Input contexts are used by input handlers to define which handler should process input and which should be ignored at any one
time. Pushing a context to the stack will only allow input handlers with that context to process input. The input context is a
generated constants script. Changing any of the constants in the array or adding / removing constants requires the script to be

regenerated.

NAME TYPE DESCRIPTION

Constants String Array The names of the input contexts.
See Also

NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

Interaction With The World

Overview

Unity and NeoFPS provide a number of ways for characters to interact with the world.

Interactive Objects

NeoFPS also has its own system of interactive objects. These allow the player to use items in order to trigger actions.
Doors are a good example of interactive objects, and NeoFPS includes a number of examples to use as reference.

Trigger Zones

Trigger zones are a fundamental concept for level design and game design as a whole. For information on how to make use of
them, please see the Unity documentation.

NeoFPS has a number of helper behaviours that simpllify using triggers to drive game mechanics.

The CharacterZoneTrigger and CharacterZoneTriggerPersistant fire code events when a character enters. These events are not tied
to a specific implementation of the NeoFPS character and the only requirement is that they inherit from the ICharacter interface.

Some scripting is required to use these behaviours.

The SoloCharacterZoneTrigger and SoloCharacterZoneTriggerPersistant fire Unity events when an FpsSoloCharacter enters. As
such, they require less scripting knowledge to use, but they are constrained to the specific character implementation or characters
that derive from this.

See Also

Interactive Objects
Doors and Locks

Unity Colliders

https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/CollidersOverview.html

Doors and Locks

Overview

NeoFPS includes a number of example doors. Each of which can be opened and closed using either trigger zones or interactive

objects.

Kinematic Hinge Doors

These are swing doors that use simple procedural animation to open or close. They use an optional double hinge system to allow
for opening in both directions without overlapping into the frame.

Kinematic doors will push the player back and do not react to physics in the scene.

For more information see the KinematicHingeDoor reference.

Physics Hinge Doors

These are swing doors that use a Unity HingeJoint to drive the door's animation. These doors react physically to the environment
and to player actions.

Physics hinge doors can only open in one direction and will automatically latch when closed.

For more information see the PhysicsHingeDoor reference.

Sliding Doors

Sliding doors involve one or more sliding components and are animated procedurally.

For more information see the SlidingDoor reference.

Elevators Doors

Elevators are a complex system of interactive objects, moving platforms and sliding doors. The elevator cab moves up and down
between floors. Only the doors for the floor the cab is currently on can open and only when the cab has stopped moving. The cab
inner door sections are shared with each of the outer doors, making them sync up as any of those are opened.

For more information see the ElevatorController reference.

Locked Doors

Difficulty: 35

Lockpicks Remaining: 5

NeoFPS also features a system for locking and unlocking doors. The majority of locks rely on the keyring system. The KeyRing is
an inventory object which tracks the key IDs that a character knows. This can include keycodes for entering into keypads, as well
as keys for physical locks. Picking up a keyring will merge the contents with the one in the character inventory.

When you set up a locked door, you specify a key ID. If no ID is set, then the door must be unlocked via an event or the scripting
API. As an example, events can be used to unlock a door on destroying an object. This is how the destructible padlock demo is set
up in the doors demo scene. The APl is used by the lockpicking mini-game to unlock the door if the player has lockpicks in their

inventory but does not have the door's key.

The following components are available for working with locks and locked doors:

NAME DESCRIPTION
KeyRing The keyring stores multiple key IDs.
LockedDoorlInteractiveObject A version of the door component that lets you specify a lock ID.

A trigger zone that is used to open an attached door, but only if the character entering has a key

LockedDoorTrigger with the correct ID.

LockedTriggerZone A trigger zone that will fire events if a character with the correct key enters.

An interactive object that is attached to a locked door, and displays a Ul based KeypadPopup when

KeypadinteractiveObject
yP) interacted with. Entering the correct code will unlock the door.

KeypadPopup The Ul based keypad popup that is shown by the KeypadinteractiveObject.

A locked door that displays a lockpicking mini-game when interacted with if the character does not

PickableLockedDoorlnteractiveObject .
have the correct key to unlock it.

LockpickPopup3D One implementation of the lockpicking mini-game that is used to unlock a locked door.

A Ul overlay for the LockpickPopup3D mini-game that displays remaining pick count and lock

LockpickPopupU! difficulty.

See Also

Interactive Objects

Moving Platforms

Interactive Objects

Overview

Interactive objects are objects in the scene that the player can approach and use to perform some action.
Objects can specify whether to react instantly or once the use button has been held for a set period of time.

As the player looks at an interactive object, events are fired that allow custom highlights and effects to be added. This can be
utilised to show markers as in the sample assets, to change a shader setting, or to flag up an object with a HUD element.

Example interactive objects include doors, buttons and weapon pickups.

For more information see the CharacterInteractionHandler and InteractiveObject references.

Creating An Interactive Object

Transform

¥ VBox Collider

B ¥ Interactive Object Corner Markers (S«

Interactive objects use events to call methods on attached components and perform some function.

To make an object interactive, first add a GameObject to its hierarchy and set its layer to InteractiveObjects. Next, add a
primitive collider to the new object and set its IsTrigger property to true. With the trigger collider set up, add an InteractiveObject
component to the object and set its hold duration (0 means the object will be used instantly when the player hits the use button,
anything else means the player needs to hold the use button down for that duration). Finally, set the OnUse event on the
component to point to a relevant method on one of the original object's components.

Alternatively, you can write a script that inherits from InteractiveObject and override the Interact (ICharacter character)
method to add implement the required behaviour.

See Also

CharacterInteractionHandler

InteractiveObject

AnimatedDoorHandle MonoBehaviour

Overview

The AnimatedDoorHandle behaviour is attached to a handle object and makes it twist and release when triggered.

Inspector

Animated Door Handle (Script)

Properties

NAME

Twist Angle
Twist Duration
Twist Curve
Jiggle Angle
Jiggle Duration

Jiggle Curve

See Also

Doors

Unity AnimationCurve

TYPE

Vector3

Float

AnimationCurve

Vector3

Float

AnimationCurve

DESCRIPTION

The desired euler angles when twisting the handle.

How long does the twist and release last.

The animation curve for the twist.

The maximum euler angles when shaking the handle (if the door is locked).

How long does the locked door jiggle last.

The animation curve for the locked door handle jiggle.

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

CharacterInteractionHandler MonoBehaviour

Overview

The CharacterlnteractionHandler behaviour is attached to a character and handles interaction with interactive objects in the scene.

Inspector

+ Character Interaction Handler (Script)

EnvironmentDetail, CharacterPhysics, InteractiveOhbjs

Megative

Properties
NAME TYPE DESCRIPTION
Max
. Float The maximum distance from the camera to trigger interactions.
Distance

How frequently does the handler cast forward to check for an object. Smaller numbers mean more

Tick Rate Int . .
responsive but more wasted calculations.

Layers LayerMask The layers that will be checked against when casting for valid interaction targets.
Error . L . .
Audio FpsCharacterAudio The character audio clip to play for an invalid interaction.

See Also

Interactive Objects

FpsCharacterAudioHandler

https://docs.unity3d.com/Manual/Layers.html

CharacterTriggerZone MonoBehaviour

Overview

The CharacterTriggerZone behaviour fires script events when a character enters and exits the collider.

Inspector

B character Trigger Zone (Script)

Properties

The CharacterTriggerZone behaviour has no properties exposed in the inspector.

See Also

Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

CharacterTriggerZonePersistant MonoBehaviour

Overview

The CharacterTriggerZonePersistant behaviour fires script events when characters enter and exit.

Inspector

h Character Trigger Zone Persistant (Script)

Properties

The CharacterTriggerZonePersistant behaviour has no properties exposed in the inspector.

See Also

Layers And Tags
Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

DoorlInteractiveObject MonoBehaviour

Overview

The DoorlnteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close.

Inspector

H ¥ Door Interactive Object (Script)

On Cursor Exit ()

List 1s Empty

B InteractableHingeDoor (KinematicHing

Properties

The DoorlnteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Door Door The door to open (will accept any door that inherits from DoorBase).
See Also

InteractiveObject

DoorTrigger MonoBehaviour

Overview

The DoorTrigger behaviour is attached to an object with a trigger collider. It will open the specified door when a character enters,

and close it when they leave.

Inspector
Door Trigger (Script) [= -
B Inter (SlidingDoor @
v
Properties
NAME TYPE DESCRIPTION
Door Door The door to open (will accept any door that inherits from DoorBase).
Characters Only Boolean Should the door only open for characters, not any collider.
See Also
Doors

Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

ElevatorController MonoBehaviour

Overview

The ElevatorController behaviour manages a single elevator.

An elevator also requires an ElevatorMovingPlatform to function. This acts as the cab or platform and actually moves between

floors.

Each floor has a door that will be opened when the elevator cab arrives at that floor. If that door is a SlidingDoor behaviour, then

the cab's door geometry can be added to every floor as a door section. This means that the cab's inner doors will open in sync

with the relevant floor's outer doors.

The ElevatorController exposes the PressFloorButton(int floorIndex) function. This can be attached to InteractiveObject
events for the exterior call buttons and the cab interior floor buttons. If the current floor button is pressed the doors will open for
a set time. If another floor button is pressed the doors will close, the cab will move to the correct floor, and then the doors will

open for a set time.

Inspector

B @ Elevator Controller (Script)

Duration

Element 0

rMovingPlatform)

ange (Int32)

‘Change

:DemoEle @

DeoorsDemoElevatorReadout.OnFloarChange

;DempEle @

Properties
NAME TYPE
Starting Int
Floor
Cab
Speed Float
Cab Open Float
Delay
Floor Float

Height

DoorsDemoElevatorReadout.OnFloarChange

noEle @

DESCRIPTION

The floor the elevator cab starts on. It is best to move the cab to this position in the editor to
prevent it jumping there instantly which can cause problems if there are dynamic objects in the
cab.

The movement speed of the cab.

The dlay between reaching a floor and opening the doors.

The distance between floors.

https://docs.unity3d.com/Manual/UnityEvents.html

NAME TYPE

Door
Open Float
Duration
Cab ElevatorMovingPlatform
Floors Door Array
On Fl
nroor UnityEvent
Change
See Also
Doors

ElevatorMovingPlatform
SlidingDoor
InteractiveObject

Unity Events

DESCRIPTION

The duration the elevator doors will remain open unless interrupted.

The moving platform of the elevator cab.

The doors for each floor (will accept any door that inherits from DoorBase).

An event that is invoked every time the cab switches floors. Useful for any elevator readout or
chime.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

ElevatorMovingPlatform MonoBehaviour

Overview

The ElevatorMovingPlatform behaviour is a moving platform which works with the ElevatorController. It is attached to the

kinematic rigidbody that acts as the elevator cab or platform, and moves the character smoothly with it.

Inspector

B P Elevator Moving Platform (Script)

Properties

The ElevatorMovingPlatform behaviour has no properties exposed in the inspector.

See Also

ElevatorController

Moving Platforms

InteractiveObject MonoBehaviour

Overview

The InteractiveObject behaviour is used to represent any object in the world that the player can interact with via the use button.

Inspector

H + Interactive Object (Script)

Properties
NAME TYPE DESCRIPTION
Tooltip Name String The name of the item in the HUD tooltip.
Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.
Interactable On Start Boolean Can the object be interacted with immediately.
Hold Duration Float How long does the use button have to be held for interaction.
On Used UnityEvent An event that is triggered when the object is used.
On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.
On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.
See Also

Interactive Objects

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

InteractiveObjectCornerMarkerrs MonoBehaviour

Overview

The InteractiveObjectCornerMarkerrs behaviour is used to highlight interactive objects when the player looks at them. It spawns
markers on the bounding box corners of the object. These are then displayed when the object is highlighted and hidden when it is

not.

Inspector

B 7 Interactive Object Corner Markers (Script)

Box Colliders

Corner Object * HighlightCorner

Properties
NAME TYPE
Box BoxCollider
Colliders Array
Corner .
Object GameObject
See Also

InteractiveObject

Unity BoxCollider

DESCRIPTION
The box colliders of the InteractiveObject to attach markers to.

The prefab to use for the corner objects. 8 instances of this will be instantiated and placed at the corners
of the box.

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-BoxCollider.html

InteractiveObjectMaterialMarker MonoBehaviour

Overview

The InteractiveObjectMaterialMarker behaviour is used to highlight interactive objects when the player looks at them. It fades in a
glowing pulse effect on the object as long as it has a material that uses the NeoFPS/Standard/InteractiveHighlightMetallic or

NeoFPS/Standard/InteractiveHighlightSpecular shaders.

Inspector

H + Interactive Object Material Marker (Script)

B Coor (Mesh Renderer)

Properties
NAME TYPE
Mesh Renderer MeshRenderer
Material Index Integer
Transition Duration Float

See Also

InteractiveObject

[Unity BoxCollider][unity-boxcollider]

DESCRIPTION
The mesh renderer of the object (used to set the relevant material property blocks).
The index of the highlight material on the mesh renderer.

A fade time between he highlighted state and the non-highlighted state.

https://docs.unity3d.com/Manual/class-MeshRenderer.html

KeypadlnteractiveObject MonoBehaviour

Overview

The KeypadinteractiveObject behaviour is an extension of the InteractiveObject that can be used alongside locked doors. On using

the object it displays a keypad popup, and if the player enters the correct key code then the door will be unlocked.

Inspector

B P Kkeypad Interactive Object (Script)

Properties

The DoorlnteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Tooltip Name String The name of the item in the HUD tooltip.
Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.

Interactable On

Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

NAME
Door
m_KeypadPopup

m_PassCode
Lock Ids

m_StartLocked

See Also

InteractiveObject

TYPE

Door

KeypadPopup

Integer Array

String Array

Boolean

KeypadPopup Behaviour

KeyRing Behaviour

DESCRIPTION

The door to open (will accept any door that inherits from DoorBase).

The keypad Ul popup to show.

The key code to unlock the door.

A unique ID for this lock. IF the player has an equivalent key in their inventory key ring then the digits
will be shown with the popup.

Should the door be locked on start.

KeypadPopup MonoBehaviour

Overview

The KeypadPopup behaviour is a Ul popup which can be displayed for locked doors and items. Events are fired for correct and

incorrect passcodes. If the passcode is known, then it will be displayed alongside the keypad.

Inspector
B @ Keypad Popup (Script)

Starting Selection None (Selectable)

HTex

ledButton)

Properties
NAME TYPE DESCRIPTION
Starting Selection Selectable The initial Ul element to select when the popup is shown.
Readout Text Text Output text when typing code.
Missing Characters Dropdown The character to use for missing digits in the code.
Digit Buttons Button Array The number buttons of the keypad in numberic order (eg 0,1,2,3,4...).
Starting Digit Integer The lowest numbered button.
Delete Button Button The delete button is used to delete the last input digit.
Clear Button Button The clear button clears all typed digits.

Completion Delay Float The time after the last digit is input before the popup closes.

https://docs.unity3d.com/Manual/script-Selectable.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Button.html
https://docs.unity3d.com/Manual/script-Button.html
https://docs.unity3d.com/Manual/script-Button.html

NAME

Pass Audio

Fail Audio
Close On Fail
Discovered Text

Discovered Object

See Also

Doors

Sample Ul

TYPE

AudioClip

AudioClip

Boolean

Text

GameObject

DESCRIPTION

The audio clip to play if the correct code is input.

The audio clip to play if an incorrect code is input.

Should the popup close after the wrong code is input or allow the player to enter another.

If the keycode is known it will be shown here.

If the keycode is known then this object will be activated.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/script-Text.html

KeyRing MonoBehaviour

Overview

The KeyRing behaviour is an inventory item which stores keys and keycodes. Picking up a keyring will add it to the character's
inventory if they do not already have one, or merge the contents with the existing one if they do.

Inspector

B @ Key Ring (Script)

Quantity
To Inventory ()

Empty

ove From Inventory |

Element 0

Properties

NAME TYPE DESCRIPTION

Starting Keys String Array A list of key IDs this keyring starts with.
See Also
Doors

Inventory

KinematicHingeDoor MonoBehaviour

Overview

The KinematicHingeDoor behaviour handles opening, closing and animating a basic hinge door. The door rotates around 2 points

depending on which direction it opens to prevent the door object overlapping with its frame.

Inspector

B Kinematic Hinge Door (Script)

Rotation Transform
jon Transfo

Properties
NAME TYPE DESCRIPTION
Max Angle Float The maximum open angle of the door.
Open Duration Float The time it takes to go from fully closed to fully open and vice versa.
Open Curve AnimationCurve The interpolation curve for opening and closing the door.
Positive . " .
. The transform point for the positive rotation of the door (defaults to the transform for the
Rotation Transform . . —_—
object this behaviour is attached to).
Transform
Negative
. The transform point for the negative rotation of the door. This allows hinges at both edges of
Rotation Transform
a door to prevent overlap. If this is null the door will only open on one side.
Transform
Direction A fixed transform used to check which side of the doorway a character is on (defaults to the
Transform) . .
Transform transform for the object this behaviour is attached to).
Handle AnimatedDoorHandle An optional animated door handle. This will turn and release when the door is opened.
Audio Open AudioClip The audio to play when the door is unlatched and opened.
Audio Close AudioClip The audio to play when the door closes and latches.
Audio Locked AudioClip The audio to play when attempting to open the door while locked.
Audio Unlock AudioClip The audio to play when unlocking or locking the door.
See Also
Doors

AnimatedDoorHandle

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html

LockedDoorlnteractiveObject MonoBehaviour

Overview

The LockedDoorInteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close. If the

door is locked then the character must have a keyring inventory item with the correct keycode to unlock the door before it can be

opened.

Inspector

H + Locked Door Interactive Object (Script)

List is Empty

Qn Cursar Enter ()

List is Empty

+
B InteractableDoors_LockedHingeDoor (Kinenm @

Properties

The DoorlnteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION

Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.
Interactable On Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.
On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

Door Door The door to open (will accept any door that inherits from DoorBase).

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

NAME

Lock Ids

m_StartLocked

m_OpenOnUnlock

m_TooltipLockedAction

See Also

InteractiveObject

KeyRing Behaviour

TYPE

String
Array

Boolean

Boolean

String

DESCRIPTION

An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to
unlock. If this is empty then the door must be unlocked via events or the API. IDs can be unique
to this lock, or shared between multiple for things like skeleton keys.

Should the door be locked on start.

Should the door be opened when it's unlocked.

The tooltip action to use when the door is locked. Use the open action toolrip for the other tooltip
action.

LockedDoorTrigger MonoBehaviour

Overview

The LockedDoorTrigger behaviour is attached to an object with a trigger collider. It will open the specified door when a character

with the correct key code in their inventory key ring enters, and close it when they leave.

Inspector

Locked Door Trigger (Script)

er Enter (BaseCharacter)

Qn Trigger Exit (BaseCharacter)

List is Empty

B Interactabl

Properties
NAME TYPE DESCRIPTION
Lock Strin An array of IDs for this lock. The player must have an equivalent key in their inventory [key ring][3] to unlock. If
Ids Arrag this is empty then the door must be unlocked via events or the API. IDs can be unique to this lock, or shared
y between multiple for things like skeleton keys.
On
Trigger UnityEvent The event that is fired when a character enters the trigger collider.
Enter
On
Trigger UnityEvent The event that is fired when a character exits the trigger collider.
Exit
Door Door The door to open (will accept any door that inherits from DoorBase).
See Also
Doors

KeyRing Behaviour
Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

LockedTriggerZone MonoBehaviour

Overview

The LockedTriggerZone behaviour is a trigger zone that only activates if the character has a specific key code in their inventory

key ring.

Inspector

Locked Trigger Zone (Script)

Properties
NAME TYPE DESCRIPTION
Lock String An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to activate the
Ids Array trigger zone. IDs can be unique to this lock, or shared between multiple for things like skeleton keys.
On
Trigger UnityEvent The event that is fired when a character enters the trigger collider.
Enter
On
Trigger UnityEvent The event that is fired when a character exits the trigger collider.
Exit
See Also

KeyRing Behaviour
Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

LockPickPopup3D MonoBehaviour

Overview

The LockPickPopup3D behaviour is a specific lockpicking mini-game in the style of fallout or dying light. Your scene can contain

multiple lock-picking minigames, all differentiated by their IDs, as long as their scripts inherit from the LockPickPopup base class.

Inspector

+ Lockpick Popup 3D (Script)

Lockpick ID default
U1
Ui Prefab B LockpickUIPopup (LockpickPopupUT)

Mechanism_Lock_Barrel (Transform)

Mechanism_Lock_Rake (Transform)

nd Damping

Properties

NAME TYPE DESCRIPTION

Ul Prefab LockpickPopupU| The U.I popup prefab to be drawn over the top of this minigame using the prefab popup
container system.

Lock Transform Transform The transform of the lock barrel.

Rotation Speed Float The rotation speed of the lock barrel when tensioned (in degrees per second).

Lock Pick

Transform The transform of the lock pick object. Its pivot should be lined up with the hole of the lock.

Transform

Min Safe Range Float The smallest size the safe range for the pick can be (at highest difficulty).

Max Safe Range Float The maximum size the safe range for the pick can be (at lowest difficulty).

Min Falloff Float Thg smallest falloff outside the safe range, where the lock can rotate but will still snag (at highest
difficulty).

Max Falloff Float Th? largest falloff outside the safe range, where the lock can rotate but will still snag (at lowest
difficulty).

Pick Break Ticks Integer The number of fixed update ticks where the pick is catching before it will break.

Jiggle Min Vector3 The minimum jiggle angle when the pick catches. It will bounce between this and max.

NAME

Jiggle Max

Jiggle Rate

Jiggle Start
Damping

Jiggle End
Damping

See Also

Doors

TYPE

Vector3

Float

Float

Float

LockpickPopupUl Behaviour

DESCRIPTION

The maximum jiggle angle when the pick catches. It will bounce between this and min.

The number of shakes per second when catching.

The amount of time it takes for the jiggle to fade in when the lock catches.

The amount of time it takes for the jiggle to fade out once tension is released.

LockPickPopupUl MonoBehaviour

Overview

The LockPickPopupUl behaviour is attached to an object with a trigger collider. It will open the specified door when a character

enters, and close it when they leave.

Inspector

h ¥ Lockpick Popup UI (Script)

Remaining:

Properties
NAME TYPE DESCRIPTION
TD;if;cuIty Text The Ul text element that will show the difficulty rating of the lock.
Difficulty . -)
String String The pick difficulty prefix.
Pick Count . The parent object of the Ul elements that show the pick count. If the lock does not use inventory picks, this
GameObject
Group object and its children will be hidden.
Pick
T;(t Count Text The text readout for the remaining pick count.
Pick String String The pick count prefix string.
See Also
Doors
Sample Ul

LockpickPopup3D Behaviour

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html

PhysicsHingeDoor MonoBehaviour

Overview

The PhysicsHingeDoor behaviour handles latching and release of a physical hinge based door.

Inspector

H ¥ Physics Hinge Door (Script)

ction

oint)
rHandle)

Properties

NAME TYPE DESCRIPTION
R

?verse Boolean Reverses the door opening direction.
Direction
Open Angle Float The open limit of the door. When opening, force will be applied until the door reaches this

angle.

Open Velocity Float The target speed to move the door.
Open Force Float The force applied to the door when opening or closing.

. A time limit for force to be applied. If the door is blocked, it would never reach full open or
Timeout Float . o

closed and this value prevents it trying forever.

Auto Latch Float The normalised position (0 to 1 translates to closed to full open angle) at which the door will
Position latch when closing.
Auto Latch . .
Block Time Float Prevent latching for a short perios when opened.
Hinge HingeJoint The hinge joint of the door.

Handle AnimatedDoorHandle An optional animated door handle. This will turn and release when the door is opened.
Audio Open AudioClip The audio to play when the door is unlatched and opened.
Audio Close AudioClip The audio to play when the door closes and latches.
Audio Locked AudioClip The audio to play when attempting to open the door while locked.

Audio Unlock AudioClip The audio to play when unlocking or locking the door.

https://docs.unity3d.com/Manual/class-HingeJoint.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

See Also

Doors
AnimatedDoorHandle

Unity HingeJoint

https://docs.unity3d.com/Manual/class-HingeJoint.html

PickableLockedDoorlInteractiveObject MonoBehaviour

Overview

The PickableLockedDoorlInteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close.
If the door is locked then there are 2 ways to unlock it. Firstly, if the character has a keyring invnentory item with the correct
keycode, then they will unlock the door instantly. Secondly, if they do not have the correct keycode but do have lockpick items in

their inventory, then using the door will show a lock-picking minigame popup.

Inspector

B @ rickable Locked Door Interactive Object (Script)

List i1s Empty

+
B InteractableDoors_LockpickHingeDoor (Kine @

ck_pickable

Properties

The DoorlnteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.
Interactable On Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

NAME

Door

Lock Ids

Lockpick 1D
Lockpick Difficulty
Requires Pick Item
m_StartLocked

m_OpenOnUnlock

m_TooltipLockedAction

See Also

Doors
InteractiveObject

KeyRing Behaviour

TYPE

Door

String
Array

String

Float

Boolean

Boolean

Boolean

String

LockPickPopup3D Behaviour

DESCRIPTION

The door to open (will accept any door that inherits from DoorBase).

An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to
unlock. If this is empty then the door must be unlocked via events or the API. IDs can be unique
to this lock, or shared between multiple for things like skeleton keys.

The ID for the lockpick to use. This allows for multiple lockpick styles in a single scene.

The difficulty of this specific lock.

Does the character require a lockpick item in their inventory.

Should the door be locked on start.

Should the door be opened when it's unlocked.

The tooltip action to use when the door is locked. Use the open action toolrip for the other tooltip
action.

SlidingDoor MonoBehaviour

Overview

The SlidingDoor behaviour is used to control and animate moving door sections.

Inspector

H Sliding Door (Script)

Door (Transform)

Properties
NAME TYPE DESCRIPTION
Open Duration Float The time it takes to go from fully closed to fully open and vice versa.
Animation Curve AnimationCurve The interpolation curve for animating the door sections.
Sections Door Section Array One or more door sections. All will move when the door opens and closes.
Audio Open [AudioClip][unity-audioclip] The audio to play when the door is unlatched and opened.
Audio Close [AudioClip][unity-audioclip] The audio to play when the door closes and latches.
Audio Locked [AudioClip][unity-audioclip] The audio to play when attempting to open the door while locked.
Audio Unlock [AudioClip][unity-audioclip] The audio to play when unlocking or locking the door.

Door Section

NAME TYPE DESCRIPTION

Transform Transform The door section transform.

Offset Vector3 The offset from starting (closed) position when opened.
See Also
Doors

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

SoloCharacterTriggerZone MonoBehaviour

Overview

The SoloCharacterTriggerZone behaviour fires script events when a character enters and exits the collider.

Inspector

H Solo Character Trigger Zone (Script)

On Trigger Enter (FpsSoloCharacter)
List is Empty

On Trigager Exit (Fps

List 1s Empty

Properties
NAME TYPE DESCRIPTION
On Trigger Enter UnityEvent The event that is fired when a character enters the trigger collider.
On Trigger Exit UnityEvent The event that is fired when a character exits the trigger collider.
See Also
Layers And Tags

Unity Events
Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

SoloCharacterTriggerZonePersistant MonoBehaviour

Overview

The SoloCharacterTriggerZonePersistant behaviour fires unity events when characters enter and exit.

Inspector

B solo Character Trigger Zone Persistant (Script)

On Trigger Enter (FpsSoloCharacter)

On Trigger Exit (FpsS

List 1s Empty

On Trigger Stay (Fps!

List is Empty

Properties
NAME TYPE
On Trigger Enter UnityEvent
On Trigger Exit UnityEvent
On Trigger Stay UnityEvent
See Also

Layers And Tags
Unity Events

Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

DESCRIPTION

The event that is fired when a character enters the trigger collider.

The event that is fired when a character exits the trigger collider.

The event that is fired each frame a character stays inside the trigger collider.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

TriggerZoneColliderCounter MonoBehaviour

Overview

The TriggerZoneColliderCounter behaviour tracks and counts all the colliders that enter it with the specified layer mask.

Inspector

Trigger Zone Collider Counter (Script)

CharacterContrallars

Properties

NAME TYPE DESCRIPTION

Valid Layers LayerMask The valid layers for objects to track. Colliders on another layer will be ignored.
See Also
Layers And Tags

Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

Audio Systems

Overview

NeoFPS has a number of audio systems for specific cases. Some are specific or important to first person shooter games, while
others are features that are missing from Unity and have had simple versions implemented in order to provide a more complete

game experience out of the box.

Systems
Footsteps

In first person games, more than any other genre, footsteps are an important part of the immersive experience. NeoFPS uses a
number of tools that tie footsteps to the character motion states and give designers full control over how the character's feet

interact with the world.

Character Audio

NeoFPS has a customisable system that allows code and events to trigger character specific audio clips. The clips are identified
using generated constants, which allows developers to expand the availabe clips with ease.

Character audio is implemented through a combination of the FpsCharacterAudioHandler MonoBehaviour and the
FpsCharacterAudioData ScriptableObject.

Surface Audio

NeoFPS has a simple in-development system for identifying surfaces (LINK). The SurfaceAudioData ScriptableObject is used in a
number of places throughout NeoFPS to specify audio for things such as footsteps, bullet hits and slides.

Contact Audio

The ClipSetContactAudioHandler MonoBehaviour is a simple component that can be added to physics objects in order to play
audio on collisions. The audio is picked at random from a set of valid clips. You can also use a SurfaceContactAudioHandler

MonoBehaviour which uses the surface system to pick the correct audio to play.

See Also

Surfaces

Generated Constants

Footsteps

Overview

Footsteps in NeoFPS are handled using a combination of MonoBehaviours and motion graph behaviours. This allows a great deal
of flexibility and control over when and how footsteps are triggered. For more information on the specific behaviours, follow the
links below.

Footstep Implementation

Basic Footsteps

The motion graph SurfaceFootstepAudioSystem is component added to the character that is used for basic footsteps on various
surfaces. It is controlled via the SurfaceFootstepAudioBehaviour motion graph behaviour. This has properties for adjusting the
frequency of the steps, the surface audio library to use, and parameters such as the cast direction and distance for surface checks.
For each step taken it will choose an audio clip at random from the surface audio library to play. The behaviour can be attached to
multiple motion graph states with different properties, so the system can be used to trigger different audio clips based on the
character's motion state such as running, sneaking, walking, etc. The component on the character also fires a C# event on steps
that can be used to tie it in to other systems.

Sliding

The motion graph SlidingAudioBehaviour is used to play looping audio when the character is sliding on various surfaces.
Properties are available to change the surface audio library, and to pitch shift the audio based on the speed of the character.

Lift-offs

The motion graph SurfaceAudioBehaviour can be used to trigger surface based audio clips in various situations, including jump
lift-offs. It can be combined with the motion graph PlayCharacterAudioBehaviour to trigger character grunts and exertion noises

when jumping.

Ladders

The motion graph LadderAudioBehaviour is used to play audio clips as the character ascends and descends a ladder. It has
properties to control the frequency of the audio clips based on the climb speed, as well selecting the relevant surface audio
library.

Landings

Landings are handled slightly differently, as they need to react to the force of the impact in order to add flavour such as bone
crunches or grunts for very heavy landings. When the character lands, the motion controller fires impact events that can be
handled by any behaviour. The demo character implements this feature and has properties for soft and hard landings.

See Also

The Motion Graph

Motion Graph Behaviours

Motion Graph FootstepAudioBehaviour
Motion Graph SlidingAudioBehaviour
Motion Graph SurfaceAudioBehaviour
Motion Graph PlayCharacterAudioBehaviour

Motion Graph LadderAudioBehaviour

file:///C:/CoreProjects/NeoFPS/websites/documentation/latest/_site-pdf/_raw/_site-pdf/manual/audioref-mb-surfacefootstepaudiosystem.html
file:///C:/CoreProjects/NeoFPS/websites/documentation/latest/_site-pdf/_raw/_site-pdf/manual/audioref-mb-surfacefootstepaudiosystem.html

SurfaceAudioData

FPS Characters

AnimationEventAudioPlayer MonoBehaviour

Overview

The AnimationEventAudioPlayer behaviour is attached to objects with an Animator component and handles any animation events

sent.

Inspector

reload
reload
1

Sequential

Random

non_Pistol_Gunshot0l

Properties
NAME TYPE DESCRIPTION
Audio Source AudioSource The audio source to play from.

The Add New Set button will add a new audio clip set to the component with the following properties:

NAME TYPE DESCRIPTION

Key String The name of the clip set, used as the parameter of the animation events

Nt?xt Dropdown How the next clip shF)uId be selected. Available options are: Sequential loops through the clips in order while
Clip Random selects a clip at random.

Volume Float The volume to play the clip at.

Clips AudioClip The audio clips to choose from.

Array

Triggering Audio Clips

The audio clips are triggered by adding animation events to the animation clips of the animated object. This is usually done
through the import settings in the inspector.

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

Weapon_FP_Pistal Import Settings

Animation Materials

Keyframe Reduction
0.1
18161

Loop Time

The above example has an event set up that plays an audio clip from the "Shoot" set. The important properties are the Function
property which must be set to Play Clip, and the String property which should match the Key in the AnimationEventAudioPlayer.

See Also

Animation Events

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

AudioTimeScalPitchBend MonoBehaviour

Overview

The AudioTimeScalPitchBend behaviour alters the pitch of an audio source to match changes to time scale. Pitch also affects the
duration of an audio clip, so halving the pitch will double the duration. By default, Unity does not slow audio to match the time

scale, so this behaviour compensates for that.

Inspector

B 7 Audio Time Scale Pitch Bend (Script)

ize 1

Element 0 w GameObject (Audio Source)

Properties

NAME TYPE DESCRIPTION

Audio Sources AudioSource Array The audio sources to modify based on time scale.

https://docs.unity3d.com/Manual/class-AudioSource.html

ClipSetContactAudioHandler MonoBehaviour

Overview

The ClipSetContactAudioHandler behaviour is attached to physics objects and triggers audio clips when they collide with other

objects or the environment.

Inspector

B clip Set Contact Audio Handler (Script)

Min Imp

Min

Audio_Impact_Cardboard0l

Properties
NAME TYPE DESCRIPTION
Min Float The minimum impulse between this object and the object it collides with for an impact noise to be
Impulse played.
Min Delay Float The minimum time between impact sounds.
AudioCli
Clips uciotlip The audio clips to choose from on impact.

Array

https://docs.unity3d.com/Manual/class-AudioClip.html

FpsCharacterAudioData ScriptableObject

Overview

The FpsCharacterAudioData scriptable object specifies audio to play for the different character audio keys.

Inspector

(_3 FpsCharactersudicData

Undefined

o_Char_InteractionError

Properties
The data is divided into sections for each key in the FpsCharacterAudio generated constant. Each section contains the following
properties:

NAME TYPE DESCRIPTION

Audio Clips AudioClip Array A selection of audio clips to pick from. Will be selected at random to prevent repetition.

Volume Float The volume to play the clip at.

Min Spacing Float New clips will be blocked from playing for this duration after a clip plays. Prevents rapid fire audio.
See Also

Generated Constants

Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

FpsCharacterAudioHandler MonoBehaviour

Overview

The FpsCharacterAudioHandler plays audio clips from a library of character audio files.

Inspector

Properties

NAME TYPE

Audio Data FpsCharacterAudioData

Mixer .

Group MixerGroup

Sources AudioSource Array
See Also

FpsCharacterAudioData

Generated Constants

DESCRIPTION

The character audio library to use.

The mixer group for character sound effects.

The sources to use for playing audio. One for each FpsCharacterAudioSource generated
constant.

https://docs.unity3d.com/Manual/class-AudioMixer.html
https://docs.unity3d.com/Manual/class-AudioSource.html

NeoFpsAudioManager ScriptableObject

Overview

The NeoFpsAudioManager scriptable object specifies the audio mixer and outputs for audio in a NeoFPS project, and provides

pooled audio sources for different effects.

Inspector

Properties

NAME

Mixer

Master Group
Spatial Effects Group
Ui Effects Group
Ambience Group

Music Group

Master Volume Key

Effects Volume Key

Ambience Volume Key

= PooledAudioSource_Ambience [Audio Sourc ©

TYPE

[AudioMixer][unity-
audiomixer]

[AudioMixerGroup][unity-
audiomixer]

[AudioMixerGroup][unity-
audiomixer]

[AudioMixerGroup][unity-
audiomixer]

[AudioMixerGroup][unity-
audiomixer]

[AudioMixerGroup][unity-
audiomixer]

String

String

String

DESCRIPTION

The audio mixer for the project.

The audio mixer group that controls the overall volume.

The audio mixer group used to control volumes and filters for spatial sound
effects.

The audio mixer group used to control volumes and filters for Ul sound effects.

The audio mixer group used to control volumes and filters for ambient sound
effects and looping ambient audio.

The audio mixer group used to control volumes and filters for music.

The name of the master volume parameter on the audio mixer.

The name of the volume parameter that controls sound effects volume.

The name of the volume parameter on the audio mixer for ambient loops and
effects.

NAME
Music Volume Key

Num Spatial Effect
Sources

Spatial Source Prefab

Num Ambience One
Shot Sources

Ambience Source
Prefab

See Also

Surfaces

Generated Constants

TYPE

String

Integer

[AudioSource][unity-
audiosource]

Integer

[AudioSource][unity-
audiosource]

[Unity AudioClip][unity-audioclip]

DESCRIPTION

The name of the volume parameter on the audio mixer for the music audio.

The number of pooled audio sources for spatial sound effects.

An optional prefab for the spatial effects sources. If not provided then the objects
will be created from scratch.

The number of pooled audio sources for ambient sound effects.

An optional prefab for the ambience effects sources. If not provided then the
objects will be created from scratch.

[AudioMixer][unity-audiomixer]: https://docs.unity3d.com/Manual/class-AudioMixer.html [unity-audioclip]:
https://docs.unity3d.com/Manual/class-AudioClip.html [unity-audiosource]: https://docs.unity3d.com/Manual/class-

AudioSource.html

SurfaceAudioData ScriptableObject

Overview

The SurfaceAudioData scriptable object specifies audio clips for each surface type. It is used to organise clip sets such as impact

sounds, footsteps and slides.

Inspector
@ Surfaceaudio_LandingHard

Default

Properties

The SurfaceAudioData entries are grouped based on the Surface generated constant. Each surface has the following properties.

NAME TYPE DESCRIPTION
Volume Float The volume to play the clips at.
Clips AudioClip Array Audio clips (will be picked at random).
See Also
Surfaces

Generated Constants

Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

SurfaceContactAudioHandler MonoBehaviour

Overview

The SurfaceContactAudioHandler behaviour is attached to physics objects triggers sound effects when they collide with other

objects or the environment. Playing the audio itself is handled by the SurfaceManager.

Inspector

h Surface Contact Audio Handler (Script)

Min Impulse
Min Delay

Properties
NAME TYPE DESCRIPTION
Min Impulse Float The minimum impulse between this object and the object it collides with for an impact noise to be played.
Min Delay Float The minimum time between impact sounds.

See Also

Surface Manager

Inventory

Overview

NeoFPS has its own inventory system that it uses for all of its weapons and items. The inventory is implemented as separate
components to the itemas themselves so it should be easy to replace with an alternative system if desired.

The NeoFPS inventory system is implemented in 2 parts: inventory and quickslots.

Inventory

[Pool |
e
[awressawn |

I Ammo Buckshot ‘

Frag Grenade x 4 ;

The inventory is a container of items. It manages item ownership and quantities and invokes events to react to changes.

The demo implementations of the inventory are not fixed. The inventory is referenced externally via the IInventory interface,

meaning that it can be swapped out with another implementation and the system as a whole will adapt.

Quick Slots

Pistol
Assault Rifle

| Ammo 9mm

Shotgun

| Ammo 5.56mm

| Ammo Buckshot

| Frag Grenade x 4 ‘

The quick-slots system binds items to slots that can be mapped to inputs. In a simple, traditional FPS system that would mean
each slot being mapped to a number key on the keyboard. It could also mean a slot for each direction on a game controller d-pad.

As with the inventory, the implementation is not fixed. It is referenced externally via the IQuickSlots interface and, like the
inventory, the implementation can be swapped and the system will adapt.

NeoFPS comes with a number of example inventories that implement quick slots in different ways to model popular first person

shooters. For more information see Inventory Examples.

ltems And Quick-Slot Items

Items are objects that implement the IInventoryItem interface. The interface has properties for quantity and ownership, along
with methods that are called when added or removed from an inventory.

Quick-Slot items implement the IQuickSlotItem interface. This has properties and methods for selection and for dropping.

Inventory Pickups

Inventory items pickups can be interactive, meaning you need to look at them and hit use, or contact based, meaning you need to

walk over them.

The simplest way to create an inventory pickup is using the Pickup Wizard in the NeoFPS Hub. There are also specialised pickups
for modular firearms that track ammo count, and for other wieldable items such as melee and thrown weapons. These can all be
created from the wizard.

The Inventory Database

(_3 FpsManager_InventoryDatabase

Add Table Asset B hone (Fps Inventory Db Table Base)

The inventory database is a system for managing the inventory keys used to identify each unique item. The database is made up
of tables, which are used to gather inventory IDs together. The inventory system used to use GeneratedConstant based keys. The
new database system has one fixed table that references the old FpsinventoryKey constants and uses them as keys. This allows
you to use the constants to reference inventory item IDs directly in code - useful for items like the keyring, which is a unique, but
constant item.

You can create an inventory database table for your project by right-clicking in the project browser and selecting
Create/NeoFPS/Inventory/Database Table. This allows you to add your own keys without the risk of clashing with any changes to
the NeoFPS demo inventory keys in future updates. Once you have created a table, add it to the database via the NeoFPS Hub:
Managers/Inventory Database.

To assign an ID to an object, clicking the ID button will show the inventory database browser.

Inventory Database Browser n

Current: =None>

Pick Mone

New Entry
lMeaFPS

Name

From here you can browse the different tables to select an ID. You can filter by name using the filter field at the top. You can also
add new keys from the browser itself. In the NewEntry section, select the table you want to add to, input a name, and hit Add
New Entry button. This will add the a new entry to the selected table, and apply its ID to the object you are editing.

Inventory Loadouts

Inventory loadouts are a simple list of inventory objects that should be added to a character's inventory.

(_3 FpsInventoryLoadout

ieldable)

You can assign this to a game mode component, and it will apply the loadout on spawning a player character instead of using the
character's starting items.

See Also

Inventory Examples

Inventory Examples

Overview

NeoFPS comes with a number of example inventories that are modelled after popular first person shooters.

Inventory Base

All of the example inventories inherit from a single base class FpsInventoryBase. This base class handles both the inventory
storage and the quick-slots. It also provides inspector properties for initialising the inventory's starting contents and the priority

order for the quick slots.

ltems and Wieldables

The example inventory items inherit from a single base class FpsInventoryItem.The example inventory does not require that the

items it stores use this behaviour, but all of the provided examples do.

The FpsInventoryWieldable behaviour is a subclass of FpsInventoryItem thatalso inherits IQuickSlotItenm. Itis intended as

the base for all items that the character holds and uses such as weapons and consumable items (health packs, tools, scanners, etc).

Standard PC Inventory

The "standard" quick-switch inventory emulates old-school FPS games. Each weapon has a set slot corresponding to the keyboard
keys 1 to 0. You can also cycle through the weapons using the mouse wheel and inputs for previous and next weapon. Lastly, the
inventory also implements a quick-switch system so you can switch between your current and last weapon as in games such as
Counter Strike.

Most of the NeoFPS demos use a character with the standard inventory. You can find weapon and item prefabs at the following

locations:

o Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\QuickSwitchinventory for the first person weapons and pickups/drops.
o Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\Ammo for the ammo pickups

Stacked Inventory

The stacked inventory emulates games like half-life with larger, more structured inventories than the older FPS games could
manage. Weapons and items are organised into stacks. Each stack holds a specific type of weapon such as melee, pistols, heavy,
thrown. Selecting the same slot multiple times cycles through the weapons in that group. The mouse wheel and previous / next
weapon inputs cycle through each of the weapons in a stack before mmoving onto the previous / next stack slots. The order of the
weapons within a stack is fixed.

The slot index of an item added to a stacked inventory must take the stack into account. The maximum stack size is 10. Slot indices

0-9 fall in the first stack, 10-19 in the second, 20-29 in the third, and so on.

The stacked inventory requires a different HUD setup to the others due to how it organises the items.

This inventory is also well suited to console based FPS games where, for example, each direction on the D-Pad is a stack.
The relevant assets for the stacked inventory can be found at the following locations:

o Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\FeatureDemo_InventoryStacked.unity for a demo
scene using the inventory

o Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_CharacterStackedInventory.prefab for a
player character that uses the stacked inventory

o Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\StackedInventory for the first person weapons and pickups/drops.

o Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_HUDStacked.prefab for a replacement
inventory HUD that is set up for stackedd inventories

Swappable Inventory

The swappable inventory emulates FPS games that keep a constrained inventory such as 2 primary weapons, one melee and one
throwable. This is a common inventory setup since more FPS games have started launching on console alongside or even ahead
of PC.

The swappable inventory groups weapons and items into types similarly to the stacked inventory. A group can hold a fixed
amount of weapons. If the group is full then the last selected weapon from that group is dropped when the character picks up
another weapon of that type. In simple cases a group will only be able to hold a single weapon or item. A group can also be larger,
and will encompass multiple quick slots. In this case, the order of weapons within the group is defined by the order they are
dropped and picked up only.

The relevant assets for the swappable inventory can be found at the following locations:

o Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\FeatureDemo_InventorySwappable.unity for a
demo scene using the inventory

o Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_CharacterSwappablelnventory.prefab for
a player character that uses the swappable inventory

o Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\Swappablelnventory for the first person weapons and pickups/drops.

See Also

Inventory

FpsInventoryAmmo MonoBehaviour

Overview

The FpsinventoryAmmo behaviour is an ammo type for the modular firearms that is stored in a character's inventory. It allows the

ammo to be shared between different weapons.

Inspector

B Fps Inventory Ammo (Script)

Quantity 16
To Inventory ()

Empty

e From Inventory |

Ammo Properties
R Tre W AmmoType_12gauge (SharedAmmoType)

Properties

The FpsinventoryAmmo behaviour inherits the properties from Fpsinventoryltem. It also adds the following:

NAME TYPE DESCRIPTION
Ammo Type SharedAmmoType The type of ammo.
See Also

Fpsinventoryltem
Modular Firearms

SharedAmmoType

Fpsinventoryltem MonoBehaviour

Overview

The Fpslnventoryltem behaviour is an object that can be stored in a character inventory.

Inspector

H Fps Inventory Item (Script)

Quantity 1
To Inventary ()

Tipty

On Remove From Inventory |

List is Empty

Properties
NAME TYPE
Quantity Int
On Add To Inventory UnityEvent

On Remove From

UnityEvent
Inventory
On Quantity Change UnityEvent
See Also
Inventories

Unity Events

DESCRIPTION

The quantity of items in the stack.

An event that is invoked when the object is first added to the character inventory.

An event that is invoked when the object is completely removed from the character
inventory.

An event that is invoked when the quantity of objects in the stack changes.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

FpsInventoryQuickSwitch MonoBehaviour

Overview

The quick-switch inventory is a standard PC FPS inventory. Pressing the appropriate number button selects the item in that quick

slot. Pressing the switch weapons button will switch to the previous selected item.

Inspector

B 7 Fps Inventory Quick Switch (Script)

pon_Hands (FpsInventoryW

BFir
B Fire:
BFir

Properties
NAME TYPE DESCRIPTION
Wieldable Root Transform The transform to set as the parent of any objects added to the inventory.
Wieldable Root A scale value for the wieldable root and any child items. Used to prevent weapons clipping

Float .
Scale into the scenery.

https://docs.unity3d.com/Manual/class-Transform.html

NAME

Drop Transform

Drop Velocity

Holster Action

Slot Count

Starting Slot
Choice

Starting Order*

Backup Item

Empty As
Backup

Starting Items

Duplicate
Behaviour

TYPE

Transform

Vector3

Dropdown

Int

Dropdown

Int Array

FpsinventoryWieldable

Boolean

Fpsinventoryltem
Array

Dropdown

DESCRIPTION

A proxy transform used to set the drop position and rotation when a wieldable item is
dropped.

The velocity of any dropped items relative to the character forward direction.

What should be selected when you holster your weapon. Options are Backup Item,
Nothing.

The number of item quick slots.

The selection method for the starting slot. Options are Ascending, Descending, Custom
Order.

This array specifies the selection order on start. The highest on the list that exists will be the
starting selection.

An item to use if no wieldables are in the inventory. This could be empty hands or an infinite
weapon such as a knife.

If this is true, then selecting an empty slot will switch to the backup item.

A selection of inventory items to be added to the inventory on start.

What to do when trying to add an item to the inventory that already exists. Options are
Reject, DestroyOld, DropOld.

* This property is only visible if the starting slot choice is set to Custom Order.

See Also

Inventory Examples

Fpsinventoryltem

FpsinventoryWieldable

https://docs.unity3d.com/Manual/class-Transform.html

FpsInventoryStacked MonoBehaviour

Overview

The stacked inventory groups items together into stacks. Selecting a stack multiple times cycles through the items in it. Similar to

the inventory system in Half-Life.

Inspector

apon_Hands (FpsInventoryW

oryAmmao)

Starting Slot Choice

Properties
NAME TYPE DESCRIPTION
Wieldable Root Transform The transform to set as the parent of any objects added to the inventory.
Wieldable Root Float A scale value for the wieldable root and any child items. Used to prevent weapons clipping
Scale into the scenery.

A proxy transform used to set the drop position and rotation when a wieldable item is

Drop Transform Transform dropped.

Drop Velocity Vector3 The velocity of any dropped items relative to the character forward direction.

What should be selected when you holster your weapon. Options are Backup Item,

Holster Acti Dropd
olster Action ropdown Nothing.

Stack Count Int The number of available stacks.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

NAME

Starting Slot
Choice

Starting Order*

Backup Item

Empty As
Backup

Starting Items

Duplicate
Behaviour

TYPE

Dropdown

Int Array

FpsinventoryWieldable

Boolean

FpsIinventoryltem
Array

Dropdown

DESCRIPTION

The selection method for the starting slot. Options are Ascending, Descending, Custom
Order.

This array specifies the selection order on start. The highest on the list that exists will be the
starting selection.

An item to use if no wieldables are in the inventory. This could be empty hands or an infinite
weapon such as a knife.

This setting does not currently work with the stacked inventory.

A selection of inventory items to be added to the inventory on start.

What to do when trying to add an item to the inventory that already exists. Options are
Reject, DestroyOld, DropOld.

* This property is only visible if the starting slot choice is set to Custom Order.

See Also

Inventory Examples

Fpsinventoryltem

FpsinventoryWieldable

FpsinventorySwappable MonoBehaviour

Overview

The swappable inventory groups items into categories. If the quick slots for a category are all full then picking up a new item of

that category will drop the current or last accessed item of that category.

Inspector

B 7 Fps Inventory Swappable (Script)

Inventory
ieldal

Properties
NAME TYPE
Wieldable

Transform

Root
Wieldable
Root Float
Scale
D

rop Transform
Transform
D

rop. Vector3
Velocity
Swap
Action Dropdown
Holster
Action Dropdown
G

Aroup Int
Sizes

ItemRoot (Transform)

m (Transform)

BEBackupWeapon_Hands (FpsInventoryWielda ©

DESCRIPTION

The transform to set as the parent of any objects added to the inventory.

A scale value for the wieldable root and any child items. Used to prevent weapons clipping into the
scenery.

A proxy transform used to set the drop position and rotation when a wieldable item is dropped.

The velocity of any dropped items relative to the character forward direction.

What to do when replacing an old item with a new one. Options are Drop, Destroy.

What should be selected when you holster your weapon. Options are Backup Item, Nothing.

The number of quick slots available for each category. The categories are defined in a
generated constant called FpsSwappableCategory. Extending this constant will add new
categories in the FpsinventorySwappable editor.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

NAME

Starting
Slot
Choice

Starting
Order*

Backup
Iltem

Empty As
Backup

Starting
Items

Duplicate
Behaviour

TYPE

Dropdown

Int Array

FpsinventoryWieldable

Boolean

FpsIinventoryltem
Array

Dropdown

DESCRIPTION

The selection method for the starting slot. Options are Ascending, Descending, Custom Order.

This array specifies the selection order on start. The highest on the list that exists will be the starting
selection.

An item to use if no wieldables are in the inventory. This could be empty hands or an infinite
weapon such as a knife.

If this is true, then selecting an empty slot will switch to the backup item.

A selection of inventory items to be added to the inventory on start.

What to do when trying to add an item to the inventory that already exists. Options are Reject,
DestroyOld, DropOld, Allow. The last option will allow you to pick up multiple weapons of the
same type.

* This property is only visible if the starting slot choice is set to Custom Order.

See Also

Inventory Examples

Fpsinventoryltem

FpsinventoryWieldable

FpsinventoryWieldable MonoBehaviour

Overview

The FpsinventoryWieldable behaviour is an inventory item that can be held in the hands and used, such as a weapon.

Inspector
H Fps Inventory Wieldable (Script)

1

On Add To Inventory {)
List 15 Emipty

From Inventory |

None (Fps Inventory Wisldable Drop)

Properties

The FpsinventoryWieldable behaviour inherits from the Fpsinventoryltem. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Inventory . . . S
D ID Picker The inventory item key. Clicking this button will open the inventory database item picker.
Display
Sprite The image to use in the inventory HUD.

Image
Quick Int The quick slot the item should be placed in. If you are using a stacked inventory, remember
Slot that each stack is 10 slots (0-9 = stack 1, 10-19 = stack 2, etc).
M

o . Int The maximum quantity you can hold.
Quantity
Deselect Dropdown What to do when the weapon is deselected. Available options are: Disable Game Object,
Action P Disable Wieldable Component and Nothing.

On Select Unity Event An event called when the wieldable is selected. Use this to enable components, etc.

https://docs.unity3d.com/Manual/class-TextureImporter.html
https://docs.unity3d.com/Manual/UnityEvents.html

NAME TYPE
On
ity E
Deselect Unity Event
Drop FpsinventoryWieldableDro
Object P y P
See Also

Inventory Examples
Generated Constants
Fpsinventoryltem

FpsinventoryWieldableDrop

DESCRIPTION

An event called when the wieldable is deselected. Use this to disable components, etc.

The prefab to spawn when the wieldable item is dropped.

https://docs.unity3d.com/Manual/UnityEvents.html

FpsInventoryWieldableDrop MonoBehaviour

Overview

The FpsinventoryWieldableDrop behaviour is a pickup that is spawned when a character drops a wieldable item.

Inspector

B Fps Inventory Wieldable Drop (Script)

Rigid Body ponDrop_HandGrenade (Rigidbody)

Pickup aponInteractable (InteractivePickup)

Properties

NAME TYPE DESCRIPTION

Rigidbody Rigidbody The object rigidbody for the drop. This will be thrown away from the character that drops it.

The pickup for the item. This will be initialised with the correct quantity based on the dropper's

Pickup InteractablePickup .
inventory.

See Also

Inventory

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

FpsinventoryWieldable MonoBehaviour

Overview

The FpsinventoryWieldableSwappable behaviour is a variant of the FpsinventoryWieldable for the swappable inventory. It has a

property for the wieldable category instead of a specific quick slot.

Inspector

Fps Inventory Wieldable Swappable (Script)

Properties

The FpsinventoryWieldable behaviour inherits from the Fpsinventoryltem. Check the reference for information on its properties.

NAME

Inventory
ID

Display
Image

Max
Quantity

Deselect
Action

On Select

TYPE

ID Picker

Sprite

Int

Dropdown

Unity Event

Dieactivate Game

ps Inventory Wieldable Drop)

DESCRIPTION

The inventory item key. Clicking this button will open the inventory database item picker.

The image to use in the inventory HUD.

The maximum quantity you can hold.

What to do when the weapon is deselected. Available options are: Disable Game Object,
Disable Wieldable Component and Nothing.

An event called when the wieldable is selected. Use this to enable components, etc.

https://docs.unity3d.com/Manual/class-TextureImporter.html
https://docs.unity3d.com/Manual/UnityEvents.html

NAME TYPE

On

ity E
Deselect Unity Event
Drop FpsinventoryWieldableDro
Object P y P

Category FpsSwappableCategory

See Also

Inventory Examples
Generated Constants
Fpsinventoryltem

FpsinventoryWieldableDrop

DESCRIPTION

An event called when the wieldable is deselected. Use this to disable components, etc.

The prefab to spawn when the wieldable item is dropped.

The wieldable category.

https://docs.unity3d.com/Manual/UnityEvents.html

InteractiveMultiPickup MonoBehaviour

Overview

The InteractiveMultiPickup behaviour is an object that will give a number of inventory items to the character that interacts with it.

Inspector

B 7 Interactive Multi Pickup (Script)

Full (FpsIr

1 nurm_Full
Element 4 nvent I _Full (FpsInventorys

ts

Properties

The InteractiveMultiPickup inherits from the InteractiveObject. Check the reference for information on its properties.
NAME TYPE DESCRIPTION

Fpsinventoryltem

The item prefabs to add to the character inventory.
Array

Items

Do the inventory items replenish. If the items are removed new items will be instantiated. If they are

Replenish Boolean . . -
P partially removed (to top up an existing item) the quantity will be reset afterwards.

See Also

InteractiveObject

Fpsinventoryltem

InteractivePickup MonoBehaviour

Overview

The InteractivePickup behaviour is an object that must be interacted with to pick up and add an item to the character inventory.

Inspector

B 7 Interactive Pickup (Script)

Interactable On Start
Hal

+

yWieldable)

Properties

The InteractiveMultiPickup inherits from the InteractiveObject. Check the reference for information on its properties.

NAME TYPE DESCRIPTION
Root Transform The root object (destroyed when the item is picked up).
Item Fpsinventoryltem The item prefab to add to the character inventory.
See Also
InteractiveObject

Fpsinventoryltem

https://docs.unity3d.com/Manual/class-Transform.html

InteractivePickupTrigger MonoBehaviour

Overview

The InteractivePickupTrigger behaviour is used to create interactive item pickups or powerups that must be used to consume.

Inspector

H + Interactive Pickup Trigger (Script)

Qn Cursar Enter ()

List 1s Emipty

Properties

The InteractivePickupTrigger behaviour has no properties exposed in the inspector.

See Also

Inventory

InteractiveObject

InventoryltemPickup MonoBehaviour

Overview

The InventoryltemPickup behaviour is combined with a PickupTriggerZone to create a pickup that is added to the character

inventory when walked over.

Inspector
Inventory Item Pickup (Script)

Re wWn

B Inventory_Ammod0mm_2 (FpsInventoryAmmo)

Properties
NAME TYPE DESCRIPTION
Consume Dropdown What to do to the pickup object once its item has been transferred to the character inventory.
Result P Options are Destroy, Disable, Respawn.
Item Prefab Fpsinventoryltem The inventory item prefab to give to the character.
Spawn On
Awake Boolean Should the pickup be spawned immediately, or triggered externally.
R
espayvn Float How long to wait before respawning if the consume result is set to Respawn.
Duration
Display . The display mesh of the pickup. This should not be the same game object as this, so that if this is
GameObject
Mesh disabled the pickup will still respawn if required.
See Also

InteractiveObject

Fpsinventoryltem

PickupTriggerZone MonoBehaviour

Overview

The PickupTriggerZone behaviour is added to objects that also contain a pickup behaviour, and a collider set to act as a trigger. It

captures trigger events from the collider and uses them to activate the pickup.

Inspector

B rickup Trigger Zone (Script)

Properties

The PickupTriggerZone behaviour has no properties exposed in the inspector.

See Also

Inventory
Unity BoxCollider
Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

FpsinventoryDbTable Scriptable Object

Overview

The FpsinventoryDbTable scriptable object contains a list of inventory items and manages their IDs. You can add new items to the

inventory database from this object, or directly from the inventory item components themselves.

Inspector

(_3 NeoFPS_Demolnventory

Table Name NeoFPS Demaos

b4

b4

b4

3

3

3

3

3

3

3

3

3

3

3

3

3

3

%
£
)
L4
L4
L
)
L4
L4
L
)
L4
L4
L
)
L4
L4
L

3

New Entry

Mame

Manage Table

Properties
NAME TYPE DESCRIPTION
Table Name String A unique name for this table, to help differentiate them in the database and key picker.

The entries table shows each of the current entries in this table. You can click on the options button to the right of each entry for a
list of context sensitive options, or you can click on the name to rename the item. Each item uses a unique ID code, so renaming
items will not break connections.

You can sort the table using the Sort By Name (Ascending) and Sort By Name (Descending) buttons. You can also quickly
clear all items with the Clear All Items button. Any objects that reference that item will show their ID as "Missing: (ID code)".

You can add new items by entering a name in the item name field and hitting the Add Entry button.

See Also

Inventory

NeoFpsinventoryDatabase Scriptable Object

FpsinventoryKeyDbTable Scriptable Object

Overview

The FpsinventoryKeyDbTable scriptable object is an inventory database table that takes its keys and names directly from the
FpsInventoryKey constant. This allows the relevant keys to be accessed directly from code (useful for things like keyrings).

Inspector

The FpsinventoryKeyDbTable behaviour is only visible through the NeoFpsinventoryDatabase inspector.

Properties

The FpsinventoryKeyDbTable behaviour has no properties exposed in the inspector.

See Also

Inventory

NeoFpsinventoryDatabase Scriptable Object

FpsinventoryLoadout Scriptable Object

Overview

The FpsinventorylLoadout scriptable object is used to replace a character's starting inventory on spawn. These are assigned to the

loadout property on the FpsSoloGameMinimal component.

Inspector

B Firearm_AssaultRifle_Quickswitch (FpsInventoryWieldable)

Properties

NAME TYPE DESCRIPTION

Iltems Fpsinventoryltem Array A selection of inventory items to be added to the character inventory on start.
See Also

Inventory Examples
Fpsinventoryltem

FpsinventoryWieldable

NeoFpslnventoryDatabase Scriptable Object

Overview

The NeoFpsInventoryDatabase scriptable object is a global inventory database that can be accessed from scripts at runtime and in
editor code. It contains a list of database tables, allowing you to divide items up for projects and demos. The first table is always
the FpsinventoryKeyDbTable. The other table type that is provided is the FpsinventoryDbTable, though more can be added by
inheriting from the common base class.

Inspector

(_3 FpsManager_InventoryDat

Add Table Asset B Mone (Fps Inventory Db Table Base)

Properties

You can add new tables to the database by dragging and dropping it into the Add Table Asset field at the top of the database
inspector.

Underneath this is a list of the current tables in use by the database. The options button at the side of each table will show a list of

context options. Selecting a table will show its inspector below the list of tables.

See Also

Inventory

FpsinventoryKeyDbTable

Weapons

Overview

NeoFPS currently supports three types of weapons: melee, thrown and modular firearms.

Melee Weapons

Melee weapons are weapons such as clubs and swords that are held onto and swung at the enemy. For more information see

Melee Weapons.

Thrown Weapons

Thrown weapons are items such as grenades and ninja stars that are stored in the character inventory and thrown by hand. For

more information see Thrown Weapons.

Modular Firearms

Modular firearms are gun type weapons. They are assembled from a number of swappable modules that, together, model the
behaviour of a firearm. For more information see Modular Firearms.

Explosions

The NeoFPS weapons can make use of a simple explosions system which deals damage and adds a repelling force to any objects

in an explosion's blast radius. For more information see Explosions.

Wieldable Tools

Wieldable tools are items that are carried in the player character's hands and used with the primary or secondary fire buttons.
They are assembled from a number of tool modules and actions. For more information see Wieldable Tools.

Demo Weapons

The following weapons are included in the samples in order to show off the different weapon features:

I ———

The baton is a simple demonstration of the melee weapons.

WA=

The pistol is a low caliber firearm with plenty of ammunition. It uses the basic features of the modular firearms.

I —1

The revolver is a high caliber, heavy hitting firearm. The trigger pull is quite heavy so firing can have a delay.

The shotgun is a pump action weapon with a conical spread. Shells are loaded into the weapon individually and the process can
be aborted after the current round is inserted by pressing the fire button.

_ o

-Il —"!l_l---

||||||||

ur\\\-r

The assault rifle is a 5.56mm carbine with 3 fire modes: full auto, 3 round burst and semi-automatic.

The sniper rifle is a heavy caliber bolt-action rifle with a long range scope.

The grenade launcher is a single-shot break open launcher that fires 40mm high explosive grenades.

The fragmentation grenade is a thrown weapon. Pull the pin and wait 5 seconds for an explosion.

More demo weapons will be added in future updates.

See Also

Melee Weapons

Thrown Weapons
Modular Firearms

Explosions

Modular Firearms

Overview

Recoil Aimer Trigger Reloader Muzzle Shooter Ammo Ammo
Handler Effect Effect

Gun style weapons in NeoFPS use a system of modules that work together with a central ModularFirearm behaviour to model the
behaviour of a firearm. Multiple modules of each type can exist on a firearm at any time, but only one of each can be active. When
another is enabled it automatically disables the previous. Modules can be attached to a child gameobject of the firearm, or on the
same gameobject. This allows for weapon behaviour to be built on attachments that can be swapped in and out at runtime.

Creating a Modular Firearm

There are 2 ways to create a new modular firearm. The quickest and easiest is to use the Modular Firearm Wizard in the NeoFPS
Hub. You can find out more about this on the NeoFPS Wizards page. The more flexible approach is to use the Modular Firearm
component itself.

You can create a new modular firearm using the ModularFirearm behaviours setup controls in the inspector. Create a new
GameObject in the scene and add the ModularFirearm behaviour to it. To start off with, the behaviour will be in quick-setup
mode. This allows you to select a model to use, along with a few basic choices on input and inventory type. Once you have
completed quick-setup you will see a "modules” section, which allows you to pick from the available firearm modules as listed
below. Any errors in the setup of the modules will be shown in this section, and the module will be highlighted. For more
information, see the ModularFirearm behaviour reference.

Modules

The modules that work together to model the firearm are as follows:

Shooters

Shooter modules are responsible for the actual gunshot. This could mean checking a raycast or spawning a projectile. The shooter
is provided with a source position and direction, an accuracy value (0 to 1) and an ammo effect. NeoFPS comes with the following

examples:
NAME DESCRIPTION
HitscanShooter The hitscan shooter uses a physics raycast to detect a hit.
BallisticShooter The ballistic shooter spawns a BallisticProjectile object and passes the ammo effect to it to handle any impacts.

The simple ballistic shooter spawns a BallisticProjectile just like the ballistic shooter, but isn't affected by accuracy

SimpleBallisticShooter .
or the camera aim.

SpreadHitscanShooter The spread shooter acts as a cone of hitscan shooters. It is used for weapons like shotguns.

NAME

SpreadBallisticShooter

PatternHitscanShooter

PatternBallisticShooter

DESCRIPTION

The ballistic shooter spawns multiple BallisticProjectile objects in a cone and passes the ammo effect to them to
handle any impacts.

The pattern hitscan shooter fires multiple hitscan shots in a preset pattern.

The pattern ballistic shooter spawns multiple BallisticProjectile objects in a preset pattern.

The modular firearm shooters allow the choice of either hitscan or projectile versions. Hitscan shooters cast an instant ray from

the gun barrel. This helps them feel very responsive, especially at close quarters. Projectile shooters spawn a projectile at the

weapon's muzzle tip. These projectiles have full control of their movement and hit detection, and then pass the hit info back to the

relevant ammo effect. Some example projectiles include the BallisticProjectile, BallisticProjectileWithSimpleDrag and
BallisticProjectileWithParticles.

Triggers

Trigger modules handle the rate of fire of the firearm and react to input. NeoFPS comes with the following examples:

NAME
AutomaticTrigger

SemiAutoTrigger

BurstFireTrigger

ChargedTrigger

QueuedTrigger

TargetLockTrigger

MultiTargetLockTrigger

Ammo Effects

DESCRIPTION

The automatic trigger models a machinegun with a set rate of fire. It will keep firing as long as the trigger is held.

The semi-auto trigger fires one shot for each press of the trigger. It can optionally repeat fire after a set time.

The burst fire trigger fires a set number of bullets at a set rate of fire. It has options to repeat after a set time and
to allow / disallow cancelling the burst.

The charged trigger must charge up before firing. If the trigger input is released the charge drops. Once the
trigger has been charging for a set time the gun will fire.

The queued trigger will queue up shots up to a maximum count while the trigger is held, and fire once it's
released. You can optional cancel with the reload button.

The target lock trigger will lock onto any valid targets within the firearm's detection cone. Holding the trigger will
build the lock. Releasing the trigger at full lock will fire. Releasing early or hitting reload will cancel the lock.

The multi-target lock trigger is essentially a queued trigger that locks onto a unique target for each shot.

Ammo effect modules specify what happens when a shot actually connects with something. This includes the impact visuals and

audio, dealing damage and adding impact forces. NeoFPS comes with the following examples:

NAME

BulletAmmoEffect

AdvancedBulletAmmokEffect

DESCRIPTION

The bullet ammo effect uses the Surfaces system to react to a hit.

The advance bullet ammo effect expands on the BulletAmmokEffect to add randomised damage and
damage drop off over range.

PooledExplosionAmmokEffect The pooled explosion ammo effect spawns an explosion at the impact point.

ParticleAmmoEffect

The particle ammo effect spawns a pooled ParticlelmpactEffect particle system at the impact point.

NAME DESCRIPTION

Penetrating ammo effects allow shots to penetrate through surfaces up to a specific depth. This version

PenetratingHitscanAmmokEffect . .
9 performs a hitscan shot on the other side of the surface.

Penetrating ammo effects allow shots to penetrate through surfaces up to a specific depth. This version

PenetratingProjectileAmmoEffect . .
grro) spawns a new projectile on the other side of the surface.

Ricochet ammo effects allow shots to bounce off surfaces based on the hit angle. This version performs a

RicochetHitscanAmmokEffect . . .
hitscan shot from the point of impact.

Ricochet ammo effects allow shots to bounce off surfaces based on the hit angle. This version spawns a

RicochetProjectileAmmokEffect . . .
new projectile at the point of impact.

The surface based bullet physics ammo effect gives detailed per-surface type control over a projectile

SurfaceBulletPhysicsAmmoEffect . . . P e .
y bullet's penetration and ricochet behaviour. Surface info is specified in a SurfaceBulletPhysicsinfo asset.

The target tracking ammo effect is a targeting system. The last object hit with this ammo effect will

T tTrackingA Effect
argetirackingAmmotitec become a target for guided projectiles.

Ammo

The ammo module handles the ammo type of the weapon. This includes the total and current amount. NeoFPS comes with the
following examples:

NAME DESCRIPTION
SharedPoolAmmo The shared ammo pool references an ammo inventory item. This allows ammo to be shared between multiple firearms.
CustomAmmo Custom ammo is a self contained ammo component unique to the firearm it is attached to.

The infinite ammo module is actually both an ammo module and a reloader module. It completely removes the need to

InfiniteAmmo
reload.

RechargingAmmo The recharging ammo will build up its ammo pool up to a maximum over time.

Reloaders

Reloader modules act like the magazine attached to the firearm. It reloads using ammo from the attached ammo module. NeoFPS

comes with the following examples:
NAME DESCRIPTION
SimpleReloader The simple reloader holds a set amount of ammo and reloads it all in one go.

The chambered reloader uses a different delay and animation when reloading from empty vs with a round

ChamberedReloader chambered.

The incremental reloader is reloaded in chunks. It can be interrupted by firing and resumed later. It is used in

IncrementalReloader .
the example shotgun to reload one shell at a time.

This reloader is a variant of the simple reloader that displays the correct number of bullets in the revolver drum
CustomRevolverReloader and swaps them for empties. It is used to demonstrate how to interact with animations to create complex
effects.

NAME DESCRIPTION

The passthrough reloader does away with the magazine and fires bullets directly from the ammo module

Passth hReload
assthroughneloader attached to the weapon.

You can also add the ReloaderCountdown behaviour to a firearm to play audio clips as the magazine count approaches zero. This
can be useful for adding a warning sound that the magazine is almost empty, or for effects such as the iconic ping of a garand
rifle.

Aimer

Aimer modules describe what happens when the player tries to aim down the weapon sights. A sniper rifle would hide the
weapon geometry and show a Ul scope. A pistol would raise the weapon to align its sights to the camera. NeoFPS comes with the

following examples:
NAME DESCRIPTION
InstantScopedAimer Instantly hides the weapon geometry and shows a Ul scope.

Raises the weapon to align with the camera over a set duration. Once the weapon is raised the its geometry is

ScopedAimer hidden and a Ul scope is shown.

WeaponMoveAimer Raises the weapon to align its sights with the camera.
HeadMoveAimer Offsets the first person camera to align it to the weapon sights (allows tilt).

Sets an animation bool parameter, but does not affect the camera or crosshair. It is mainly intended for using the

Ani lyAi
niMOnlyAimer modular firearm system with Al.

Recoil Handlers

Recoil handlers define how recoil affects the firearm object when it shoots. NeoFPS comes with the following examples:
NAME DESCRIPTION

Uses the additive transform system to add procedural animation when the firearm recoils, along with
BetterSpringRecoilHandler modifying its accuracy. This new module is more intuitive and easier to control than the old
SpringRecoilHandler module.

AccuracyOnlyRecoil

Handler Modifies the accuracy of the weapon with each shot, recovering over time.

(Deprecated) Uses the additive transform system to add procedural animation when the firearm recoils, along

ingRecoilHandl
SpringRecoilHandler with modifying its accuracy. This has been replaced by the BetterSpringRecoilHandler module.

Muzzle Effects

Muzzle effect modules display the muzzle flash of the weapon and plays gunshot audio. NeoFPS comes with the following

examples:
NAME DESCRIPTION

Activates a game object for a brief period and then deactivates it again. Picks audio at random from an

BasicGameObjectMuzzleEffect .
array of audio clips.

NAME DESCRIPTION
SimpleParticleMuzzleEffect Triggers a particle system to emit with each shot.

. Triggers one or more particle systems to emit with each shot. The particle systems are reparented to the
AdvancedParticleMuzzleEffect . . . S
character on start so they can persist between weapon switches, and to allow simulation in character space.

Activates a game object chosen at random from a pool, and then deactivates it again after a brief delay.

RandomObjectMuzzleEffect . . s
andomibjectivilizziettiec Picks audio at random from an array of audio clips.

Ejectors

Ejector modules optionally throw empty shells out of the weapon when it fires. NeoFPS comes with the following examples:
NAME DESCRIPTION

Spawns a pooled shell object and throws it out from the weapon. Can be triggered instantly on firing, after a

StandardShellEject . L
delay, or with an animation event.

Swaps the specified object with a pooled physics object. Used to swap animated shell casings with physics based
ones at a certain point in the weapon animation.

ObjectSwapEjector

MultiObjectSwapEjector As the object swap ejector, but can swap multiple items at once.

ParticleSystemShellEject Triggers play on one or more particle systems whenever a shell is ejected.
Utilities

The modular firearms also come with various utilities to extend them with new features:

NAME DESCRIPTION

AnimatedFirearmSprintHandler Models firearm sprint behaviour using keyframed sprint animations on an Animator.
AttachedAmmoCounter This is connected to a Ul text element to display the firearm's magazine ammo on a world-space Ul.
FirearmAimFatigue Applies a stamina drain to the wielder's StaminaSystem when aiming down sights.

Adds a barrel glow and haze effect on firing. You can also enable overheating, meaning that once the
FirearmOverheat heat limit is reached, the firearm trigger will be blocked until it cools down enough. This can be paired
with a HudFirearmOverheatBar to show the heat status in the player HUD.

Communicates with a TransformMatcher additive transform behaviour to sync the wielder's head

FirearmTransformMatchSetter L .
animation to the firearm.

FirearmWieldableStanceManager Used to specify procedural or keyframed weapon stances such as crouching or falling.

HolographicSight Controls the colour and brightness of a holographic projection weapon optic.
LaserPointerAimerSwitch Combined with a laser pointer, switches the aimer module while the laser is on.
ProceduralFirearmSprintHandler Models firearm sprint behaviour using procedural animmation.

RecoilPushback Add this to a firearm to apply a force directly away from the shot direction when firing.

https://docs.unity3d.com/Manual/class-Animator.html

NAME DESCRIPTION

RenderTextureScope Controls the camera, reticule and material for a render texture scope to add parallax and off-axis fade.

Animations

Animation of weapons is based in part on the ModularFirearm behaviour and also on the attached modules as well. As different
modules behave in different ways they often need to be animated differently to match. For example, the semi-auto trigger uses an
animator trigger property to tell the animator to play the trigger press and release animation. The full auto trigger uses a boolean
property instead to tell the animator how long to hold the trigger, and the charged trigger uses a float property to tell the
animator how much to blend the trigger pull / hammer cock animation.

Each animation key can be changed in the firearm or module's inspector and is set by default to match the example assets
provided with NeoFPS.

In some cases, the animation can also define the timing for individual actions such as incrementing the magazine ammo count
with the incremental reloader. NeoFPS comes with an example animation event handler called the FirearmAnimEventHandler
which catches Unity animation events. It is very simple to implement your own animation event handlers and provides a great
deal of flexibility beyond using timers, however in the example modules any potentially timed actions have an option to set a
specific wait duration or to wait for an animation event before triggering.

Alongside keyframed animation, NeoFPS also allows you to add procedural animation to your weapons using Additive
Transforms and Effects. These can be very simple, such as the spring effects driven by the recoil modules. They can also be more
complicated, such as the procedural sprinting animation using the ProceduralFirearmSprintHandler. For larger scale movements,
the main modular firearm behaviour has a pose system built in which allows for seamless transitions between poses. This is used
by a number of modules such as the WeaponMoveAimer or the FirearmWieldableStanceManager.

Footstep driven animation such as sprinting or weapon bob is driven through a step tracking system attached to the character's
motion controller. This ensures that any animations like this sync up, are only active while in the correct movement state, and are
correctly driven by the character's velocity. The character's stride length (and therefore bob speed while moving) is controlled by
adding a TrackSteps motion graph behaviour to the relevant states or sub-graphs in your character's motion graph.

*Note: If you have a weapon lower animation in your animator controller, then it is a good idea to transition to weapon raise at
the end of it. The Unity animator can sometimes fail to transition if too many are triggered in very quick succession (eg tapping
between 2 weapon slots), and this will prevent it from causing a problem.

Drops and Pickups

Firearms have their own "drop" system that allows a player or character to drop them from their hands. The firearms need their
own system to account for ammo usage. When a firearm drop is spawned, the attached ammo is set to the amount in the
firearm's magazine. In the sample assets the ammo can be picked up by walking over the weapon drop, while the firearm itself
needs to be interacted with to pick back up. For more information, see ModularFirearmDrop and ModularFirearmAmmoPickup.
The easiest way to create a firearm drop is using the PickupWizard in the NeoFPS hub.

Switching Modes

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

The NeoFPS firearms have a simple system for switching weapon modes. Mode switching is delegated to the
ModularFirearmModeSwitcher behaviour, which should be attached to the GameObject with the ModularFirearm behaviour. This
works by grouping firearm modules into weapon modes and then enabling them once the mode is switched. Since only one of
each type of module can be enabled at any one time, the ModularFirearm behaviour will automatically disable the old modules
when new ones are activated.

Some examples of things you can do with the firearm mode switcher include:

Switching trigger groups to cycle between semi-auto, burst fire and full auto
Switching ammo types in a grenade launcher
Swapping aimer and trigger when switching a rifle from close combat to long range mode

Switching muzzle effect (audio and visual) once a silencer is attached to the gun

Visual Effects

The modular firearms feature various options and modules for controlling their visual effects. The samples are set up with a low
poly style that uses simple geometry and objects for muzzle effects and ejected shells. You can also use particle systems to create
more realistic effects, and the asset ships with more realistic drop-in replacements for each of the demo firearms. These muzzle
effect prefabs can be found at: *Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\MuzzleFlashes*

To use the new muzzle effects, you will need to remove the Basic Game Object Muzzle Effect from the firearm prefab. Navigate
through the weapon hierarchy until you find the MuzzleFlash game object. Delete this, and drag & drop the relevant realistic
muzzle effect from the above folder into the same place in the hierarchy. Each of these realistic effects is ready set up with an
Advanced Particle Muzzle Effect behaviour and positioned based on the main weapon mesh position.

Alongside the muzzle effects, NeoFPS also comes with a variety of hitscan bullet trail prefabs, and projectile prefabs. These can be
found in the following folders: Assets/NeoFPS/Samples/Shared/Prefabs/Weapons/Trails/ and
Assets/NeofFPS/Samples/Shared/Prefabs/Weapons/Projectiles/

These are dropped onto the relevant property on the shooter module. For hitscan trails, you can set the size/radius and the
duration of the trail (for example, the distortion bullet effect works best with a much larger size and longer duration than the
additive trails).

Lastly, the NeoFPS samples include a number of shaders to achieve the above effects. These are currently only available for the
standard pipeline and located at: E:\Projects\neofps\unity\neofps_stable\Assets\NeoFPS\Samples\Shared\Effects\Shaders

Each of the shaders has been created using the Amplify Shader Editor. If you own this asset, then you will be able to tweak them
for your needs or use them as a starting point for your own shaders. Shaders that are intended for use with particle systems, such
as the shockwave or fireball sheets make use of vertex colours to control intensity. A number of shaders also expose properties
through material property blocks such as the glow amount on the glow shaders or highlight amount on the interactive object
highlight shaders.

See Also

https://assetstore.unity.com/packages/tools/visual-scripting/amplify-shader-editor-68570?aid=1011l58Ft

Health and Damage

Explosions

Inventory

First Person Camera

ModularFirearm Reference
BallisticProjectile Reference
FirearmAnimEventHandler Reference
ModularFirearmDrop Reference
ModularFirearmAmmoPickup Reference

Unity Animation Events

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

Hitscan vs Projectiles

One of the most important choices you can make when defining the feel of your guns is whether to use a hitscan or projectile

based shooter.

Hitscan

Hitscan uses a raycast to detect what a shot hits instantaneously. The shooter module picks a direction for the shot based on the
camera direction, the weapon direction, and the current accuracy of the firearm and draws a straight line from the muzzle tip to
the first thing it hits.

The instantaneous nature of hitscan makes it well suited to fast paced, arcade style games where responsiveness is key. You don't

need to lead your targets or compensate for bullet drop.

In NeoFPS, the visual aspects of hitscan shots are represented by the hitscan trail behaviours and a range of shaders. The hitscan

trails available are:

e Line Renderer Hitscan Trail uses a Unity line renderer to draw a line from the muzzle tip to the hit point. The tracer size
property on the shooter modules acts as a multiplier on the width set in the line renderer.

e Particle System Hitscan Trail emits a set number of particles per meter along the line from muzzle tip to hit point. |

e Line And Particle Hitscan Trail combines a line renderer and particle system in one. This is useful for effects like tracer using
the line renderer, followed by smoke or dust from the particle system.

e Noisy Line Hitscan Trail uses a particle system with noise to drive the points in a line renderer. This creates an effect where
the tracer starts as a straight line and then curls and spirals apart.

The following shaders are also available to create more interesting hitscan trail effects:

e The NeoFPS_DissolveTrail shaders start out solid and then dissolve away based on the tracer duration setting on the
firearm's shooter module. There are additive and alpha shaded versions, along with edge blend versions which fade out the
material at the outside edges of the trail.

e The NeoFPS_DistortionTrail adds a refraction style distortion effect similar to that scene in games like fear. This works
especially well with a larger tracer size and longer duration. The shaders are available at
Assets\NeoFPS\Samples\Shared\Effects\Shaders.

Projectiles

Projectile based shooters spawn a projectile at the firearm's muzzle tip with the specified velocity. A projectile travels over time
until it hits something. They can also optionally be affected by gravity or even driven by complex movement logic. A large and
slow projectile with gravity can be used to model grenade launchers and similar weapons, but you can also use much higher
velocities to create standard bullets. For example, the muzzle velocity of a .45" pistol is in the region of 250m/s, a grenade
launcher is more like 75m/s, while an assault rifle would be more like 750-900m/s. In games with smaller environments, you

might want to keep your muzzle velocities smaller than real life to exagerrate the visuals and bullet drop.
A number of example projectiles can be found at Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\Projectiles.

Projectiles are usually comprised of a root object with the projectile component attached, a mesh, which will be enabled after the
projectile has travelled a set distance, and a trail renderer. Projectiles are implemented as a PooledObject and will be returned to
the pool on impact. They can also have a NeoSerializedGameObject component attached, allowing the NeoFPS save system to

save and load projectiles in flight.

Guided projectiles

NeoFPS has a system that lets you build guided projectiles from a combination of a tracker component and a motor component.

The tracker component is responsible for detecting and choosing a target, while the motor component is responsible for flying

towards it. Currently there are 2 motor components available:

The Simple Steering Motor simply turns towards the target each frame with a maximum steering rate that increases over
time (this prevents the projectile from orbiting targets).

The Drunk Missile Motor has a much more erratic flight path. At brief intervals it picks a random direction (tending towards
the target) and turns towards that. Once the projectile gets close enough to the target it adopts a more standard steering
system. The projectile can also boost its speed at random intervals as well. Together these give an effect similar to the
missiles seen in anime.

There are a range of tracking options for guided projectiles in NeoFPS:

The NearestObjectWithTagTracker component checks for colliders with a specific layer and tag in its vicinity. It will target the
closest valid target.

The PlayerTracker component homes in on the player character.

The TargetingSystemTracker component defers its target selection to a separate targeting system. There are multiple
targeting systems available, which are attached to the firearm. The ballistic shooter firearm modules will check for a
targeting system on the firearm, as well as a TargetingSystemTracker on the projectile, and register the projectile with the
targeting system if both are found. Targeting system options available are:

LaserTargetingSystem which is attached to a WieldableLaserPointer. If the laser is on, the projectile will home in on the
point the laser hits.

RaycastTargetingSystem casts a ray from either the weapon or the camera, and passes the hit point to the projectiles. This
can be a one-shot or continuous cast.

TargetLockTrigger is a firearm trigger that checks for valid targets within a cone in front of the weapon. Holding the trigger
will lock onto the target over time. Releasing the trigger before the lock completes will cancel the shot, while releasing the
trigger after will fire the gun and pass the locked target to the projectile. The target is tracked continuously from that point
until the projectile hits or is destroyed. You can cancel firing with the reload button.

MultiTargetLockTrigger is a firearm trigger which locks onto multiple targets one by one as you hold the trigger. Releasing
the trigger will fire as many shots as there were target locks in a burst. You can cancel firing with the reload button.
TargetTrackingAmmoEffect allows you to tag a target with a shot, which the guided projectiles will then home in on. This
can track moving targets, and will track the exact point on the target that the bullet hit. You can use this in conjunction with
a the ModularFirearmModeSwitcher to allow you to switch weapon modes between tagging and missiles.

See Also

Modular Firearms

Scopes & Optics

Overview

NeoFPS provides a number of ways to implement different scopes and optics for your weapons. These include close range and

long range optics in different styles.

Iron Sights

Iron sights are the simplest form of ADS optics. You simply need to make sure that your iron sights geometry is a sensible shape
and layout, and then use one of the firearm aimer modules to align the weapon to the camera when aiming.

Holographic Sights and Red-Dots
| ‘ M g

Holographic and red dot sights project a reticule at a distance in front of the weapon that is only visible through the sight. This
makes it easy to quickly acquire a target and adjust to the movement of the weapon during recoil.

You can increase or decrease the brightness of the reticule using the Optics Brightness +/- input buttons in game.

For more information see the HolographicSight Reference. The Demo Facility assault rifle uses a holographic sight by default.

Render Texture Scopes

Render texture based scopes are used in games such as Escape From Tarkov that emphasise realism. They provide a zoomed in
view within the scope lens, without zooming in the rest of the frame. This means that the player can maintain awareness of their

surroundings much easier than they can with a HUD or stencil based scope where their whole view is zoomed in.

The NeoFPS RT scopes also have a parallax effect when moving. This involves moving the reticule and a blurred scope ring as the
scope goes off the player camera's axis. It can also rotate the scope camera slightly to compensate for this off axis viewing so that
the scope image feels more dynamic.

When the render texture scope gets far enough from the camera axis it starts to fade out to an opaque, reflective material. Once
fully opaque, the scope camera will stop rendering.

Scopes implemented in this way incur a performance penalty since they involve rendering the scene twice. This can be mitigated
slightly by showing the scope smaller on the screen (and therefore using a smaller render texture), but you should be aware that
the increased realism comes at a cost.

For more information see the RenderTextureScope Reference. The Demo Facility sniper rifle uses a render texture scope by
default.

Stencil Based Scopes

Stencil based scopes use stencil shaders to define what parts of the weapon are visible through the lens of the scope. They
provide no zoom themselves, so the entire player camera must be zoomed in. The stencil shaders are used to cut out the scope
housing and mount behind the lens so that your view is unobstructed. They are also used in the opposite way to display the scope
reticule and inner tube, providing a slight parallax effect, while cutting out any of the geometry that extends outside your view of
the lens.

Stencil based scopes are much more performant than render texture scopes, with the trade off that the view around the scope is
also zoomed in.

The Demo Facility sniper rifle has stencil based scopes disabled in its hierarchy.

Note: The stencil based scopes are currently not working with deferred rendering. A solution is being looked into.

HUD Scopes

HUD based scopes essentially hide all weapon geometry, and overlay a crosshair over the entire screen. This can be instant, or
triggered at the end points of an aim-down-sights animation.

These scopes tend to have a much more arcadey / responsive feel than the other options, though it can be harder to make them
look good.

You should also make sure that the shooter module on the firearm is set to use the camera aim when aiming so that the bullet

hits where the crosshair is pointing every time.

The sniper rifle in the feature demos uses a HUD based scope.

See Also

RenderTextureScope Reference

HolographicSight Reference

Firearm Attachments

Overview

The firearm attachment system is still in development and not yet ready for use, but the NeoFPS demo assets include a number of

attachment models and prefabs. Besides the various optics attachments, there are also currently flashlights and laser pointers

Flashlights

The flashlights just use a spotlight object which is toggled on or off with the Flashlight input button. There is also an API for
setting the flashlight's brightness.

For more information, see the WieldableFlashlight Reference. The Demo Facility pistol and shotgun both use a wieldable flashlight

attachment by default.

Laser Pointers

The laser pointer also uses the flashlight system to toggle on or off using the Flashlight input button. It uses a line renderer with
a custom shader for the beam and a generated billboard quad for the flare at the point of impact.

Using laser pointers does have some gameplay implications. By default, the NeoFPS firearms use an accuracy system for
determining where shots hit, and also use the camera / HUD crosshair to determine the direction to fire. As accuracy decreases
due to recoil, movement or other modifiers, the bullets spread out from the aim point. This can feel wrong when you have a laser
pointer attached to the weapon which shows you where each of your bullets should hit. You can help with this by changing some
of the default settings on the weapon:

e Set the shooter modules to never use the camera aim. This means that the weapon will always fire directly in front of it.
e Reduced the max spread / max aim offset to a very low