
Table of Contents
 User Manual
 Working With NeoFPS

 Installation
 Getting Started
 Common Tasks
 Wizards
 Game Modes
 Generated Constants
 Layers and Tags
 Game Settings
 NeoFPS Shaders
 Reference

 MonoBehaviours
 ScriptableObjects

 FPS Characters
 Spawning
 Stamina
 Reference

 FpsPrototypePlayerController
 FpsSoloCharacter
 FpsSoloPlayerController
 OrderedSpawnPointGroup
 SimpleBreathManager
 SoloPlayerCharacterEventWatcher
 SpawnManager
 SpawnPoint
 StaminaSystem

 First Person Camera
 Aim Controllers
 Additive Transforms & Effects
 Reference

 MonoBehaviours

https://docs.neofps.com

 ScriptableObjects
 The Motion Graph

 NeoCharacterController
 The Motion Graph Editor
 Motion Graph States
 Motion Graph Behaviours
 Motion Graph Conditions
 Motion Graph Parameters And Data
 Ladders
 Moving Platforms
 Swimming
 Motion Debugger
 Reference

 States
 Behaviours
 Conditions
 MonoBehaviours
 ScriptableObjects

 NeoFPS Input System
 Input Settings
 Creating Custom Input Handlers
 Reference

 MonoBehaviours
 ScriptableObjects

 Interaction With The World
 Doors
 Interactive Objects
 Reference

 AnimatedDoorHandle
 CharacterInteractionHandler
 CharacterTriggerZone
 CharacterTriggerZonePersistant
 DoorInteractiveObject
 DoorTrigger
 ElevatorController
 ElevatorMovingPlatform
 InteractiveObject

 InteractiveObjectCornerMarkers
 InteractiveObjectMaterialMarker
 KeypadInteractiveObject
 KeypadPopup
 KeyRing
 KinematicHingeDoor
 LockedDoorInteractiveObject
 LockedDoorTrigger
 LockedTriggerZone
 LockpickPopup3D
 LockpickPopupUI
 PhysicsHingeDoor
 PickableLockedDoorInteractiveObject
 SlidingDoor
 SoloCharacterTriggerZone
 SoloCharacterTriggerZonePersistant
 TriggerZoneColliderCounter

 Audio Systems
 Footsteps
 Reference

 AnimationEventAudioPlayer
 AudioTimeScalePitchBend
 ClipSetContactAudioHandler
 FpsCharacterAudioData
 FpsCharacterAudioHandler
 NeoFpsAudioManager
 SurfaceAudioData
 SurfaceContactAudioHandler

 Inventory
 Inventory Examples
 Reference

 MonoBehaviours
 ScriptableObjects

 Weapons
 Firearms

 The Modular Firearm System
 Hitscan vs Projectiles

 Scopes & Optics
 Attachments

 Melee Weapons
 Thrown Weapons
 Wieldable Tools
 Explosions
 Reference

 MonoBehaviours
 ScriptableObjects

 Health and Damage
 Reference

 ArmouredDamageHandler
 BasicDamageHandler
 BasicHealthManager
 DamageZone
 EventDamageHandler
 HealthPickup
 HealZone
 RechargingHealthManager
 ShieldedArmouredDamageHandler
 ShieldedDamageHandler
 ShieldManager
 ShieldPickup

 The Player HUD
 Reference

 HudAdvancedCrosshair
 HudAdvancedCrosshairStyleStandard
 HudAmmoCounter
 HudCrosshair
 HudDamageMarkers
 HudDeathPopup
 HudFirearmMode
 HudFirearmOverheatBar
 HudHealthCounter
 HudHider
 HudInteractionTooltip
 HudInventoryItemCounter

 HudInventoryItemMeter
 HudInventoryStackedPC
 HudInventoryItemStacked
 HudInventoryStackedSlot
 HudInventoryStandardPC
 HudInventoryItemStandard
 HudMotionGraphParameterMeter
 HudMotionGraphParameterReadout
 HudOxygenMeter
 HudProgressBar
 HudScope
 HudShieldMeter
 HudShieldMeterStep
 HudSlowMoCharge
 HudStaminaBar
 HudTargetLock
 HudTargetLockMarkers
 HudToggle

 Save Games
 Serializing Data
 Runtime Objects
 Overrides And Persistence
 Troubleshooting
 Reference

 MonoBehaviours
 ScriptableObjects

 Samples
 AI
 UI
 Reference

 ApplyRandomDamage
 CameraSeeker
 DemoFacilityTarget
 DemoFacilityTargetDamageTracker
 DemoInfoLaptop
 DoorsDemoElevatorReadout
 FiringRangeMovingTarget

 FiringRangeReadout
 FiringRangeSequencer
 FiringRangeTarget
 InfoPopupTrigger
 KeypadPopup
 LoadingScreen
 MinimalDemoCharacter
 OutOfBoundsRespawn
 TurretSeeker
 WaterZoneMover

 Utilities
 Reference

 StateMachineBehaviours
 MonoBehaviours
 ScriptableObjects

 Surfaces
 Reference

 MonoBehaviours
 ScriptableObjects

Welcome to the NeoFPS documentation
NeoFPS is a first person shooter asset and toolkit for the Unity game engine. Its goal is to enable you to create an FPS that
matches your vision without restrictions. Designed to be flexible and extensible, NeoFPS can be the perfect starting point for your
game.

Installation
For instructions on getting set up with NeoFPS, see the section titled NeoFPS Installation.

Learning NeoFPS
More comprehensive documentation with more frequent updates can be found on the NeoFPS documentation website.

For information on using NeoFPS in the Unity editor, see the Manual.

For details on writing code for NeoFPS, see the Scripting Reference.

You can find a selection of helpful tutorials here.

Support
NeoFPS is a complex asset and as such there are bound to be occasional problems. If something seems broken or counter-
intuitive, or if you have a suggestion that would make NeoFPS better for developers then please get in touch.

You can access the support page on the website at NeoFPS Support.

Alternatively, you can email support@neofps.com.

Further sources of information
The NeoFPS Website - tutorials, roadmap and support
NeoFPS Unity Forum Thread - coming soon

https://docs.neofps.com
https://docs.neofps.com/manual/index.html
https://docs.neofps.com/api/index.html
https://neofps.com/tutorials
https://neofps.com/support
mailto:support@neofps.com
https://neofps.com

Working With NeoFPS
Overview
NeoFPS is a framework for building PC and console based first person games.

Since it is impossible to cover all of the first person game types in a single asset, instead NeoFPS concentrates on the core
mechanics of FPS games. Namely: movement, camera, interaction and shooting. It also provides implementations for features that
Unity lacks out of the box, but which are especially important in first person games such as bindable controls, surface based
effects, runtime settings and separating physics for shooting and movement.

NeoFPS was designed with the following goals:

To help raise the quality bar of first person games created with the Unity game engine.
To make it possible for a developer to achieve their vision of a first person game without placing constraints on how the
game plays.
To make the more complex mechanics of first person shooters accessible with a minimum of coding required.
To allow developers to choose which features to use and which to replace without having to modify the code.

Installation
NeoFPS is a complex asset that requires a number of custom settings and has dependencies on other packages. Please see the
Installation Instructions for a guide to getting NeoFPS up and running.

Getting Started
If this is your first time using NeoFPS, take a look at the Getting Started section for details on where to start. The Common Tasks
section runs through some of the early tasks that are frequently raised in the NeoFPS Discord server and can point you in the
right direction for the steps and documentation required.

Generated Constants
To meet the goals of enabling developers to achieve their vision and create complex mechanics without rewriting code, a flexible
way of referencing objects and states is required. It would be easy to implement somthing using strings for keys, but the
performance and memory impact of this can be a problem if the system is used in a lot of places or many times a frame. NeoFPS
gets around this by providing a simple interface for creating constants similar to Unity's layers. These constants are turned into
code that makes the constants easy to use in scripts as well as using them for properties in the inspector.

For more information see Generated Constants.

Layers and Tags
NeoFPS makes heavy use of Unity layers to enable complex features and to separate out scene elements for better performance.

For more information see Layers and Tags.

Game Settings
NeoFPS exposes a number of runtime settings to the player through text based settings files.

For more information see Game Settings.

See Also
NeoFPS Installation

Getting Started

Generated Constants

https://discord.neofps.com
https://docs.unity3d.com/Manual/Layers.html

Layers and Tags

Game Settings

NeoFPS Installation
Overview
On first adding NeoFPS to a project, once the assets have been imported, the NeoFPS hub should appear, guiding you through
the installation and providing useful ingormation on getting started. This document covers any extra steps and gives details of
what is happening in case you want more manual control of the installation process.

Unity Settings
NeoFPS requires various project settings to be applied in order to function correctly. This includes custom layers, custom input
axes, and an optimised layer collision matrix. NeoFPS has an automated system for applying Unity settings built into the NeoFPS
Hub. It uses version numbers to track when updates to NeoFPS require new settings to be applied and will open the hub on the
Unity Settings page if they are not up to date. You can also find the hub in the toolbar via Tools/NeoFPS/NeoFPS Hub.

You can apply all required settings automatically here. If you are installing NeoFPS in a fresh project then this is the
recommended approach. If you would prefer to apply the correct settings manually then you can do so using the Individual
Settings section. Clicking the Apply Manually button for a section will open the relevant Unity settings editor and flag the
settings as up to date in the NeoFPS hub. The following is a breakdown of what is required for each section:

S E T TING S D E TAILS

Layers and
Tags NeoFPS makes extensive use of custom layers. For more information, see the Layers and Tags documentation.

Physics
NeoFPS uses the physics layer collision matrix to define interactions between the custom layers. For more information see the
Layer Collision Matrix section of the Layers and Tags documentation. This must be changed after the layers and tags have
been set up.

Input To enable consistent controller mapping across platforms, NeoFPS has some fairly complex input settings. You can find a full
list in the Input Settings documentation.

Player
Settings

NeoFPS uses the Linear color space (this will be set to "Gamma" by default). Without this change, the sample scenes will look
very washed out and bright.

Build
Settings See the Sample Scenes section below.

S E T TING S D E TAILS

Sample Scenes
Sample scenes that demonstrate NeoFPS' features can be found in the project folder: NeoFPS/Samples/SinglePlayer/Scenes

The MainMenu scene is intended as a jumping off point for the individual demos and needs to be set as the first scene in the
build settings (index 0). This means it will be the start-up scene for standalone builds. The Loading scene is a loading screen that
is displayed when loading demo scenes. By default, this must be the second scene in the build settings (index 1), though this can
be changed via the Neo Scene Manager in the hub.

The Unity Settings page applies the above settings automatically as part of the Build Settings section.

Post Processing
NeoFPS makes use of Unity's Post Processing Stack V2 package. On first adding NeoFPS to your project this should be installed
automatically. If you want to check manually that the package is installed then you can access the package manager via the
toolbar at: Window/Package Manager. Once opened, click the All tab at the top of the package list on the left. Scroll down and
select Post Processing. At the bottom right of the description panel is an install button unless the package is already installed.

Due to a bug in the way the PostProcessLayer component is serialized, this has been removed from all cameras and replaced
with a script which attaches and sets up the component at runtime. For more information see the PostProcessLayerFix behaviour
reference.

See Also
Layers and Tags

Input Settings

Getting Started
NeoFPS Hub
On first adding NeoFPS to your project, once the assets have been imported, you should see the NeoFPS hub window appear:

The hub will notify you of any changes to the required settings that must be applied (for more information see NeoFPS
Installation). It also provides a quick way of accessing the sample scenes along with helpful links for getting the most from
NeoFPS;

The hub pop-up will only be shown automatically this first time. If you want to see it again then it can be found in the toolbar via
Tools/NeoFPS/NeoFPS Hub. Alternatively you can check the Show hub on startup checkbox at the bottom of the front page, and
it will be shown each time the project is loaded.

Down the left-hand side of the hub is a navigation pane that lets you choose the page to view. The hub is split into the following
sections:

The Front Page contains useful links to aid with learning NeoFPS, getting support and engaging with the NeoFPS
community.
Unity Settings is used to apply the Unity settings that NeoFPS requires.
Upgrade Notes tracks the installed version of NeoFPS and describes the steps required to upgrade to the latest update
(both in scripts and components)
Quick Start contains a selection of readme sub-pages which aid in getting up and running in NeoFPS, link to the relevant
docs, and highlight useful assets and folders.
Demo Scenes lists the available demo scenes and provides a quick way to find and load them. Once loaded, the Scene
Info sub-page displays a readme for the scene with links to relevant docs and scene or project items. You can also find an

object in each demo scene called Readme which contains this information.
Game Settings organises the player facing game options, allowing you to change default / starting values or delete your
local settings files. These are the options the player can access through the in-game menus such as volume settings, mouse
sensitivity, etc.
Managers organises the manager settings for the various NeoFPS systems.
Wizards provides a series of tools for quickly creating and setting up items in NeoFPS. For more information, see NeoFPS
Wizards.
Integations lists the available integrations for NeoFPS and provides links to the asset store and GitHub repositories. For the
latest integrations, see the integrations page on the website.
Standalone Tools lists the non-hub based tools available in NeoFPS such as the motion graph editor, the motion
debugger, and the save file inspector.

Project Structure
All NeoFPS assets are contained in the NeoFPS folder. Inside this there are 4 subfolders:

Constants contains all the Generated Constants used by NeoFPS and its samples.
Core contains all the code and assets required by NeoFPS.
Resources contains the managers and settings assets that need to be loaded at runtime.
Samples contains a number of sample assets and scenes that demonstrate the different features of NeoFPS and provide a
reference for implementing your own contents and mechanics. For more information, see Samples.

Using NeoFPS In Your Game
The Scene Setup Quick-Start guide available in the hub details the required scene components and links to the relevant prefabs
in the project.

The quickest way to start prototyping in NeoFPS is to use the template scene as a starting point. You can find the template scene
at the following location:

Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Template\FeatureDemo_Template.unity

You can either duplicate this scene as a starting point, or alternatively, if you already have a scene that you want to add then you
can use Unity's multi-scene editing features to open the template scene additively in order to copy the relevant objects across.
With your starting scene selected, open the template scene additively by right clicking on the scene asset and selecting the Open
Scene Additive option. Both scenes will now be shown in the hierarchy and you can copy objects from the template scene and
paste them in your own scene. Once you are done, remember to close the template scene by clicking on its options dropdown in
the hierarchy and selecting Remove Scene.

The important objects in the demo scene are:

SimpleSpawnerAndGameMode is a prefab game setup that handles player spawning and death (explained below). You
can also find this prefab atAssets\NeoFPS\Samples\SinglePlayer\Prefabs\SimpleSpawnerAndGameMode.prefab
GlobalProfile is a post-processing profile. You can use this or create your own.
SceneSaveInfo is required in any scene that you want to support the NeoFPS save game system. This is not a prefab as its
settings are unique to each scene. You will also need to add the scene to the build settings.
ScenePoolHandler is used by the pooling system to manage pooled objects. This will be created automatically if not
found, but including one in your scenes leads to a smoother experience.
HudAndMenuCanvas contains the ingame menu and player HUD
HudAndMenuEventSystem contains a Unity UI event system that handles input in the HudAndMenuCanvas object above.

In NeoFPS, the player character is not usually placed directly in a scene. Instead it is spawned at runtime from a spawn point and
attached to a player object. This system allows for features such as swapping characters and respawning while persisting player
information. The SimpleSpawnerAndGameMode prefab listed above contains the relevant spawner, along with a minimal
game mode called FpsSoloGameMinimal. This component references the character object and player object to spawn. For more
information, see Game Modes and FPS Characters.

https://www.neofps.com/integrations/

The default demo character can be found at Assets\NeoFPS\Samples\SinglePlayer\Prefabs\NeoFpsSoloPlayerCharacter.prefab.
You can also find a spawnerless character called PrototypeSpawnerlessCharacter.prefab at the same location. This can be placed
directly in a scene instead of the SimpleSpawnerAndGameMode object, but it is limited in how it can handle player death (it
defaults to reloading the scene).

To add environmental features to your scene, see Layers and Tags for details on what layers to use for environmental geometry,
and Surfaces to add surface audio and impact effects.

For information on how to set up weapons for your game, see Weapons.

To add interaction to your game such as switches, doors and puzzles, see Interaction.

To add your own characters or customise the sample character, see FPS Characters.

NeoFPS is also designed to be extended to suit your vision. Each of the features is implemented in such a way that it can be
replaced or expanded. For more information see Extending NeoFPS.

See Also
NeoFPS Installation

Samples

https://docs.neofps.com/manual/extend-index.html

Common Tasks
Overview
The following are tasks that are frequently raised by new users on the NeoFPS Discord server. More will be added over time
based on user feedback.

How To Interact With Objects In A Scene
NeoFPS lets you walk up to objects in a scene and use them or pick them up with the interact button using the Interactive Objects
system.

There is an interactive object creation wizard available in the NeoFPS Hub that can create new interactive objects and set them up
with render geometry, physics, sound effects and animations. Once you have an object set up, you would use the events on the
interactive object behaviour to trigger your own scripts or components. Alternatively you can create a script that inherits the
InteractiveObject class and extend its Interact() method.

One example of an interactive object is the scene switcher buttons in the persistence demo. The use the interactive object events
to trigger a NeoFpsSceneSwitcher component when pressed, changing the scene.

How To Remove Weapons From A Player Character And Add Your Own
The player character's loadout is specified in the inventory component attached to the root of the prefab. There are 3 inventory
types implemented in the demos: FpsInventoryQuickSwitch, FpsInventoryStacked and FpsInventorySwappable. Each of these have
a Starting Items list in the inspector. You can add items to this as required. The Backup Item is the inventory item that is used
when all others have been dropped, or when the selected item is holstered. By default, this is the demo hands, but it can be
switched to any inventory item you like.

You can also create inventory loadout assets in the project hierarchy using right-click: Create/NeoFPS/Inventory/Loadout. These
are assigned to the game mode component in your scene (for example the FpsSoloGameMinimal component). When the game
mode spawns a character, it will assign it that loadout instead of its default starting loadout. The backup item (hands) will remain
the same. See FpsInventoryLoadout for more details.

How To Add New Item Keys To The Inventory
Inventory items are each identified using a unique key. These keys are stored in the inventory database which is divided into
tables. When adding your own inventory item keys, the first thing you should do is create a new FpsInventoryDbTable for your
project by right-clicking in your project folder and using Create/NeoFPS/Inventory/Database Table. You then need to add the
table to the inventory database by opening the database in the inspector (you can find it in the NeoFPS Hub managers section, or
in the NeoFPS/Resources folder) and dragging your new table asset into the Add Table Asset field at the top. This means that
there is no risk of the keys you add being overwritten when updating the asset (though you might need to re-add your table to
the database).

Once you have an inventory database table for your project, there are a number of ways you can add a key. Firstly, you can select
the table asset and use the controls at the bottom of the inspector to add a new key. Secondly, you can select the inventory
database itself in the hub or resources folder. Clicking on your project table in the database table list will show its contents below.
Lastly, the most convenient approach is to add the key at the moment you need it. Whenever a component has an inventory key
property that yu can set in the inspector, it will pop up the inventory browser when clicked. At the bottom of this is a section to
add a new key. You must select your project's table, insert a name for the item, and click create. This will add the key to the
selected inventory database table, and assign it to the property that opened the browser.

Renaming a key in the asset database will not break connections. Any items that use that key will use the new name automatically.

For more information see the Inventory section.

How To Make Player Weapons, Items And Health Persist Across Play

https://discord.neofps.com

Sessions
NeoFPS has a full save game system built in which can also be used to save and load persistent data to memory between scene
switches.

The save system revolves around the NeoSerializedGameObject component which must be added to each GameObject with
components that need saving (including its transform). You can tell the NeoSerializedGameObject which child objects,
components and properties to save as required. You can also add overrides for different save modes such as persistence. You
would usually save less information for persistence data. For example, you don't want to save the position of the character or the
state of the selected weapon's animations. You do want to save information such as their health though. By default, all
components and child objects will be saved.

If you have your own scripts or components that need saving then you can do it one of two ways: Firstly, you can modify your
script to inherit from the INeoSerializableComponent interface and implement its ReadProperties and WriteProperties
methods. If you don't have access to modify the scripts then you can write formatters that read/write them to the save system's
binary format. For more information see Serializing Data.

How To Make Your Own Stat System Affect Movement And Combat
The NeoFPS motion graph is the movement system that drives the player characters. Each movement state can be set to use
motion data such as movement speed, jump height or directional multipliers. This motion data can be overriden by assigning an
object to the motion controller that implements the IMotionGraphDataOverride interface. The motion graph has a data override
built in that just lets you assign different values in an asset, but you can also use MonoBehaviours that change the values at
runtime. This allows you to base speed on character level or attributes, or add buffs and debuffs.

For stat based health effects, you would need to write a behaviour that implements the IHealthManager interface, or inherit from
one of the existing health managers and add your extra stat based behaviour.

To modify the way firearms work based on stats, you can create your own ammo effect module scripts that deal damage based
on the shooter's stats, or inherit from the existing BulletAmmoEffect to do the same thing.

For more information on extending NeoFPS, see the Extending NeoFPS section of the docs (online only).

How To Control Where The Player Spawns
In NeoFPS the player character is spawned in to the scene using spawn points. Spawning is controlled via the game mode along
with what action to perform on the character's death. The demo scenes use a prefab called the SimpleSpawnerAndGameMode
that has a game mode and a spawn point built in.

There's a few ways that you can control where the player character spawns. By default, spawn points register with the game mode
and spawn system on Awake. If multiple spawn points are registered, you can choose if they will be used in the order they were
registered or at random. You can also add an OrderedSpawnPointGroup to enforce the registration order.

To track progress through a level, you can enable and disable spawn points as you reach checkpoints. Combining this with the
save game system, you can add autosaves when reaching the checkpoint. If the spawn points each have a
NeoSerializedGameObject attached then their active state will be saved, meaning that the character will spawn at the correct
spawm points when the game is re-loaded.

If you want a much simpler system for the sake of prototyping, then you can also create a spawnerless character that can be
placed directly in the scene, though this is a much less flexible setup. For more information see spawning.

See Also
NeoFPS Wizards

Samples

https://docs.neofps.com/manual/extend-index.html

NeoFPS Wizards
Overview
NeoFPS comes with a number of item creation wizards to simplify the setup of common objects such as characters and weapons.
These can be found in the Wizards section of the NeoFPS Hub, which is available through Unity's menus at
Tools/NeoFPS/NeoFPS Hub. Each wizard (with the exception of the script creation wizard) allows you to create an object and/or
save a template for use when creating your next weapon.

Available Wizards
The following wizards are available to use now:

Modular Firearm Wizard
The modular firearm wizard runs through the setup of a modular firearm, from assigning a view model to picking the relevant
firearm modules, and even adding advanced features such as weapon overheat, bullet penetration and sprint animations. The
wizard does not set up an animator controller for the weapon, but if you have one available then you can attach it and hook up
the parameters through the wizard.

Player Character Wizard
The player character wizard allows you to build a playable character prefab. This includes setting up health, inventory and more
advanced features such as stamina. The end result can be added to a spawner, and spawned at runtime immediately after setup.

Melee Weapon Wizard
The melee weapon wizard runs you through the creation of a basic melee weapon prefab for use in NeoFPS. This includes setting
up the weapon itself, how it appears in the inventory, and more advanced settings such as sprint animations. The wizard can also
create a new animator controller for you based on the weapon's settings, allowing you to pick specific animation clips to use.
Alternatively, you can hook up an existing animator controller so the correct parameters are used.

Thrown Weapon wizard
The melee weapon wizard runs you through the creation of a basic thrown weapon prefab for use in NeoFPS. This includes
setting up the weapon itself, how it appears in the inventory, and more advanced settings such as sprint animations. The wizard
can also create a new animator controller for you based on the weapon's settings, allowing you to pick specific animation clips to
use. Alternatively, you can hook up an existing animator controller so the correct parameters are used.

Pickup Wizards
The pickup wizard is used to create pickups / powerups that the player character can use. The available pickup types are:

Wieldable items such as melee or thrown weapons.
Modular firearm drops (these track the ammo in the weapon when it is dropped).
Inventory item pickups.
Multi-item inventory pickups.
Health packs.
Shield boosters.

Interactive Object Wizard
The interactive object wizard allows you to add NeoFPS' interaction system to objects to allow the player character to use them.
This includes assigning geometry and physics, highlighting when looked at, as well as some preset interactions such as playing
animations or audio. You can then use the events on the created prefabs' InteractiveObject component to trigger your own code
or components.

Script Creation Wizard

The script creation wizard provides a number of template scripts for various NeoFPS features that you can use as a starting point.
This includes motion graph elements, firearm modules, save system formatters, and input behaviours. To use the wizard:

Select the script type from the dropdown.
Give it a name and a namespace.
Fill in any script specific properties that appear.
Select output folders for the generated scripts. If these are not set, then the new scripts will be created in the root of the
Assets folder, while any editor scripts will be created in Assets/Editor.

Coming Soon
The following wizards are coming soon:

Firearm AnimatorController Wizard will take a modular firearm prefab, and create and set up an AnimatorController
based on the modules it has attached.

See Also
Getting Started

Game Modes
Overview
Game modes in NeoFPS are intended to control the flow of a game. This means creating a player object, spawning and
respawning characters and attaching them to the player. They are derived from the FpsGameMode base behaviour which is an
abstract class and therefore cannot be placed in the scene without a specific implementation.

In this version of NeoFPS the only implementation available is called FpsSoloGameMinimal. This implementation simply spawns
both a player and character from prefabs on start. On a character's death, the FpsSoloGameMinimal can be set to either spawn a
new character, reload the scene, return to the main menu, or load the last valid save game (for more information on save games,
see Save Games. The minimal implementation is designed for testing and development of prototypes and as a template for
implementing a custom game mode for your own game.

The game mode also handles persisting data such as player health and inventory between scenes, also using the save game
system. This can be toggled on or off.

Game modes will be expanded in future versions of NeoFPS to provide a simple starting point when developing common types of
FPS games.

See Also
Working With NeoFPS

Save Games

Generated Constants
Overview
To meet the goals of enabling developers to achieve their vision and create complex mechanics without rewriting code, a flexible
way of referencing objects and states is required. It would be easy to implement something using strings for keys, but the
performance and memory impact of this can be a problem if the system is used in a lot of places or many times a frame. NeoFPS
gets around this by providing a simple interface for creating constants similar to Unity's layers. These constants are turned into
code that makes them easy to use in scripts as well as using them for properties in the inspector.

The ConstantsSettings scriptable object specifies constants to generate for your game. You can have as many of these settings
files as you like and add new constants as required. If you do plan to add your own constants then it is best to create a new
constants settings file in case the one that comes with NeoFPS is modified in a future version. It is also important to consider
whether it is best to use a constant or a string. If the situation involves a set of keys or IDs that are referenced frequently, but will
rarely be changed then generated constants are a good fit. If there is a high chance that new keys will be needed or the keys will
be changed regularly, then it might be better to use strings for the ID and a dictionary to store items.

Generated Constants Limitations
The biggest limitation with generated constants is that they are serialized by index. This means that reorganising the values will
not be reflected in the inspector.

As an example, let's say you have a Vehicle constant with the following values:

1. Bike
2. Car
3. Truck

You also have a monobehaviour that stores a vehicle as a serialized field and in the inspector it is set to Car. Later on you decide
to add a number of new values as follows:

1. Bike
2. Motorbike
3. Car

4. Van
5. Truck

Looking at the previous monobehaviour in the inspector, it would now be set to Motorbike. This is because the monobehaviour
only actually references the number 2, not the word "Car". You can work around this by making sure to keep the order the same
and only add new values to the end.

If you remove values instead of adding, then any serialized properties that reference values beyond the new limit will be reset to
the first constant value. It is best practice to reserve the first value (0) as a default with a name that reflects this.

Generated Constants In Scripts
You can use constants in scripts as though you were working with an enum. For example, the FpsInputAxis constant can be used
like so:

FpsInputAxis axis = FpsInputAxis.MouseX;

Constants can also be implicitly cast as in the following examples:

FpsInputAxis axis = FpsInputAxis.MouseX;
var element = inputAxisArray[axis];

and:

FpsInputAxis axis = 2;

This makes them very efficient as keys to store items. If you were using strings, you would need to store and reference objects
from a dictionary as follows:

var dictionary = new Dictionary<string, MyObject>();

//...

MyObject result = dictionary[myStringKey];

This is a relatively expensive operation as the string needs to be hashed, and then the dictionary searched for the key value pair
that the key references. If the key is not found then this code would throw an exception so you would also want to add extra error
checking for safety. With constants the object can be stored and referenced in an array as follows.

var array = new MyObject[MyConstant.count];

//...

MyObject result = array[myConstantKey];

This is a much faster operation as you are simply accessing an array by index. By allocating an array that is the size of the constant
(count is a preset property in the constants templates included with NeoFPS) you are guaranteed that accessing via a constant key
will never be out of bounds. Preallocating like this is a good speed optimisation, but if the constant has a lot of values, and the
array is sparsely populated then it would be wasteful to implement in this way. If so then you could either use the string option, or
a dictionary with constant keys to save the string hashing step.

How They Are Generated
constants are generated by taking a template script and replacing sections with values in the settings file. The following keys are
defined which will be replaced:

K EY D ES CR IPTION

%NAME% The generated constants container name.

%NAMESPACE% The namespace for the generated constants container.

%TYPE% The underlying type for the value (for example int, ushort, byte).

%VALUES% The values to be added. These will be written as a number of const values of the specified type.

%VALUE_NAMES% An array of strings to be populated with the value names. This is used for the inspector value dropdown among other
things.

%COUNT% The number of values written.

The generation process requires 2 templates. One for the output constant, and one for an editor drawer that draws the constant in
the inspector as a dropdown.

See Also
ConstantsSettings

Layers and Tags
Overview
NeoFPS has a number of systems that require objects to be filtered using layers. The following is the layer set-up required by
NeoFPS, along with an overview of some useful features for working with layers in code.

NeoFPS Layers

NAME D ES CR IPTION

PostProcessingVolumes Trigger volumes used by the Unity post processing system to define override volumes.

EnvironmentRough Low detail mesh and primitive colliders used for character motion and traversal.

EnvironmentDetail High detail mesh and primitive colliders used for weapon impacts.

MovingPlatforms Low detail mesh and primitive colliders used for character motion on moving platforms.

DynamicProps Dynamic rigidbody props. Used for larger objects that could affect characters such as barrels.

CharacterControllers Used for character controller root objects.

CharacterFirstPerson Character geometry and objects visible from the first person view.

CharacterExternal Character geometry and objects visible from the external views.

CharacterPhysics Character body colliders, used for things like bullet impact detection.

CharacterPhysics Character body colliders used for ragdolls, so set up to collide against the ground but not detail physics.

CharacterNonColliding Used for objects that are tested against using Physics casts, but not the Unity collision system.

WieldablesFirstPerson First person geometry and colliders for weapons and other wieldable objects.

WieldablesExternal Geometry and colliders for weapons and other wieldable objects when seen from an external view.

TriggerZones Trigger volumes that act on character triggers.

InteractiveObjects Low detail trigger volumes used for detecting interactive objects.

DoorPhysics Colliders for door objects.

SmallDynamicObjects Small rigidbody objects that should not noticably affect characters. A character can push them around, but they
can't really push a character.

Effects A layer used for debris and particle effects.

AiVisibility Low detail colliders used by AI for visibility checks.

NAME D ES CR IPTION

NeoFPS Tags
NAME D ES CR IPTION

AI Used to tag AI characters.

Layer Collision Matrix

The layer collision matrix is used to define which layers can interact with each other in the Unity physics system. Keeping a
minimum of layers from colliding with each other is important to maintaining performance as well as for keeping interactions
between different systems clean.

In the above example image, the green objects are character blockers on the CharacterRough and EnvironmentRough layers that
are used for moving characters around the scene. The red objects are bullet blockers on the EnvironmentDetail layer that are used
for bullet hits.

In code you can use the PhysicsFilter type to define filters when performing physics operations. This also has a number of
preset constants for aiding in writing code.

PhysicsFilter.LayerIndex contains the layer indices matching the layers as specified in the layers and tags settings.

PhysicsFilter.LayerFilter contains a number of preset physics filters matching the layers as specified in the layers and tags
settings.

PhysicsFilter.Masks contains a number of filters for commonly used groups of layers as follows:

NAME D ES CR IPTION

BulletBlockers Layers that bullet raycasts can hit.

CharacterBlockers Layers that characters traverse. Includes larger props and platforms.

DynamicCharacterBlockers Layers that characters traverse. Excludes static environment physics.

Interactable Colliders attached to interactive objects, along with environment colliders that can block them from view.

SpawnBlockers Any dynamic objects that can block spawn points.

ShowDecals Objects that can accept decals.

AiVisibilityCheck AI visibility markers and environmental colliders that can block them from view.

See Also
Unity Tags and Layers

Unity Layer Based Collision

https://docs.unity3d.com/Manual/class-TagManager.html
https://docs.unity3d.com/Manual/LayerBasedCollision.html

Game Settings
Overview
NeoFPS exposes various game settings to players through text based settings files. This provides much more flexibility for players
than the existing system of build settings that Unity hides for runtime builds.

The following settings files are created by a NeoFPS project when it is run:

NAME FILENAME D ES CR IPTION

Audio Audio.settings Contains settings for volumes (spatial effect, music and global.

Graphics Graphics.settings Contains various graphics and quality settings such as resolution, vsync and antialiasing.

Gameplay Gameplay.settings Contains miscellaneous gameplay settings such as crosshair colour.

Input Input.settings Contains settings for mouse and keyboard input including sensitivity, smoothing and acceleration.

Gamepad Gamepad.settings Contains settings for gamepad input such as profile preset and analog sensitivity.

Key Bindings KeyBindings.settings Contains individual key bindings for the different inputs.

If any of these files are found when the game starts, then the game settings will be based off these. The individual settings are
mapped to the following scriptable objects:

NAME B EHAV IOU R

Audio FpsAudioSettings

Graphics FpsGraphicsSettings

Gameplay FpsGameplaySettings

Input FpsInputSettings

Gamepad FpsGamepadSettings

Key Bindings FpsKeyBindings

If no settings file is found for one of the above, then the settings will default to those in the scriptable object asset located in the
NeoFPS/Resources folder. These assets can be customised to set the default settings. Modifying the settings inn game and via the
".settings" files will not modify the assets.

If any of the settings are changed at runtime then the ".settings" file is saved again and an event is fired. This event allows objects
to interact to changes of settings. For example, if the crosshair colour is changed in the gameplay settings is changed then the
HUD crosshair can immediately change to reflect this.

These settings behaviours and files are intended as a basis for your own projects. Add any new settings as required and use these
files as an example though be aware that these files will change in future versions of NeoFPS to reflect new features such as
HDRP and post-processing settings potentially being added to the graphics settings.

See Also

Working With NeoFPS

NeoFPS Shaders
Overview
NeoFPS contains a number of shaders that have been created for the built-in (standard) render pipeline. It does not
support the SRPs such as HDRP or URP out of the box.

The NeoFPS shaders were created using Amplify Shader Editor. If you own this asset then you should be able to load the shaders
up in ASE and convert most of them to your target SRP by changing the shader type in the output node and re-attaching the
relevant connections.

Available Shaders
All of the NeoFPS shaders are currently located in the folder: Assets\NeoFPS\Samples\Shared\Effects\Shaders

They include the following:

NeoFPS_DissolveTrail_... are used for hitscan bullet trail. They start as a solid tracer line and then dissipate. The edge blend
shaders fade off the tracer texture at the edges of the trail's line renderer.
NeoFPS_DistortionTrail is another bullet trail which provides a shockwave style distortion.
NeoFPS_FireballSheet... can be used for particle effects and pull flipbook style greyscale fireballs from the individual
channels of a texture and use a gradient to add colour.
NeoFPS_FirstPersonWeapon_Stencil... are used for the first person weapon models that you need to be stencilled out
when looking through stencil scopes (such as the scope mounting geometry).
NeoFPS_HeatHaze is an animated distortion which is used to add a rippling heat haze effect.
NeoFPS_PowerupGlow overlays a colourful animated shimmer over a standard shader to highlight objects in the scene.
NeoFPS_Shockwavce_Standard provides a noisy distortion effect around the edges of a shockwave. The shockwave
strength is influenced by vertex colour, making it useful for particle effects (start white and fade to black over lifetime).
NeoFPS_Water is a simple water surface shader used for the swimming demo scenes.
NeoFPS_WaterCaustics is a caustics volume shader that can be used to add a caustics lighting effect when underwater.
This shader is only compatible with deferred rendering.
Glow/NeoFPS_Glow... shaders add a heat glow to first person weapons when overheating. The glow can be masked by
position ranges, distance from a point (both object space) or using an alpha mask.
Highlight/NeoFPS_InteractiveHighlight adds a shimmer effect to a standard shader to help highlight interactive objects
in the scene.
Optics/NeoFPS_HoloSightReticule is used for stencil based reticules that can only be seen through the glass of a
holographic or red-dot sight. It also adds brightness and colour controls through the material.
Optics/NeoFPS_HoloSightStencil is used to define the area you can see the reticule through. It is not otherwise visible.
Optics/NeoFPS_HoloSightStencilGlass is used to define the area you can see the reticule through. It also uses a standard
transparent base.
Optics/NeoFPS_LaserPointerBeam defines an animated noisy like with a stronger central line for a laser look.
Optics/NeoFPS_RedDotReticule is similar to the holosight reticule, but without the need for a reticule mask texture.
Optics/NeoFPS_RenderTextureScope displays a render texture, adding a parallax scope ring and fading to an opaque,
reflective glass based on how far off the scope object axis the camera is.
Optics/NeoFPS_StencilScopeInner... are used for the parallax effect when looking through stencil scopes. Objects using
this shader will only be visible through the lens of the scope.
Optics/NeoFPS_StencilScopeLens defines the stencil that the scope inner surfaces can be seen through, and which the
NeoFPS_FirstPersonWeapon_Stencil... cannot.

NB: The stencil scope shaders are currently not working properly with deferred rendering. A solution is
being investigated

Converting To HDRP / URP
There is no official support for HDRP/URP in NeoFPS, but it should be possible to convert the shaders to your target SRP using

http://assetstore.unity.com/packages/tools/visual-scripting/amplify-shader-editor-68570?aid=1011l58Ft

[Amplify Shader Editor][asset-amplify].

You can find more information on using Amplify Shader Editor with the SRPs via the documentation, and in their Youtube video:
Getting Started with ASE - SRP Pitfalls.

For the NeoFPS shaders, you will need to pay special attention to the SubShader / Pass section of the output node properties,
making sure to recreate the Depth, Blend Mode and Stencil:

You can swap the shader type by using the Shader Type property at the top of the Common Properties. For example, to switch
an Unlit shader to HDRP, you will need to swap the shader type to HD/Unlit. This will automatically update the depth and blend
mode settings.

Due to the way that the SRPs handle stencils and grabbing screen pixels, the stencil based shaders such as the holographic sights
and stencil scopes will not convert directly. You will need to write custom pass scripts to achieve this. How these work can vary
between HDRP and URP, and between different versions as well. The same goes for distortion shaders such as the shockwave and
heat haze shaders.

There is a future task for adding SRP compatibility to NeoFPS that aims to address these limitations and provide SRP support out
of the box.

See Also
Modular Firearms

[Amplify Shader Editor][asset-amplify]

http://wiki.amplify.pt/index.php?title=Unity_Products:Amplify_Shader_Editor/Scriptable_Rendering_Pipeline
https://www.youtube.com/watch?v=0W7D6NoEe5E&t=223s

FpsSoloGameMinimal MonoBehaviour
Overview
The minimal game setup is intended for testing and development purposes. It simply spawns the specifed player and character,
and can be set to perform various actions on the player character's death.

Inspector

Properties
NAME T YPE D ES CR IPTION

Spawn On Start Boolean Should the game mode automatically spawn a player character immediately on start.

Death Sequence
Duration Float The time in seconds between the player character dying and respawning.

Death Action Dropdown

What to do if the player character is killed. Available options are:
Respawn will spawn a new player character at the next available spawn point
ReloadScene will reload the scene from fresh, resetting everything
MainMenu will unload the scene and take the player back to the main menu
ContinueFromSave will load the last save (based on the SaveGameManager
settings) if available and reload the scene if not.

Player Prefab FpsSoloPlayerController The player prefab to spawn if no player exists (players are persistant).

Character Prefab FpsSoloCharacter The character prefab to spawn.

Starting Loadout FpsInventoryLoadout An optional inventory loadout for the character on spawn (this will replace their starting
items).

See Also
FpsSoloPlayerController

FpsSoloCharacter

FpsInventoryLoadout

ConstantsSettings ScriptableObject
Overview
The ConstantsSettings asset is used to generate and maintain arbitrary constants for a game. The generated output script contains
a wrapped constant that acts in code like an enum, but can intrisically convert to its base type. A drawer is also generated that
shows a dropdown with the constant values when the generated constant is serialized in the inspector. These constants have a
number of uses such as object IDs or keys, without the overhead of using strings and dictionaries.

See Generated Constants for more information.

Inspector

Properties
Output

NAME T YPE D ES CR IPTION

TargetDirectory Folder Where the generated constant script should be output.

EditorDirectory Folder Where the generated constant editor script should be output.

Source Templates
NAME T YPE D ES CR IPTION

ByteConstant TextFile The text file to use when generating byte constants.*

ByteDrawer TextFile The text file to use when generating a byte constant editor script.*

IntConstant TextFile The text file to use when generating integer constants.*

IntDrawer TextFile The text file to use when generating an integer constant editor script.*

UIntConstant TextFile The text file to use when generating unsigned integer constants.*

UIntDrawer TextFile The text file to use when generating an unsigned integer constant editor script.*

ShortConstant TextFile The text file to use when generating short constants.*

ShortDrawer TextFile The text file to use when generating a short constant editor script.*

UShortConstant TextFile The text file to use when generating unsigned short constants.*

UShortDrawer TextFile The text file to use when generating an unsigned short constant editor script.*

NAME T YPE D ES CR IPTION

* For more information on how the template is turned into a script see Generated Constants.

Controls
The Generate All button will output a script file and a drawer script file to the specified directories for each constant, overwriting
any existing files with the same name.

The Add Constant button will add a new constant settings entry to this scriptable object

Constant settings
Each constant has a number of common controls:

The Generate button will output a script file and a drawer script file to the specified directories, overwriting any existing files with
the same name.

The Remove button will remove this constant from the scriptable object. Any existing generated files will not be touched.

Each constant also has the following properties:

NAME T YPE D ES CR IPTION

Class
Name String The name for the output constant. This will also be the output script file name, while the output drawer script

will be named Drawer.

Class
Namespace String The namespace for the output scripts.

Base Type Dropdown This value specifies which source templates should be used to generate the constant.

Constant
Values

String
Array

A sequential array of constant value names. These must be valid names, and not duplicated. Use the + and -
buttons to add or remove values, or reorder by dragging the handle on the left of the array entry.

See Also

FpsAudioSettings ScriptableObject
Overview
The FpsAudioSettings asset specifies the default audio settings and loads / saves them to a .settings file on disk for player editing.

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Inspector

Properties
NAME T YPE D ES CR IPTION

Master Volume Float The overall game volume.

Effects Volume Float The volume for in game effects.

Ambience Volume Float The volume for ambience effects.

Music Volume Float The volume for music.

See Also
Audio Systems

FpsGamepadSettings ScriptableObject
Overview
The FpsGamepadSettings asset specifies the default gamepad settings and loads / saves them to a .settings file on disk for player
editing.

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Inspector

Properties
NAME T YPE D ES CR IPTION

Use Gamepad Boolean Should gamepad input be registered.

Profile Index Int The gamepad profile to use.

Analog Sensitivity H Float The horizontal gamepad aim sensitivity.

Analog Sensitivity V Float The vertical gamepad aim sensitivity.

Invert Look Boolean Invert the gamepad vertical aim.

See Also

FpsGameplaySettings ScriptableObject
Overview
The FpsGameplaySettings asset specifies the default gameplay settings and loads / saves them to a .settings file on disk for player
editing.

Inspector

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME T YPE D ES CR IPTION

Player Name String The default player name.

Player Colour
Code Int The default player colour.

Crosshair Colour Color The default crosshair colour.

Head Bob Float The ratio of head vs item bob. Head bob looks more natural when close to scenery, but some people can
find it uncomfortable.

Auto Switch
Weapons Boolean Should the player character automatically switch to a better weapon when picking it up.

See Also

FpsGraphicsSettings ScriptableObject
Overview
The FpsGraphicsSettings asset specifies the default graphics settings and loads / saves them to a .settings file on disk for player
editing.

Inspector

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME T YPE D ES CR IPTION

Vertical
FoV Float The field of view vertically of the player camera. This is how field of view is saved.

Horizontal
16:9 Float The horizontaly field of view on a 16:9 monitor. This is actually calculated from the vertical FoV, and when it is

changed, the vertical FoV is modified.

See Also
Unity Graphics

Unity Quality Settings

https://docs.unity3d.com/Manual/Graphics.html
https://docs.unity3d.com/Manual/class-QualitySettings.html

FpsInputSettings ScriptableObject
Overview
The FpsInputSettings asset specifies the default input settings and loads / saves them to a .settings file on disk for player editing.

Inspector

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
NAME T YPE D ES CR IPTION

Mouse Sensitivity H Float The horizontal mouse look sensitivity.

Mouse Sensitivity V Float The vertical mouse look sensitivity.

Invert Mouse Boolean Invert the mouse vertical aim.

Enable Mouse Smoothing Boolean Mouse smoothing takes a weighted average of the mouse movement over time for a smoother
effect.

Mouse Smoothing Float The amount of mouse smoothing to add.

Enable Mouse
Acceleration Boolean Mouse acceleration amplifies faster mouse movements.

Mouse Acceleration Float The amount of mouse acceleration to add.

See Also
NeoFPS Input System

FpsKeyBindings ScriptableObject
Overview
The FpsKeyBindings scriptable object specifies the default input key bindings settings and loads / saves them to a .settings file on
disk for player editing.

Inspector

The Delete User Settings button is used to delete the settings file that was generated by running the game. If the settings file
exists then it will override the settings specified in this asset, so this can be useful if you have changed or added default settings.

Properties
No properties are exposed in the inspector. The default key bindings are specified in the NeoFpsInputManager instead.

See Also
Unity Input Settings

https://docs.unity3d.com/Manual/class-InputManager.html

FPS Characters
Overview
In NeoFPS, a first person character is split into two parts: the character and a controller. If a character dies then the controller
persists and can be attached to a new character. Controllers can also be persisted between scenes if the game design requires.

Characters

An FPS character ties together all the systems of NeoFPS into a single unit. Characters implement the ICharacter interface, which
means you are free to define your own implementations of the character without being fixed to a specific base class.

A typical character hierarchy is as follows:

The root object is the most complex, containing the majority of components for the character:

The ICharacter component
Capsule Collider
Rigidbody
NeoCharacterController
MotionController
AimController
Inventory
Interaction handler
Character audio handler
Input behaviours

The player camera root is another object with a number of components:

First person camera
Additive transform handler and effects

There are also a number of damage handlers in the hierarchy for detecing incoming damage. These can be very simple, or more
complex such as hit boxes on an animated character skeleton.

Controller
The FPS controller is persistent and can be attached to one character at any time. This system helps decouple the characters'
mechanical implementation from their behaviour. In a multiplayer game there would be multiple player controllers or there could
be a mix of player and AI controllers if bots were required. It also helps data such as stats persist between character deaths.

See Also
FpsSoloCharacter

FpsSoloPlayerController

https://docs.unity3d.com/Manual/class-CapsuleCollider.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

Spawning
Overview
The NeoFPS player character should not be added to your scenes directly. Instead is uses a spawner system that allows you to
place a number of spawn points around your map. This allows for greater flexibility in game mechanics such as:

Spawn at one of a number of random locations
Respawn on death without resetting the scenes
Activate and deactivate spawn points as you move through a level so that respawning drops you closer to where you died
Add a UI menu to choose a character on start
Use multiple spawn points in case your preferred spawn is blocked

To make getting started easy, the SimpleSpawnerAndGameMode prefab contains a spawn point and a simple game mode that
handles player spawning on start, as well as respawn on death. You can find this prefab at:
Assets\NeoFPS\Samples\SinglePlayer\Prefabs\SimpleSpawnerAndGameMode.prefab

Spawn Points

Spawn points are objects that are placed in the scene and positioned as required. By default, they will register themselves with the
spawn manager as soon as the object is enabled, and unregister themselves as soon as the object is disabled.

You can also use an OrderedSpawnPointGroup behaviour to enforce a specific order to the registration of your spawn points. This

is useful when using the Round-Robin spawn mode which iterates through the spawn points, spawning in order, or the First
Valid spawn mode which will iterated through the points in order and spawn at the first one that isn't blocked by an overlapping
physics object. To control which is the active spawn mode, you can add a SpawnManager behaviour to an object in your scene.

Prototype Character
The NeoFPS samples also include a spawnerless player character that can be placed directly in your scenes. If the character dies
then the scene is reloaded. This character is intended for rapid prototyping, and not for final production games.

You can find the prototype character prefab at the following location:
Assets\NeoFPS\Samples\SinglePlayer\Prefabs\PrototypeSpawnerlessCharacter.prefab

See Also
FPS Characters

Game Modes

Stamina
Overview
The stamina system in NeoFPS allows you to model various fatigue effects on your player character. Fatigue can be used to alter
movement speed, to drive weapons' procedural animation (breathing), and to set thresholds where exhaustion sets in.

Movement & Stamina
The stamina system implementation provided can act as a motion graph data override. This means that the motion data used to
specify movement speed will be overridden by values that the stamina system specifies. You can use animation curves on the
StaminaSystem behaviour to blend between difference speeds as the character gets tired.

Animation
The current stamina level is used to specify a breathing rate and strength for the character. NeoFPS uses a number of procedural
animation effects for animating weapons, including the BreathingEffect. This applies position and rotation animation with each
breath, making aiming harder as the character gets tired.

Modifying Stamina
There are a number of example ways to modify the character's stamina provided out of the box. The DrainStamina and
ModifyStamina motion graph behaviours allow you to modify the stamina based on the current state of the Motion Graph. The
FirearmAimFatigue monobehaviour is attached to modular firearms and applies a stamina drain whilst aiming down sights.

The stamina system also has a setting to recharge stamina over time. An example stamina implementation would be to give both
the character's walking state and the firearm aiming a stamina drains that are each smaller than the stamina system's refresh rate,
but are larger when combined. This would mean that the player could move or aim without getting tired, but doing both together
would cause them to slowly fatigue.

You can add your own systems to modify the character's stamina via a simple API. You can directly alter the stamina and max
stamina values on the system by using the following methods:

void IStaminaSystem.SetStamina(float amount, bool normalised = false);
void IStaminaSystem.IncrementStamina(float amount, bool isFactor = false);
void IStaminaSystem.DecrementStamina(float amount, bool isFactor = false);

The normalised and isFactor parameters are used to specify if the value you are applying is directly to the stamina value
(false), or as a factor of stamina divided by max stamina (true).

You can also add stamina drain delegates to the system that allow you to modify the stamina over time based on any number of
outside influences. You do this using the following methods:

void IStaminaSystem.AddStaminaDrain(StaminaDrainDelegate drain);
void IStaminaSystem.RemoveStaminaDrain(StaminaDrainDelegate drain);

Where the StaminaDrainDelegate is defined as:

public delegate float StaminaDrainDelegate(IStaminaSystem system, float modifiedStamina);

Here the parameters are the stamina system itself, and the current stamina (this might not match the stamina value on the system
as this stamina drain delegate might be one of many, and the altered stamina is passed to each delegate in sequence before it is
applied to the system). The delegate returns the amount to reduce the stamina by this frame.

See Also
The Motion Graph

Modular Firearms

Additive Transforms And Effects

FpsSoloPlayerController MonoBehaviour
Overview
The FpsPrototypePlayerController is a version of the player character controller which can be added to the character object
directly to bypass the spawning system.

If the player is killed then the scene will be reloaded.

This controller is intended purely for prototyping and testing. If more complex behaviour is required such as respawning or
loading from saves, then use the spawn system as in the demo scenes.

Inspector

Properties
The FpsSoloPlayerController has no properties exposed in the inspector.

See Also
FPS Characters

FpsSoloCharacter MonoBehaviour
Overview
FpsSoloCharacter is the base character behaviour for single player games. Handles impact and landing damage and audio, and
specifies the transform handlers for reacting events.

Inspector

Properties
NAME T YPE D ES CR IPTION

Head
Transform
Handler

AdditiveTransformHandler
The additive transform handler attached to the head hierarchy of this character (used for
things like weapon recoil and impacts). The spring effects here affec the camera but not the
carried items.

Body
Transform
Handler

AdditiveTransformHandler
The additive transform handler attached to the body hierarchy of this character (used for
things like weapon recoil and impacts). The spring effects here affec the camera and the
carried items.

Damage
Audio
Threshold

Float The amount of damage to take in a single hit before playing a character damage audio clip.

Apply Fall
Damage Boolean Should the character be subject to damage from landing impacts (impacts where the character

capsule is hit in the bottom hemisphere).

Landing
Min Force Float The minimum landing impact magnitude before any damage is applied.

Landing Full
Force Float The landing impact magnitude where a full 100 damage will be applied.

Body
Impact
Damage

Boolean Should the character be subject to damage from body impacts (impacts where the character
capsule is hit in the central cylinder).

Body Min
Force Float The minimum body impact magnitude before any damage is applied.

Body Full
Force Float The body impact magnitude where a full 100 damage will be applied.

Head
Impact
Damage

Boolean Should the character be subject to damage from head impacts (impacts where the character
capsule is hit in the top hemisphere).

Head Min
Force Float The minimum head impact magnitude before any damage is applied.

Head Full
Force Float The head impact magnitude where a full 100 damage will be applied.

Soft
Landings SurfaceAudioData Surface audio library used to trigger the correct sound when the character lands below the

"hard landing" threshold.

Hard
Landings SurfaceAudioData Surface audio library used to trigger the correct sound when the character makes a heavy

landing.

Min
Landing
Threshold

Float The magnitude of the landing force below which no landing sound will be played.

Hard
Landing
Threshold

Float The magnitude of the landing force above which to play a hard landing sound.

Max Ray
Distance Float The maximum downward ray length for a ground test.

Ray Offset Float The vertical offset from the absolute bottom of the character to start the ground test raycast.

NAME T YPE D ES CR IPTION

See Also
AdditiveTransformHandler

SurfaceAudioData

FpsSoloPlayerController MonoBehaviour
Overview
The FpsSoloPlayerController is the base player character controller for single player games.

Inspector

Properties
The FpsSoloPlayerController has no properties exposed in the inspector.

See Also
FPS Characters

OrderedSpawnPointGroup MonoBehaviour
Overview
The OrderedSpawnPointGroup behaviour is used to enforce a spawn order for multiple spawn points. The order that Unity calls
Start() on multiple objects can be unpredictable, so this behaviour allows you to add the spawn points to a list and rearrange the
order. This works best with the SpawnManager set to use the "Round Robin" spawn mode.

Inspector

Properties
NAME T YPE D ES CR IPTION

Register On Awake Dropdown Should the spawn points be registered with the manager as soon as this object is awoken.

Spawn Points SpawnPoint Array The spawn points to register in order.

See Also
SpawnManager

SpawnPoint

SimpleBreathHandler MonoBehaviour
Overview
The SimpleBreathHandler is attached to a character to give them a constant breathing rate. This is used to drive the
BreathingEffect procedural animation on weapons. You can alternatively use a StaminaSystem behaviour for a more complex
breathing system that adapts to character fatigue.

Inspector

Properties
NAME T YPE D ES CR IPTION

Breath Interval Float The time in seconds between breaths.

Breath Strength Float The strength of the character's breathing (0 = non-existant, 1 = heaving/panting).

See Also
BreathingEffect

StaminaSystem

SoloPlayerCharacterEventWatcher MonoBehaviour
Overview
The SoloPlayerCharacterEventWatcher behvaiour attaches to an event that is fired when the player character changes. It then
passes that change on to its subscribers. An example use is in the player HUD, where it is used to bind various HUD elements such
as health and inventory to the player character.

Inspector

Properties
The SoloPlayerCharacterEventWatcher behaviour has no properties exposed in the inspector.

See Also
AdditiveTransformHandler

SurfaceAudioData

SpawnManager MonoBehaviour
Overview
The spawn manager is used to spawn characters. Spawn points register with the manager on start and deregister when disabled
or destroyed. You do not need this behaviour in your scene, but adding it will allow you to change the spawn behaviour by setting
the behaviour properties.

Inspector

Properties
NAME T YPE D ES CR IPTION

Spawn Mode Dropdown

How the next spawn point is chosen:
RoundRobin picks each spawn point in sequence.
FirstValid starting at the first registered spawwn point and iterating until a valid one is found
Random picked at random until a valid point is found.

See Also
[SpawnPoint][1]

SpawnPoint MonoBehaviour
Overview
The SpawnPoint behaviour specifies where characters are spawned. It will register with the SpawnManager when active and
enabled, and deregister when deactivated or destroyed. It is recommended to have more than one in the scene in case one or
more is blocked.

Inspector

Properties
NAME T YPE D ES CR IPTION

Register
On Awake Boolean Should the spawn point be registered with the SpawnManager immediately on awake? This option will be

disabled if the spawn point is part of a OrderedSpawnPointGroup.

Reuse
Delay Float How long before the spawn point can be used again.

Overlap
Test Dropdown The collider volume type for checking if the spawn point is clear or overlapped by another object. Options are

Box, Capsule, None.

Bounds
Height Float The vertical height of the bounding volume for overlap checks.

Bounds
Horizontal Float The horizontal dimension of the bounding volume for overlap checks.

Reorient
Gravity Boolean Should the character's gravity be reoriented to match the spawn point. If the spawn is tilted on one side, this

will make the character's down direction equal to the spawn point's.

On Spawn Event A UnityEvent fired when a character is spawned at this point. Allows for simple triggering of spawn audio and
visual effects.

See Also
SpawnManager

OrderedSpawnPointGroup

StaminaSystem MonoBehaviour
Overview
The StaminaSystem behaviour is attached to a character and used to model various fatigue and exertion effects.

Stamina regenerates at a preset rate and can be drained or modified via a simple API. NeoFPS includes examples such as the
FirearmAimFatigue behaviour which drains stamina while aiming down sights, or the DrainStaminaBehaviour and
ModifyStaminaBehaviour motion graph behaviours which can be used to drain stamina over time in a specific motion state such
as sprinting, or on entering a state such as jumping.

Stamina can be used to drive the BreathingEffect procedural animation on weapons. You can specify the breathing rate and
strength based on fatigue using animation curves for each.

Stamina can also be used to control movement speed, slowing the character as they get tired. There is an optional exhaustion
setting which can be tied to the motion graph to prevent the character from sprinting once they reach the exhaustion threshold,
and re-enable sprinting once stamina has recovered to a certain point.

Inspector

Properties

Stamina
NAME T YPE D ES CR IPTION

Stamina Float The current stamina of the character. This acts as the starting stamina and changes at runtime.

Max Stamina Float The maximum stamina of the character.

Stamina Refresh Rate Float The rate that stamina increases over time when no drains are applied.

Movement Speed
NAME T YPE D ES CR IPTION

Affect
Movement
Speed

Boolean Should the stamina system modify movement speed based on current stamina. The other settings will
be hidden if this is false.

Min Walk
Multiplier Float A multiplier applied to the walking speed at minimum stamina.

Min Sprint
Multiplier Float A multiplier applied to the sprinting speed at minimum stamina.

Min Crouch
Multiplier Float A multiplier applied to the crouching speed at minimum stamina.

Move Speed
Curve

Unity
AnimationCurve

A curve that defines the character speed based on stamina. The X axis is the normalised stamina
(stamina / max), while the Y axis is the min to max lerp value (0 = min, 1 = max).

Walk Speed
Data String The name of the motion data property on the motion graph that defines walk speed.

Aim Walk
Speed Data String The name of the motion data property on the motion graph that defines walk speed when aiming.

Sprint Speed
Data String The name of the motion data property on the motion graph that defines sprint speed.

Aim Sprint
Speed Data String The name of the motion data property on the motion graph that defines sprint speed when aiming.

Crouch
Speed Data String The name of the motion data property on the motion graph that defines crouch movement speed.

Aim Crouch
Speed Data String The name of the motion data property on the motion graph that defines crouch movement speed

when aiming.

Breathing
NAME T YPE D ES CR IPTION

Breathe
Slow
Interval

Float The time in seconds between breaths (when breathing slow).

https://docs.unity3d.com/Manual/EditingCurves.html

Breathe
Fast
Interval

Float The time in seconds between breaths (when breathing fast).

Breathing
Rate
Curve

Unity
AnimationCurve

A curve that defines the breathing rate based on stamina. The X-axis is the normalised stamina (stamina /
max stamina), and the Y-Axis is a lerp between slow and fast breathing rate (0 = slow, 1 = fast).

Breathing
Strength
Curve

Unity
AnimationCurve

A curve that defines the breathing strength based on stamina. The X-axis is the normalised stamina
(stamina / max stamina), and the Y-Axis is the strength of the character's breathing (0 = non-existant, 1
= heaving/panting).

NAME T YPE D ES CR IPTION

Exhaustion
NAME T YPE D ES CR IPTION

Use Exhaustion Bool Should the character suffer an exhaustion effect on hitting a specific stamina threshold. The other
properties will be hidden if this is false.

Exhaustion Threshold Float The stamina level below which the character will become exhausted.

Recover Threshold Float The character will stop being exhausted once their stamina has recovered above this value.

Exhausted Motion
Parameter String The name of the switch motion graph parameter that the graph uses as a condition for preventing

sprinting.

Sprint Motion
Parameter String The name of the switch motion graph parameter that the character input handler sets to tell the

motion graph to start sprinting.

On Exhausted UnityEvent An event which is fired when the character hits the exhaustion threshold.

On Recovered UnityEvent An event which is fired when the character recovers from exhaustion.

See Also
BreathingEffect

Motion Graph Parameters And Data

Modular Firearms

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/EditingCurves.html

First Person Camera
Overview
The first person camera in NeoFPS is a companion component for the Unity camera and adds a number of useful features for first
person shooters.

Field of View
The NeoFPS camera adds additional functionality for controlling the field of view.

Firstly, it allows a horizontal field of view to be specified instead of the default vertical field of view. This is considered a standard
in first person shooters, and a number of players will have their preferred FoV settings that they apply in and FPS games they
play.

Secondly, it allows the field of view to be modified and animated using multipliers for zoom effects such as aiming down sights.
You can modify and reset the FoV in your scripts using the following methods:

public void FirstPersonCamera.SetFov (float targetFovMult, float aimTime);

public void FirstPersonCamera.ResetFov (float aimTime);

The SetFov method takes an FoV multiplier that multiplies based on the standard field of view settings, along with an aim time
that controls the duration of the animation from the existing FoV to the new FoV. The ResetFov method takes the same aim time
parameter which controls how long it takes to return to the standard field of view settings.

Camera Offset
The camera offset is a position and rotation offset that can be applied and removed to move and animate the camera within the
hierarchy. An example use is the modular firearms' HeadMoveAimer which actually moves the head down to the weapon instead
of the weapon up to the camera. This allows a lean angle to be added and for the camera rotation to be modified making for an
interesting aim effect. You can modify and reset the offset in scripts using the following methods:

public void FirstPersonCamera.SetOffset (Vector3 posOffset, Quaternion rotOffset, float aimTime);

public void FirstPersonCamera.ResetOffset (float aimTime);

These methods take offset parameters, along with an aim time parameter that controls how long it takes to reach the offset and
return.

Events
The first person camera also contains the following event:

public static event FirstPersonCamera.UnityAction<FirstPersonCamera> onCurrentCameraChanged;

Subscribing to this event will notify when the camera changes (when it is being looked through or not). This can be used for
things such as enabling a scene or spectator camera if the player dies.

See Also
FirstPersonCamera Behaviour

additive-Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html

Aim Controllers
Overview
Aim controllers take input and control a character's look direction before additive effects are applied.

Turn Rate
The aimer turn rate can be altered using the turnRateMultiplier property. This is used when setting the first person camera
field of view, for example when aiming down sights.

Setting Yaw And Pitch
You can modify the aim controller's rotation from scripts using the following methods:

void AddYaw (float rotation);

void AddPitch (float rotation);

void AddRotation (float y, float p);

Aim Constraints
The aim controller can be constrained to a specific range of rotations on either the vertical or horizontal axes or both. This is used
in situations such as climbing ladders or using a mounted turret, where it would be unnatural for the character to be able to turn a
full 360 degrees.

If the aim controller rotation is outside of the constraints when they are set, then it uses a damped rotation to smoothly turn into
the constraints.

Since the fps character is able to change their up direction, the yaw constraint must use a direction vector for the constraints
center. This means that as the character tilts, they can still constrain to the direction. Camera pitch is relative to the character.

In order to set the aim controller constraints from a script you can use the following methods on the aim controller component:

void SetYawConstraints(Vector3 forward, float range);

void SetPitchConstraints(float minimum, float maximum);

void ResetYawConstraints();

void ResetPitchConstraints();

See Also
FirstPersonCamera Behaviour

additive-Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html

Additive Transforms and Effects
Overview

NeoFPS uses a system called additive transforms to manage camera and object transform effects such as recoil and shake. In
order to make use of additive transforms, the AdditiveTransformHandler is added to an object and then various additive effects
are attached to it. It is very simple to write custom additive effects, but a number of useful effects are included with NeoFPS
including:

NAME D ES CR IPTION U S E

AdditiveKicker A simple knock and spring return. Triggered by the CharacterEventKickTrigger and
ImpactHandlerKickTrigger. Any

AdditiveJiggle A simple rotation around the z-axis with a bouncy spring return. Any

BodyLean Lean to either side Body

BodyTilt Tilt the body in an arbitrary direction Body

BreathingEffect Applies a breathing motion to the selected weapon. Weapon

CameraShake Apply continuous and one-off shakes to the camera. Camera

CharacterMovementSway A position and rotation offset applied to the weapon based on character velocity. Weapon

CharacterRecoilEffect Applies recoil spring animation to the character. Driven by a BetterSpringRecoilHandler firearm
module. Body

HeadBob (Deprecated) Position bob using curves Camera

HeadBobV2 An enhanced head bob with more control over animation curves, aim compensation, and in-
game strength settings. Body

HeadDuck A simple lowering of the head used for charged jumps Camera

FirearmRecoilEffect Applies recoil spring animation to a modular firearm. Driven by a BetterSpringRecoilHandler
firearm module. Weapon

OverShoulder Rotate the head to look backwards, while leaving the weapon and body pointing forwards. Camera

PeekVertical Peek over or under obstacles by moving the head up or down. Camera

PositionBob Position bob using curves. Syncs and blends bob between head and weapon based on player
settings by sharing bob settings with a PositionBobData scriptable object.

Camera
And
Weapon

RotationBob Rotation bob using curves. Weapon

TransformMatcher Matches the offset of one transform relative to another. Used to blend keyframe animation in
with procedural effects. Camera

WeaponAimAmplifier Multiplies the movement of the camera back onto the held weapon to add weight and
momentum. Weapon

WeaponBob (Deprecated) A bob effect for weapons, similar to the head bob but with rotation too. Weapon

WeaponMomentumSway Similar to the WeaponAimAmplifier, but changes the position instead of the rotation. Weapon

NAME D ES CR IPTION U S E

The AdditiveTransformHandler will check each of the effects every tick (the update frequency can be set in the component
properties) and then layer them on top of each other in order to create a combined offset. Translation and rotation are handled
separately, meaning that the rotation offset of an effect will not alter the position offset of another effect further along the chain.
This makes the outcome more predictable when a number of effects are applied at once.

You can also specify a pivot point for the resulting transform if desired.

Footstep driven animation such as head or weapon bob is driven through a step tracking system attached to the character's
motion controller. This ensures that any animations like this sync up, are only active while in the correct movement state, and are
correctly driven by the character's velocity. The character's stride length (and therefore bob speed while moving) is controlled by
adding a TrackSteps motion graph behaviour to the relevant states or sub-graphs in your character's motion graph.

See Also
AdditiveTransformHandler

FirstPersonCamera

AdditiveJiggle MonoBehaviour
Overview
The additive jiggle is used to knock the object's rotation (roll) and then spring back.

Inspector

Properties
NAME T YPE D ES CR IPTION

Full Twist Angle Float The angle (either side of the axis) of a full strength jiggle.

Can Flip Boolean If true, the jiggle could rotate in either direction.

Lead In Float The time taken to ease into the jiggle.

Duration Float The time taken for the jiggle spring to ease out.

See Also
Additive Transforms

AdditiveKicker

AdditiveKicker MonoBehaviour
Overview
The additive kicker is used to knock the camera or object and then spring back. Pair it with CharacterImpactKicker and
KickerImpactHandler behaviours in order to consume character impact events.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lead In Float The time taken to ease into the kick.

Return
Spring AnimationCurve The return spring is an animation curve that dictates how the kicker returns from the kick angle/position (1

on the y-axis) to its original state (0 on the y axis).

See Also
Additive Transforms

CharacterImpactKicker

KickerImpactHandler

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

AdditiveTransformHandler MonoBehaviour
Overview
The AdditiveTransformHandler behaviour sums together all the additive transform effects applied to it and uses them to
transform an object such as the camera.

In The Scene View

With a gameobject selected that uses an AdditiveTransformHandler component, the guide handle will be visible in the scene view.
This represents the point the target transform will rotate around.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target
Transform Transform The transform that the handler affects.

Pivot
Offset Vector3 The offset from the transform origin for the pivot point to rotate around.

Update
When Dropdown

When should the additive transform effects be calculated and applied. Options are: Update, LateUpdate,
FixedUpdate, FixedAndLerp, FixedAndLateLerp (The "Lerp" options calculate in fixed update and then
interpolate between results during Update/LateUpdate for smooth results).

See Also
Additive Transforms

https://docs.unity3d.com/Manual/class-Transform.html

WeaponBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html

BodyLean MonoBehaviour
Overview
The BodyLean behaviour is used to lean the character body to either side.

Inspector

Properties
NAME T YPE D ES CR IPTION

Max Lean Angle Float The angle to lean to either side when lean power is set to 1 or -1.

Pivot Offset Float The downward offset for the pivot point from the transform origin.

Lean Speed Float The speed of transitioning from 1 lean value to another. 1 is nearly instant.

Weapon Tilt Float How much of the lean rotation is reflected in the weapon.

Head Counter Tilt Float A counter rotation of the head compared to the weapon.

Required Clearance Float The distance to check from the center line for clearance space to lean. The lean amount will be capped
based on the result.

Cancel If Blocked Boolean If there is no clearance space then return the lean amount to 0 until manually re-applied.

Reset Speed
Standing Float The maximum speed the character can travel before the lean is cancelled. (0 = no max speed).

Reset Speed
Crouching Float The maximum speed the character can travel before the lean is cancelled. (0 = no max speed).

Can Lean Key String The key to a motion graph switch parameter that dictates if the character can lean or not.

Is Crouching Key String The key to a motion graph switch parameter that dictates if the character is crouching or standing.

See Also
Additive Transforms

Motion Graph Parameters And Data

HeadBob MonoBehaviour
Overview
The BodyTilt behaviour is used to lean the character body based on an input vector.

Inspector

Properties
NAME T YPE D ES CR IPTION

Max Tilt Angle Float The maximum angle the character can tilt. Angles above this will be capped.

Tilt Speed Float The speed of transitioning from 1 tilt value to another. 1 is nearly instant.

Required
Clearance Float The distance to check from the center line for clearance space to lean. The lean amount will be capped based

on the result.

See Also
Additive Transforms

Motion Graph Parameters And Data

BoxShakeZone MonoBehaviour
Overview
The BoxShakeZone behaviour defines a 3D box area with a constant shake value used by the CameraShake additive transform
effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Strength Float The strength of the shake.

Size Vector The dimensions of the box along each axis (centered on position).

Falloff Distance Float The distance outside of the box that the strength falls off to zero.

See Also
Additive Transforms

CameraShake

BoxShakeZone2D MonoBehaviour
Overview
The BoxShakeZone2D behaviour defines a 2D box area (on the x-y plane) with a constant shake value used by the CameraShake
additive transform effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Strength Float The strength of the shake.

Size Vector The dimensions of the box along each axis (centered on position).

Falloff Distance Float The distance outside of the box that the strength falls off to zero.

See Also
Additive Transforms

CameraShake

BreathingEffect MonoBehaviour
Overview
The BreathingEffect behaviour applies a procedural breathing animation based on a character's breath handler.

Example breath handlers include the SimpleBreathHandler which has a constant breathing rate, or the StaminaSystem which
modifies the breathing rate and strength based on fatigue.

Inspector

Properties
NAME T YPE D ES CR IPTION

Pitch Max Float The maximum pitch rotation at breathing strength 1.

Yaw Max Float The maximum yaw rotation at breathing strength 1.

Vertical Max Float The maximum vertical position offset at breathing strength 1.

Horizontal Max Float The maximum horizontal position offset at breathing strength 1.

See Also
Additive Transforms

SimpleBreathHandler

StaminaSystem

CameraShake MonoBehaviour
Overview
The CameraShake behaviour is used to add constant and one-shot shake effects to the first person camera.

Constant shake effects can be applied using shake zones such as the BoxShakeZone, BoxShakeZone2D, SphereShakeZone and
CircleShakeZone. You can also set the global shake value directly with scripts using the following code:

ShakeHandler.globalShake = shakeAmount;

Where shakeAmount is a float value between 0 (no shake) and 1 (maximum shake).

You can apply a one-shot shake using the following method:

public static void ShakeHandler.Shake(Vector3 position, float innerRadius, float falloffDistance, float
strength, float duration, bool requiresGrounding = false)

Inspector

Properties
NAME T YPE D ES CR IPTION

Shake Distance Vector The distance the camera can move either side of the origin on each axis at a shake strength of 1.

Shake Twist Vector The max rotation (in each direction) for a shake strength of 1.

Continuous Damping Float Damping smooths the blend between different continuous shake strengths.

Concussion Lead In Float The time it takes for the shake to go from 0 to 1.

Continuous Only
Grounded Boolean Should continuous shake only be applied while the character this is attached to is grounded (if there

is a character).

See Also
Additive Transforms

CharacterEventKickTrigger MonoBehaviour
Overview
The CharacterEventKickTrigger consumes character impact events such as landings and bullet hits, and uses them to drive an
additive kicker effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Kicker AdditiveKicker The additive kicker used to react to the force.

Kick Duration Float The time taken to recover from the kick.

Max Kick Distance Float The downward position kick distance at max impulse.

Max Kick Angle Float The forward kick angle at max impulse.

Min Ground Impact Float A ground impact impulse with magnitude lower than this will be ignored.

Max Ground Impact Float The ground impact impulse magnitude that gives the maximum kick.

Min Head Impact Float A head impact impulse with magnitude lower than this will be ignored.

Max Head Impact Float The head impact impulse magnitude that gives the maximum kick.

Min Body Impact Float A body impact impulse with magnitude lower than this will be ignored.

Max Body Impact Float The body impact impulse magnitude that gives the maximum kick.

See Also
Additive Transforms

AdditiveKicker

CharacterRecoilEffect MonoBehaviour
Overview
The CharacterRecoilEffect behaviour is a part of the modular firearm recoil system and applies the character (body and head)
based component of the recoil animation. This is paired with the FirearmRecoilEffect behaviour to apply the firearm component of
the animation, and controlled by the BetterSpringRecoil firearm module.

Inspector

Properties
NAME T YPE D ES CR IPTION

See Also
Additive Transforms

FirearmRecoilEffect

BetterSpringRecoil

CharacterMovementSway MonoBehaviour
Overview
The CharacterMovementSway behaviour adds an offset to the held weapon based on the character's velocity. This can help
exaggerate movement and make the weapon feel more dynamic.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damping Time Float Approximately the time it will take to reach the target sway. A smaller value will reach the target faster.

Aiming Multiplier Float A multiplier applied to the offset when aiming down sights. This helps make the weapon more controlled

There are also 4 sway limit sections - one for each direction. When moving diagonally, the sway will blend between the closest 2.
Each of these section has the following properties:

NAME T YPE D ES CR IPTION

Offset Vector The position offset to apply to the weapon when at or above the target speed for this direction.

Roll Float The rotation around the weapon's forward axis when at or above the target speed for this direction.

Speed Float The speed in this direction at or above which the full offset and roll will be applied.

See Also
Additive Transforms

CircleShakeZone MonoBehaviour
Overview
The CircleShakeZone behaviour defines a 2D circular area (on the x-y plane) with a constant shake value used by the
CameraShake additive transform effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Strength Float The strength of the shake.

Inner Radius Float The inner radius of the circle. Inside this, the strength is constant.

Falloff Distance Float The distance outside of the box that the strength falls off to zero.

See Also
Additive Transforms

CameraShake

CutsceneCamera MonoBehaviour
Overview
The CutsceneCamera behaviour is used to switch camera from a first person character to an externally controlled camera. It
handles disabling the player character's input, and hiding the HUD. Once the camera is disabled again, control is restored and the
HUD is re-enabled.

Inspector

Properties
NAME T YPE D ES CR IPTION

Can Skip Boolean Can the cutscene be skipped by holding the use button.

Skip Hold Float The amount of time the use button must be held to skip the cutscene.

On Skip UnityEvent An event fired when the cutscene is skipped.

See Also
Additive Transforms

https://docs.unity3d.com/Manual/UnityEvents.html

FirearmRecoilEffect MonoBehaviour
Overview
The FirearmRecoilEffect behaviour is a part of the modular firearm recoil system and applies the character (body and head) based
component of the recoil animation. This is paired with the CharacterRecoilEffect behaviour to apply the body and head
components of the animation, and controlled by the BetterSpringRecoil firearm module.

Inspector

Properties
NAME T YPE D ES CR IPTION

See Also
Additive Transforms

CharacterRecoilEffect

BetterSpringRecoil

FirstPersonCamera MonoBehaviour
Overview
The FirstPersonCamera MonoBehaviour is used with the standard Unity Camera to add useful features.

Inspector

Properties
NAME T YPE D ES CR IPTION

Camera Camera The main camera for the first person view.

Aim Transform Transform The transform to use for accurate shooting. If you add extra spring effects to the camera that don't affect
the gun, you might want to set this to something higher up the hierarchy.

Previous
Camera Action Dropdown What to do with the main camera in the scene? Use this to prevent wasted render cycles and multiple

listeners. Options: DeactivateGameObject, DisableComponent, DestroyGameObject, Ignore.

Default FoV Float The default vertical field of view. This will also change the horizontal fov below.

Horizontal
16:9 Float The default horizontal field of view for a 16:9 screen. This will also change the vertical fov above.

Offset
Transform Transform The offset from standard upright position for moving the head. Used for aiming down sights, etc.

Aim Position
Effect
Multiplier

Float The multiplier applied to additive spring effects while aiming.

Aim Rotation
Effect
Multiplier

Float The multiplier applied to additive spring effects while aiming.

See Also
Additive Effects

Unity Camera

https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-Camera.html

HeadBob MonoBehaviour (Deprecated)
Overview
The HeadBob behaviour is used to move the camera in sync with character movement. This behaviour has been deprecated and
replaced with the PositionBob and RotationBob systems which sync weapon and head bobbing, and allow player settings to
reduce head movement.

The head bob can tie into the moion graph and subscribe to a float parameter to allow the motion graph elements to control
when the bob occurs and the bob rate. Without this, the bob occurs whenever the character is grounded, and the bob rate is
based on movement speed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal Bob
Range Float The maximum position offset along the x-axis in either direction.

Vertical Bob
Range Float The maximum position offset along the y-axis in either direction.

Bob Curve AnimationCurve The curve over one step cycle for the weapon bob.

Bob Interval
Param Key FloatParameter The name of a float parameter on the character motion graph that sets the bob interval distance.

(Fallback) Bob
Interval Float The distance travelled for one full bob cycle. If the parameter key above is set then this value will

only be used if the parameter can not be found.

See Also
Additive Transforms

WeaponBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

HeadBobV2 MonoBehaviour (Deprecated)
Overview
The HeadBobV2 behaviour is a new spring effect which uses the character step tracking system to sync complex head bob to the
character. Alongside simple position bob it adds the following features:

In-game strength settings via the gameplay options or quick-options popup
Individual animation curves for horizontal offset, vertical offset and roll
Aim compensation which adds a counter rotation to keep the crosshair fixed on objects as the head moves

Despite the name, the HeadBobV2 component is intended to be applied to the upper body spring so that the weapon moves with
it.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Lerp
Speed Float At or below this speed the bob will be scaled to zero.

Max Lerp
Speed Float At or above this speed the bob will have its full effect.

Horizontal AnimationCurve
+ Float

The maximum position offset along the horizontal axis in either direction. The horizontal axis of the
animation curve goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y
axis is a multiplier for the float value next to the animation curve.

Vertical AnimationCurve
The maximum position offset along the vertical axis in either direction. The horizontal axis of the
animation curve goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y
axis is a multiplier for the float value next to the animation curve.

Roll AnimationCurve
The maximum angle to roll the camera in either direction. The horizontal axis of the animation curve
goes from -1 to 1 where -1 is left foot, 0 is right foot, and 1 is back to left foot. The Y axis is a
multiplier for the float value next to the animation curve.

Use Aim
Compensation Boolean Aim compensation involves rotating the camera so that the crosshair stays fixed on the same point in

space.

Aim
Transform Transform The transform to use for camera/crosshair casting.

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-Transform.html

Aim Layers LayerMask The layers to check against for aim depth.

Min Distance Float The minimum distance to compensate against. At very close distances, the bob will have to rotate
larger angles to keep the crosshair fixed on target.

Max Distance Float The maximum distance to compensate against.

Damping Float A damping against the crosshair target. Prevents objects crossing the camera at close ranges from
causing sudden shifts.

NAME T YPE D ES CR IPTION

See Also
Additive Transforms

Unity AnimationCurve

https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/EditingCurves.html

HeadDuck MonoBehaviour
Overview
The HeadDuck effect lowers the head. It is used in charged jumps.

Inspector

Properties
NAME T YPE D ES CR IPTION

Duck Height Float The distance to duck the head downwards.

See Also
Additive Transforms

ImpactHandlerKickTrigger MonoBehaviour
Overview
The ImpactHandlerKickTrigger behaviour is used to drive the AdditiveKicker.

Inspector

Properties
NAME T YPE D ES CR IPTION

Kicker AdditiveKicker The additive kicker used to react to the force.

Max Strength Float The strength cap. Above this strength, the kick will not increase.

Kick Duration Float The time taken to recover from the kick.

Position Kick Multiplier Float The camera moves along the direction of the force by strength * position multiplier.

Rotation Kick Max Angle Float The rotation kick angle at full strength.

See Also
Additive Transforms

AdditiveKicker

OverShoulder MonoBehaviour
Overview
The OverShoulder behaviour allows you look over your shoulder, keeping your weapon pointing in its original direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

ReferenceTransform Transform The transform to use as the un altered aim direction.

OverShoulderTarget Transform The transform to look down (forwards) when looking over shoulder.

TurnTime Float The time taken to turn.

MotionGraphKey String The key to a motion graph switch parameter that dictates if the character can peek or not

See Also
Additive Transforms

Motion Graph Parameters And Data

PeekVertical MonoBehaviour
Overview
The PeekVertical behaviour allows you to peek over or under obstacles by moving the head up/down.

Inspector

Properties
NAME T YPE D ES CR IPTION

Peek Distance Float The distance up or down to move the camera when peeking up or down.

Peek Speed Float The speed the character can change lean amount.

Max Move Speed Float The maximum speed the character can travel before the peek is cancelled. (0 = no max speed).

Motion Graph Key String The key to a motion graph switch parameter that dictates if the character can peek or not.

See Also
Additive Transforms

Motion Graph Parameters And Data

PositionBob MonoBehaviour
Overview
The PositionBob behaviour is used to apply a bob effect to the player character's head and weapon. The bob syncs steps with the
RotationBob effect and the various sprint handlers. It can also blend the bob effect between the head and weapon object to keep a
consistent effect while reducing head movement for people that find it causes them motion sickness. This is controlled via the
head bob setting in the FpsGameplaySettings.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bob Data PositionBobData The bob animation data, shared between the head and the item/weapon.

Bob Type Dropdown Is this bob being applied to the head or the item (allows the effect to blend between the 2 with similar
results based on game settings).

Min Lerp
Speed Float At or below this speed the bob will be scaled to zero.

Max Lerp
Speed Float At or above this speed the bob will have its full effect.

See Also
Additive Transforms

RotationBob

Gameplay Settings

PostProcessLayerFix MonoBehaviour
Overview
The PostProcessLayerFix behaviour adds the PostProcessLayer component to any cameras on start at runtime.

The Unity Post Processing Stack V2 has a number of bugs relating to how it serializes and deserializes references its shared
resources. This makes it very difficult to use in an asset because on first import it can lead to bugs ranging from post-processing
effects not being applied, to errors being spammed to the console. The fixes for this involve manually editing every camera object,
and so this behaviour was added in an attempt to shift the requirement for this away from the end user.

Inspector

Properties
The PostProcessLayerFix behaviour has no properties exposed in the inspector.

See Also
Post Processing Stack V2

PostProcessLayerSettings

https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing

RotationBob MonoBehaviour
Overview
The RotationBob behaviour is used to apply a bob effect to the player character's weapon. The bob syncs steps with the
PositionBob effect and the various sprint handlers. Rotation bob should be used sparingly and not applied to the character body
or head as it can be very disorientating.

Inspector

Properties
NAME T YPE D ES CR IPTION

Rotation
Range Vector The maximum rotation on each axis at the peak of the bob. Negative values essentially offset

the timing for that access to the other foot.

Bob
Curve

[AnimationCurve][unity-
animationcurve] The curve over one step cycle for the bob effect.

Min Lerp
Speed Float At or below this speed the bob will be scaled to zero.

Max Lerp
Speed Float At or above this speed the bob will have its full effect.

See Also
Additive Transforms

PositionBob

SphereShakeZone MonoBehaviour
Overview
The SphereShakeZone behaviour defines a spherical area with a constant shake value used by the CameraShake additive
transform effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Strength Float The strength of the shake.

Inner Radius Float The inner radius of the sphere. Inside this, the strength is constant.

Falloff Distance Float The distance outside of the box that the strength falls off to zero.

See Also
Additive Transforms

CameraShake

TransformMatcher MonoBehaviour
Overview
The TransformMatcher behaviour is an additive effect that matches the position and rotation of one transform relative to another.
It is useful for layering keyframed animation in with the procedural animation of the other additive effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Weight Float The strength of the effect. 1 matches the movement absolutely, while 0 is no movement.

Blend Duration Float The time it takes to blend in or out of the movement when the transforms are changed.

See Also
Additive Transforms

FirearmTransformMatchSetter

WeaponAimAmplifier MonoBehaviour
Overview
The WeaponAimAmplifier uses the camera rotation to twist and turn the held weapon, adding the illusion of weight and
momentum.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal
Multiplier Float The multiplier for the resulting weapon rotation side to side.

Vertical Multiplier Float The multiplier for the resulting weapon rotation up and down.

Sensitivity Float How sensitive the sway is to camera rotation. Higher sensitivity means the sway approaches its peak with
slower rotations

Damping Time Float Approximately the time it will take to reach the target rotation. A smaller value will reach the target faster.

See Also
Additive Transforms

WeaponBob MonoBehaviour (Deprecated)
Overview
The WeaponBob behaviour is used to move the gun or held item in sync with character movement. This behaviour has been
deprecated and replaced with the PositionBob and RotationBob systems which sync weapon and head bobbing, and allow player
settings to reduce head movement.

The weapon bob can tie into the moion graph and subscribe to a float parameter to allow the motion graph elements to control
when the bob occurs and the bob rate. Without this, the bob occurs whenever the character is grounded, and the bob rate is
based on movement speed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal Bob
Range Float The maximum position offset along the x-axis in either direction.

Vertical Bob
Range Float The maximum position offset along the y-axis in either direction.

Horizontal
Angle Range Float The maximum rotation offset around the x-axis in either direction.

Vertical Angle
Range Float The maximum rotation offset around the y-axis in either direction.

Bob Curve AnimationCurve The curve over one step cycle for the weapon bob.

(Fallback) Bob
Interval Float The distance travelled for one full bob cycle. If the parameter key above is set then this value will

only be used if the parameter can not be found.

(Fallback) Bob
Interval Float The distance travelled for one full bob cycle.

See Also
Additive Transforms

HeadBob

Unity AnimationCureve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

WeaponMomentumSway MonoBehaviour
Overview
The WeaponMomentumSway behaviour is an alternative to the WeaponAimAmplifier behaviour and moves instead of rotates the
weapon. This makes it more suitable to weapons that are set to use the gun transform for the shooting direction as the weapon
will stilll be pointing forwards as it moves.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal
Multiplier Float The multiplier for the position offset side to side.

Vertical Multiplier Float The multiplier for the position offset up and down.

Sensitivity Float How sensitive the sway is to camera rotation. Higher sensitivity means the sway approaches its peak with
slower rotations

Damping Time Float Approximately the time it will take to reach the target rotation. A smaller value will reach the target faster.

See Also
Additive Transforms

PositionBobData ScriptableObject
Overview
The PositionBobData scriptable object stores bob information to be shared between multiple PositionBob behaviours. This allows
all the bob effects on a character to sync up, and for the player to blend between item and head bob if htey find head bob
uncomfortable.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal Bob Range Float The maximum position offset along the x-axis in either direction.

Vertical Bob Range Float The maximum position offset along the y-axis in either direction.

Bob Curve AnimationCurve The curve over one step cycle for the bob effect.

See Also
Additive Transforms

PositionBob

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

PostProcessLayerSettings ScriptableObject
Overview
The PostProcessLayerSettings asset is used to store common post processing settings that are applied to any cameras on start.

Inspector

Properties
NAME T YPE D ES CR IPTION

Anti
Aliasing Dropdown The anti-aliasing option to use when adding post processing to a camera.

Resources PostProcessResources
The post processing resources to apply to the camera. Note: on first import this property will be
null. The resources are created when the post processing package is imported and not accessible via
the inspector. When you first access play mode, this component will be retrieved and applied, and
the property will persist outside of play mode.

See Also
Post Processing Stack V2

PostProcessLayerFix

https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing
https://github.com/Unity-Technologies/PostProcessing

The Motion Graph
Overview

The motion graph is the core movement system of NeoFPS. It provides a powerful but flexible tool for designers to control how
the FPS character moves, and how the character's movement state affects other Unity systems such as audio and animation. The
motion graph means designers aren't tied to a specific style of movement, and minimises the need for complex custom code
when trying to achieve a specific FPS vision (though it is also designed to be highly extensible).

The motion graph is a state machine that tracks and manages the movement state of the FPS character. It is built up of States,
Connections, Sub-Graphs, Behaviours, Parameters and Motion Data.

The NeoFPS movement system uses a MotionController behaviour attached to the FPS character, which drives a
NeoCharacterController. The MotionController has parameters to select the desired motion graph ScriptableObject, along with a
[MotionControllerData ScriptableObject][7] that the graph queries for parameters such as movement speed and strafe multipliers.
By separating the motion controller from the graph and data, NeoFPS allows for a huge amount of flexibility in creating separate
characters with unique movement styles and traits in a single game. This can be very useful if the game design involves character
classes or RPG style stats.

Graph Elements
States

https://docs.neofps.com/manual/extend-motiongraph.html

States are the building blocks of the motion graph. Each state is a style of movement and has complete control of the character's
MotionController.

The states base their movement on the motion graph Parameters and Motion Data as well as a number of properties from the
MotionController and NeoCharacterController such as ground contact and input.

For more information, see Motion Graph States.

Connections

Connections handle the relationship between movement states. Each update tick, all of the outbound connections of the current
state are checked in sequence. If an outbound connection is found to be valid, then that state in turn is checked until the final state
in the chain is reached. That final state becomes the new "current" state, and is then updated.

In order for a connection to be valid, the conditions attached to it must return true (all or any depending on the setting).

Connections are evaluated for parent sub-graphs as well to allow for grouping logic. The connection checks are handled in order
from the highest level sub-graph containing the current state, down the sub-graph hierarchy, and lastly the current state. An
example of how his can be useful is switching between grounded and airborne movement. You can group all of the grounded
movement states (running, walking, crouching, etc) and connections together in their own sub-graph, and group all of the

airborne states and connections together in another sub-graph. Connecting these 2 sub-graphs using a ground contact check
condition means that these connections are much higher priority than the connections inside the respective sub-graphs. It doesn't
matter what connections exist and conditions are met for grounded movement if the character is no longer touching the ground.
Without this ordering and grouping of nodes into sub-graphs, every grounded movement state would require a connection to the
airborne states.

Conditions

Conditions are a one off test that returns either true or false. The tests can be based on the graph state, graph parameters, or
external systems such as physics and character health.

For more information, see Motion Graph Conditions.

Sub-Graphs

Sub-Graphs allow states to be logically grouped together into smaller graphs. They have inbound and outbound connections just
like a state and are tested before the current state in order from the graph root down to the current sub-graph and finally the
current state. This enables complex logic to designed through a simple interface. For example, most characters will have an
Airborne and a Grounded sub-graph. Inside the Grounded sub-graph will be various states handling movement such as
walking, sprinting and sliding, as well as the connections between them. If the character loses ground contact then it doesn't
matter which of those states the character is in. The sub-graph connections will handle the connection into the Airborne sub-
graph and then select the relevant airborne state.

Each sub-graph has a default state. On entering a sub-graph, all of the connections to child states are evaluated in sequence. If
none of them are valid then the default state automatically becomes the current state.

Parameters And Data

Motion graph parameters are similar to the parameters inside the Unity AnimatorController. Any number of parameters can be
added to the motion graph and then referenced by key or hash. You can also store the parameter reference for quicker access.

Certain parameters such as triggers and switches can be blocked, either by graph behaviours, or from outside the graph.

The motion graph also allows for an event parameter. This can be subscribed to from outside the graph and triggered by graph
behaviours, allowing the graph to interact with components outside of the motion graph system.

Motion data behaves similarly but cannot be changed from outside the graph, except for using an override asset. Motion data are
referenced in graph states and behaviors, and are completely optional.

For more information, see Motion Graph Parameters And Data.

Behaviours

Motion graph behaviours add extra functionality to the graph. They can process logic on entering or exiting a state or sub-graph
and/or when a state is updated. Certain behaviours can only be attached to states, and others can only be attached to sub-graphs,
while most can be attached to both.

Motion graph behaviours allow for simple logic such as resetting or modifying parameters. They can also be complex systems on
their own, such as the motion graph behaviour based footsteps.

For more information, see Motion Graph Behaviours.

See Also
Motion Graph Editor

Motion Graph States

Motion Graph Conditions

Motion Graph Parameters And Data

Motion Graph Behaviours

MotionController Behaviour

Unity AnimatorController

Ladders

Moving Platforms

Extending The Motion Graph

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.neofps.com/manual/extend-motiongraph.html

NeoCharacterController
Overview
The NeoCharacterController is a replacement for the Unity Character Controller which adds additional functionality such as:

Moving platforms
Interpolation between fixed framerate physics movement
Arbitrary gravity and up-vector
Height change, including jump-crouching
Built-in pushing of rigidbody objects
Reaction to impacts from rigidbody objects
Physical interaction with other character controllers
Curve driven slope speed modifiers
Ledge friction property to allow sliding off ledges when overhanging

The NeoCharacterController is a kinematic character controller that uses a collide and slide technique to ensure smooth
movement and collisions, while preventing fast movement penetrating through thin objects.

For more information on the properties that are exposed in the inspector see the NeoCharacterController Behaviour.

The other classes within NeoFPS refer to the NeoCharacterController using the INeoCharacterController interface. This means
that the character controller can be replaced with another implementation, as long as that implements the correct interface.

Friction
The Slope Friction property dictates how much of the downward movement is redirected down the slope instead of cancelled
out. At a friction level of 1, any vertical movement into the slope will be cancelled out completely. At a friction level of 0, the
character will slide down the slope due to gravity.

The Ledge Friction property specifies what happens when the character is overhanging a ledge. The NeoCharacterController has
basic awareness of ground contacts that lets it know when it is in contact with an edge as opposed to a flat surface. If the
character centerpoint is overhanging a ledge, and the drop distance is large enough, then the character will slide off the ledge
depending on this setting. It can be used to prevent the character from hovering off the edge of obstacles unrealistically. If this
value is higher than the slope friction, then the slope friction will be usd instead. This prevents sliding down a slope and then
sticking on the bottom edge.

Rigidbody and Character Interaction
The NeoCharacterController can push dynamic rigidbodies, as well as react to impacts from rigidbodies.

The Low Rigidbody Push Mass is used to set a mass that the character can easily push. Any rigidbody at or below this mass will
have a proportionate force exerted on it that will achieve the same effect. Above this mass, that force will drop away to zero as the
rigidbody approaches the Max Rigidbody Push Mass. The Rigidbody Push property is the push power and can be
experimented with to get the correct effect.

Similarly, the NeoCharacterController can also push and be pushed by other NeoCharacterController objects.

Gravity and Up-Vector
The NeoCharacterController operates using its own gravity value instead of the Unity Physics gravity. This allows for more
flexibility to achieve a specific game feel. First person shooters often use a higher gravity than normal for character movement as
it feels more realistic and less floaty.

The NeoCharacterController can also have its up-vector changed. This allows for features such as walking around on relatively
small planets, or localised gravity zones. All features such as step height and slopes work the same as gravity and the up-vector
rotate.

https://docs.unity3d.com/Manual/class-CharacterController.html

By default, the up-vector will be adjusted to face the opposite direction to gravity whenever the character gravity is changed. If the
gravity is set to zero then the up-vector can be freely changed to allow for unlimited zero-g movement. A range of motion graph
states will be added to take advantage of this in a future update.

See Also
Moving Platforms

NeoCharacterController Behaviour

Unity Character Controller

https://docs.unity3d.com/Manual/class-CharacterController.html

The Motion Graph Editor
Overview
The motion graph editor is a set of tools for creating and editing NeoFPS motion graphs. It contains a viewport for navigating and
visualising the graph, along with an inspector for changing the properties of the graph and its components.

You can access the motion graph editor through the Unity menu: Window/NeoFPS/Motion Graph Editor. You can also access
the editor from the Show Motion Graph Editor button that appears in the inspector for a motion graph asset.

You can create a new motion graph from the motion graph editor by clicking the New button in the top bar. The new asset will be
placed in the project root folder. You can also right-click in the project and create a new motion graph through the create menu
using the following command: Create/NeoFPS/Motion Graph. Selecting a motion graph asset with the motion graph editor
open will update the editor to show the contents of the selected graph.

Motion Graph Editor UI

The following is a breakdown of what you will see when you open the editor:

1. The asset controls allow you to create and save graph assets as well as select the graph currently being edited.
2. The breadcrumb at the top shows the current sub-graph of the hierarchy that is currently visible in the viewport.
3. The side bar allows you to add and modify parameters and motion data on the graph.
4. The viewport shows the layout of the graph.

Motion Graph Viewport

The motion graph viewport gives a visual representation of the graph, allowing you to navigate the connections, add elements
and select and modify existing elements.

To move the viewport hold the middle mouse button and drag the cursor. Alternatively, you can hold the Left Alt key and click
the left mouse button on an empty area of the viewport and then hold and drag the mouse button to move.

To open a context menu you can right click anywhere in the viewport. This menu will contain different entries depending on what
you clicked and covers actions such as navigating the graph, cut/copy/paste/deleting elements and creating transitions between
elements.

Inside the viewport, the visible elements are as follows:

The rectangular boxes are motion graph states. These handle the movement of the character and the motion controller
depending on the motion controller's current state. Left-click a state to edit its properties in the editor inspector panel.
The angled boxes are sub-graphs. These contain their own graph layout and can be transitioned into and out of as if they
were a state. Left-click a sub-graph to edit its properties in the inspector panel. Double-click a sub-graph to replace the
viewport contents with that sub-graph's contents.
The green angled box is the sub-graph that is currently being shown in the viewport. You can double-click this element or
use the context menus to show its parent graph in the viewport.
The lines with arrows between different elements are the motion graph connections. These define which states and sub-
graphs connect to each other and what conditions must be met to transition between them. Left-click the arrow on a
connection to edit its properties in the inspector panel.

You can also group select states and sub-graphs in order to perform group operations. To drag-select elements, Left-click in an
empty area of the viewport and, holding the mouse button down, drag across the desired states and sub-graphs. Releasing the
mouse button will select the states and sub-graphs within the area. Connections can not be group selected, but any group

operations will affect the connections into and out of the modified elements. You can also Control-Left-Click or Command-
Left-Click on an element to add it to the group, or Alt-Left-Click to remove it from the group.

Any selected states or sub-graphs will be highlighted in the viewport.

Inspecting Motion Graph Elements
Selecting an element in the viewport will show it in the Unity editor inspector.

Connectables (States an Sub-graphs)

The connectable inspector is used for both states and sub-graph elements due to the similarities between them.

The header of the inspector allows you to change the element's name, see (and inspect) its parent sub-graph, and in the case of
states, see its type.

Straight after the header are the connectable properties. States can have any number of properties, and in some cases might have
complex editor logic such as you would expect from a MonoBehaviour or ScriptableObject.

After the connectable properties is an Out Connections array that shows all of the connections out of the inspected element.
Each entry in the array shows the destination, along with an Inspect button. Clicking this will select the connection element and
show its properties in the inspector for editing.

Both states and sub-graphs can also have a number of behaviours attached to them. These are listed after the out connections.
Each behaviour has a foldout title bar that can be used to show or hide its properties. They also have a link to the relevant manual
reference for that behaviour, and a dropdown context menu with options for changing order, copy/paste and removal. You can
add behaviours to the state by clicking the Add Behaviour dropdown button and selecting a behaviour. For more information on
behaviours, see Motion Graph Behaviours.

Connections

The header of the connection inspector shows the source and destination elements and allows you to quickly inspect either one.

The Conditions array shows all the conditions that decide if the connection is valid. For more information on conditions, see
Motion Graph Conditions. You can add a new condition by clicking the + button at the bottom of the array and selecting the
relevant condition from the dropdown.

The Transition On dropdown species if all of the conditions must be met for control to be transferred, or if any one of the
conditions must be met.

Parameters and Data

The side-bar of the editor has 2 tabs that show all of the parameters attached to the graph, and all of the motion data attached to
the graph. Parameters and data can be referenced from any state, behaviour or condition in the graph. Scripts can also get a
reference to any of the attached parameters from outside the graph, creating a flexible system for communication back and forth
between the graph and other systems.

For more information, see Motion Graph Parameters And Data.

See Also
The Motion Graph

Motion Graph States

Motion Graph Conditions

Motion Graph Parameters And Data

Motion Graph Behaviours

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html

Motion Graph States
Overview
States are the building blocks of the motion graph. Each state is a style of movement. It takes input and basic physics information
from the MotionController and returns a move vector each tick.

Included States
Ground Movement States

NAME D ES CR IPTION

Dash Surge in a direction based on yaw or movement direcion.

Movement Standard ground based movements such as walking or running.

Ski Maintain ground speed and allow steering based on speed (slower speed is tighter steering).

Steep Slide Sliding on a steep slope, with some control over direction.

Airborne States
NAME D ES CR IPTION

Controlled Jetpack Applies an upward force, with some air control.

Falling Air control based movement with gravity.

Fly No-clip style movement that can move in all axes.

Jetpack Applies an upward force and maintains horizontal velocity.

Instantaneous States
NAME D ES CR IPTION

Boost Pad Instantly sets velocity to match a vector parameter.

Dodge As jump, but lower and further.

Impulse Instantly sets velocity based on a vector with options for space and ground alignment.

Jump An instant upward jump. Completes in one frame.

JumpDirection A jump, but the direction is rotated from the vertical based on input.

JumpDirectionV2 A jump with a fixed vertical speed and a horizontal speed based on input.

Push Off Applies velocity based on a vector parameter, with optional upward force.

Repulse An instant impulse away from a transform in the scene.

Misc States
NAME D ES CR IPTION

Constant Move Accelerates to a fixed velocity and maintains it.

Maintain Velocity Simply returns the velocity from the previous frame.

Match Transform Attaches the character (position with or without yaw and up-vector) to a transform in the scene.

Move To Point Moves from the starting point to the position set in a vector parameter.

Null An empty state used to branch to others.

Wall Movement States
NAME D ES CR IPTION

Mantle Climb onto a ledge.

Vertical Wall Run Run directly up a wall.

Wall Run Run along a wall surface.

Swimming States
NAME D ES CR IPTION

Swim Smooth Surface Swimming state that tries to stick to a water zone's surface. Smooth movement.

Swim Smooth
Underwater Swimming state that can move in all axes. Smooth movement.

Swim Stroke Surface Swimming state that tries to stick to a water zone's surface. Moves in pulses.

Swim Stroke
Underwater Swimming state that can move in all axes. Moves in pulses.

Swim Submerge Used to transition from surface to underwater states while taking the movement of the surface into account.

Wading A variation of the movement state with speed dependent on the amount of a character's body below the water
surface.

Ladder States
NAME D ES CR IPTION

Contact Ladder A basic climb state when touching a contact ladder.

Interactive Ladder A climb state constrained to an interactive ladder.

In The Viewport

Context Menu Options
NAME D ES CR IPTION

Set
Default

When entering a subgraph, the motion graph checks the connections out of the sub-graph to its child nodes in sequence. If
none of the connections are valid then the default state or sub-graph will be chosen as a fallback.

Make
Transition

Starts a connection out of this node in the viewport. Clicking on another node will form a connection from this node to the
clicked node. Clicking an empty area of the viewport will cancel the connection.

Move To
Sub-
Graph

This will replace the state with a sub-graph with the same name, and then make this state a child of the new sub-graph.

Cut State Removes the state from the graph and adds it to the clipboard for pasting later. Any inbound and outbound connections will
be removed. Right-click on an empty area of viewport to paste.

Copy
State Copy the state to the clipboard. Right-click on an empty area of viewport to paste.

Delete Remove the state from the graph entirely, along with any inbound and outbound connections and attached behaviours.

In The Inspector

Each state will have its own properties visible before the Out Connections array. This array lists the connections from this state
to other connectables, allowing you to jump to inspecting each of those targets. The Add Behaviour button allows you to add
motion graph behaviours to the state which will be evaluated while the state is active.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph Behaviours
Overview
Motion graph behaviours add extra functionality to the graph. They can process logic on entering or exiting a state or sub-graph
and/or when a state is updated. Certain behaviours can only be attached to states, and others can only be attached to sub-graphs,
while most can be attached to both.

Motion graph behaviours allow for simple logic such as resetting or modifying parameters. They can also be complex systems on
their own, such as the motion graph behaviour based footsteps.

Motion graph behaviours update at the same rate as the motion controller - in FixedUpdate. This should be kept in mind if
creating new behaviours for your project.

Included Behaviours
Character Behaviours
Character behaviours act on components on the character object.

These include:

BodyTiltBehaviour
ConstrainCameraYawBehaviour
DrainStaminaBehaviour
LockInventorySelectionBehaviour
ModifyStaminaBehaviour
SetWieldableStanceBehaviour
TrackStepsBehaviour
UnlockInventorySelectionBehaviour

Graph Parameter Behaviours
Graph parameter behaviours act on motion graph parameters.

These include:

ClampFloatParameterBehaviour
ClampIntParameterBehaviour
ModifyIntParameterBehaviour
ModifyFloatParameterBehaviour
ModifySwitchParameterBehaviour
ModifyTriggerParameterBehaviour
ModifyTransformParameterBehaviour
ModifyVectorParameterBehaviour
BlockSwitchParameterBehaviour
BlockTriggerParameterBehaviour
InvokeEventBehaviour
TimeOpsBehaviour

Audio Behaviours
Audio behaviours trigger audio in the scene and interact with the various audio systems.

These include:

FootstepAudioBehaviour

SlidingAudioBehaviour
LadderAudioBehaviour
PlayCharacterAudioBehaviour
PlayAudioClipBehaviour
LoopingAudioBehaviour
SurfaceAudioBehaviour
SurfaceFootstepAudioBehaviour

Physics Behaviours
Physics behaviours modify the character physics.

These include:

DisableColliderBehaviour
PassiveSlideBehaviour
SetTargetHeightBehaviour

Miscellaneous Behaviours
Miscellaneous behaviours don't fall into the above categories.

These include:

SetTimeScaleBehaviour

In The Inspector

Editing behaviours is very straightforward. Each one will have its own unique properties, along with the following controls as
highlighted in the above image:

1. A checkmark to enable or disable the behaviour. Disabled behaviours will not be evaluated until enabled.
2. The type of the behaviour. Click this to collapse or expand the behaviour and its properties.
3. A link to the manual reference for the behaviour.
4. A dropdown of actions for the behaviour including changing the order on the state or sub-graph, copy / pasting properties

and removing.

See Also
Motion Graph Parameters And Data

Motion Graph Conditions
Overview

Conditions are simple true/false checks that are used to specify when the motion graph changes its active state. Conditions can be
far reaching, checking against the graph, the controller, the wider character, or any external system. Connections can transition
when a single condition is met or when all conditions in a connection are met.

Condition Groups
Condition groups are used to evaluate conditions together and allow for more complex rules than just "any" and "all".

For example, when swimming on the surface of a water zone, you might transition to the underwater state if you either press
crouch or look down and press forwards. In this situation you would set the main connection to transition on any of: crouch is
pressed or the Move Down condition group is true. The Move Down condition group will be set to be true if all of: the character is
looking down and the player is pressing forward.

The above connection is used for checking if a character can climb a wall. It is set up with a condition group that checks if either
the horizontal character speed is low or the direction of movement is directly into the wall (within a certain angle range).

The results of a condition group are recorded when evaluated (reset each frame). This prevents infinite loops where 2 condition
groups reference each other.

Conditions

The following conditions are available:

Graph Conditions
These are conditions that check against the graph state.

NAME D ES CR IPTION

CompletedCondition Checks if the state it is connected from has its complete flag set.

ConditionGroupCondition Used to evaluate multiple conditions together (see above).

DebugCondition Used to debug connections by specifying the value and outputting a message to the debug log.

ElapsedTime Checks if the state it is connected from has been active for a set period.

Parameter Conditions
These are conditions that check against the [parameters][3] attached to the graph.

NAME D ES CR IPTION

CompareFloatsCondition Compares two float parameters attached to the graph.

CompareIntsCondition Compares two int parameters attached to the graph.

CompareSwitchesCondition Compares two switch parameters attached to the graph.

CompareTime Compares the current time with the time stored in a float parameter attached to the graph.

FloatCondition Compares a float parameter attached to the graph to a specific value.

IntCondition Compares an int parameter attached to the graph to a specific value.

SwitchCondition Compares a switch parameter attached to the graph to a specific value.

TransformCondition Compares a transform parameter attached to the graph to a specific value.

TriggerCondition Compares if a trigger parameter attached to the graph has been triggered.

VectorCondition Compares if a trigger parameter attached to the graph has been triggered.

Physics Conditions
These conditions use the physics system to check for collisions and contacts.

NAME D ES CR IPTION

CapsuleCast Casts the character capsule to check for a collision.

CapsuleCast (Enhanced) Casts the character capsule to check for a collision and can store the results in parameters.

CapsuleLookahead Casts the character capsule based on its movement.

CapsuleLookahead (Enhanced) Casts the character capsule based on its movement and can store the results in parameters.

Climbable Checks if a wall has an unobstructed climbable ledge within a certain height.

RayCast Performs a ray cast ffrom a point on the character.

RayCast (Enhanced) Performs a ray cast from a point on the character and can store the results in parameters.

RayLookahead Performs a ray cast based on the movement of the character.

RayLookahead (Enhanced) Performs a ray cast based on the movement of the character and can store the results in parameters.

SphereCast Performs a sphere cast from a point on the character.

SphereCast (Enhanced) Performs a sphere cast from a point on the character and can store the results in parameters.

SphereLookahead Performs a sphere cast based on the movement of the character.

SphereLookahead (Enhanced) Performs a sphere cast based on the movement of the character and can store the results in parameters.

NAME D ES CR IPTION

Character Conditions
These conditions interface with the character that is controlled by the graph.

NAME D ES CR IPTION

AirTime Checks how long the character has been ungrounded.

CharacterHeight Checks the character capsule height or height multiplier (from standing).

CollisionFlags Checks the collision flags generated on the last movement frame.

Direction Checks the character's aim, input or movement direction.

GroundContact Checks if the character is touching the ground.

GroundNormal Tests against the normal vector of the ground contact.

GroundSurfaceNormal Tests against the normal vector of the ground surface at the contact point. If the contact is an edge, this will be the
normal of the top face connected to that edge.

HeightRestriction Checks if the character can reach a specific height (eg trying to stand while crouched in an air vent.

InputVector Checks against the input vector provided to the motion controller.

Pitch Checks the character's aim pitch.

ScriptedComponent Paired with a component attached to the character that implements the IScriptedComponentCondition
interface.

Velocity Checks the character's velocity in various directions.

Water Checks the character's position relative to a water zone.

NAME D ES CR IPTION

See Also
The Motion Graph

Motion Graph Parameters And Data

Motion Graph Parameters And Data
Overview
The Motion Graph allows you to add parameter and data entries to the graph.

Parameters are accessible from elements inside the graph and also externally via the get and set parameters outlined below. This
enables various systems and your own scripts to feed data to the motion graph that it can use to drive and influence the character
movement.

Motion data are used inside the graph, but cannot be changed directly from outside. These values are used for things like speeds
that are considered more constant than parameters. You can, however, create override assets which can be attached to the graph
at runtime and then

Parameters

Parameters are accessible through the motion graph editor by clicking the Parameters tab in the motion graph editor side-bar.

To add a new parameter click the + button on the list and select the type from the dropdown.

To remove a parameter select the relevant entry and click the - button on the list.

To edit a parameter use the fields in the relevant entry. The text field on the left is the desired name for the parameter. This should
be unique to this parameter or only the first entry in the list with that name will be accessible. On the right side of the name is the
default starting value. This is the value the parameter will have on initialisation and whenever it is reset.

The following parameter types are available:

NAME D ES CR IPTION

Integer The integer parameter is a decimal value.

Float The float parameter is a floating point value.

Switch The switch parameter is a boolean value. It can be toggled and blocked.

Trigger The trigger parameter is a one off trigger. It will be reset when it is consumed in the graph. It can also be blocked.

Transform The transform parameter is a reference to a Transform component.

Vector The vector parameter is a Vector3 value.

Event The event parameter is a C# event that can be invoked from inside the graph and subscribed to from outside.

https://docs.unity3d.com/Manual/class-Transform.html

For parameters that can be blocked, they will always return their default value as long as there are blockers. Use
SwitchParameter.AddBlocker() to add a blocker to a switch parameter, and SwitchParameter.RemoveBlocker() to remove a
blocker. The parameter will be blocked when the number of blockers is not 0. Be careful to remove any blockers you add when no
longer needed.

Parameters are referenced from within the graph using dropdowns. The user can choose to select None, Create New (another
way to add a new parameter to the graph), or any of the relevant parameters attached to the graph.

Events
The event parameter is a useful parameter for interacting with external code from within a motion graph. They can be subscribed
and unsubscribed by using the EventParameter.AddListener (UnityAction listener) and
EventParameter.RemoveListener (UnityAction listener) methods.

You can invoke an event parameter from your own code using EventParameter.Invoke () or using a InvokeEventBehaviour
motion graph behaviour.

Motion Data

Motion data are accessible through the motion graph editor by clicking the Motion Data tab in the motion graph editor side-bar.

To add a new data entry click the + button on the list and select the type from the dropdown.

To remove a data entry select the relevant entry and click the - button on the list.

The Create Override Asset button will create a new MotionGraphDataOverrideAsset in the same folder as the edited motion
graph and with the same name.

Various properties on graph states or behaviours can be assigned a motion data value using a dropdown as above. The user can
choose to select None, Create New (another way to add a new motion data entry to the graph), or any of the relevant motion
data entries attached to the graph. If the dropdown is set to None then a separate Value field will be visible below. In simple
cases you can use this value directly, but setting the property to a motion data entry allows you to share a single data entry across
multiple properties, and also to override from an asset later.

Accessing Parameters
Parameters are accessed from the motion graph root object. They can be set directly with the following methods:

int MotionGraphRoot.GetInt (string parameterName);
int MotionGraphRoot.GetInt (int hash);
void MotionGraphRoot.SetInt (string parameterName, int value);
void MotionGraphRoot.SetInt (int hash, int value);

float MotionGraphRoot.GetFloat (string parameterName);
float MotionGraphRoot.GetFloat (int hash);
void MotionGraphRoot.SetFloat (string parameterName, float value);
void MotionGraphRoot.SetFloat (int hash, float value);

bool MotionGraphRoot.GetSwitch (string parameterName);
bool MotionGraphRoot.GetSwitch (int hash);
void MotionGraphRoot.SetSwitch (string parameterName, bool value);
void MotionGraphRoot.SetSwitch (int hash, bool value);

Transform MotionGraphRoot.GetTransform (string parameterName);
Transform MotionGraphRoot.GetTransform (int hash);
void MotionGraphRoot.SetTransform (string parameterName, Transform value);
void MotionGraphRoot.SetTransform (int hash, Transform value);

void MotionGraphRoot.SetTrigger (string parameterName);
void MotionGraphRoot.SetTrigger (int hash);

void MotionGraphRoot.AddEventListener (string parameterName, UnityAction listener);
void MotionGraphRoot.AddEventListener (int hash, UnityAction listener);
void MotionGraphRoot.RemoveEventListener (string parameterName, UnityAction listener);
void MotionGraphRoot.RemoveEventListener (int hash, UnityAction listener);

Passing a string parameter for parameterName is more convenient, but performance can be increased by storing a hash of the
string and using that instead. You can generate a hash using Unity's Animator.StringToHash (string input) method. This is
similar to the way you would access a parameter in an animator controller graph.

If you plan to access a parameter multiple times then the most efficient way to do so is to store a reference to the parameter itself.
You can do this using the following methods:

IntParameter MotionGraphRoot.GetIntParameter (string parameterName);
IntParameter MotionGraphRoot.GetIntParameter (int hash);

FloatParameter MotionGraphRoot.GetFloatParameter (string parameterName);
FloatParameter MotionGraphRoot.GetFloatParameter (int hash);

SwitchParameter MotionGraphRoot.GetSwitchParameter (string parameterName);
SwitchParameter MotionGraphRoot.GetSwitchParameter (int hash);

TransformParameter MotionGraphRoot.GetTransformParameter (string parameterName);
TransformParameter MotionGraphRoot.GetTransformParameter (int hash);

TriggerParameter MotionGraphRoot.GetTriggerParameter (string parameterName);
TriggerParameter MotionGraphRoot.GetTriggerParameter (int hash);

VectorParameter MotionGraphRoot.GetVectorParameter (string parameterName);
VectorParameter MotionGraphRoot.GetVectorParameter (int hash);

EventParameter MotionGraphRoot.GetEventParameter (string parameterName);
EventParameter MotionGraphRoot.GetEventParameter (int hash);

This is also the way that the included motion graph elements reference parameters. If you plan to expand on the motion graph
with your own custom elements then there are a number of GUI helpers available that simplify adding custom parameter and
data selectors to inspectors. For more information see Extending the Motion Graph.

See Also
The Motion Graph

The Motion Graph Editor

Extending the Motion Graph

https://docs.neofps.com/manual/extend-motiongraph.html
https://docs.neofps.com/manual/extend-motiongraph.html

Motion Graph Ladders
Overview
Ladders have been an ubiquitous part of the first person shooter genre, with a huge range of implementations. Many FPS ladders
are hacky workarounds for what is a surprisingly complex problem, and a poor implementation can often stand out.

NeoFPS attempts to set a standard for first person shooter ladders. They come in 2 flavours: contact ladders and interactive
ladders, but both share the same underlying system.

Contact Ladders
Contact ladders are climbed automatically as soon as the player character touches them. They often allow the player to climb
sideways across the ladder, dropping off if they pass the edge. They also allow the player to turn a full 360 degrees while on the
ladder without any look constraints.

Contact ladders are often used in fast paced shooters where flow is much more important than realism.

For more information see the ContactLadder reference.

Interactive Ladders
Interactive ladders require the player to look at and use the ladder and attach to it. Once attached, the character is constrained to
moving up and down the ladder until they reach the ends, let go (by interacting again) or jump off.

Interactive ladders are more restrictive than contact ladders, keeping the character fixed to one axis of movement. They can also
constrain the camera, blocking the camera from turning too far away from the ladder if at all. Because of these features they are
often used in more realistic games or in games where pacing needs to be more controlled.

For more information see the InteractiveLadder reference.

Ladder Implementation
In NeoFPS ladders have 2 elements. The ladder surface itself, and a wrap around at the top of the ladder.

These sections are inflated from the ladder geometry by the character's radius. The system then moves a point at the bottom
center of the character collider around in this "ladder space".

This system has 2 benefits: Firstly, it is easy to stick the character to the shape, making climbing consistent both part way up the
ladder and also at the top of the ladder where some implementations can have difficulty registering contact. Secondly, the look
direction can be judged in ladder space instead of world space.

By calculating look direction in ladder space, it means that a character at the top of a ladder and looking forwards is actually
looking up the ladder. This makes changing climb direction based on aim much more intuitive than if the character had to look
straight up in this situation. Another example is if the player approaches a ladder from the top. Walking forwards while looking at
the edge will walk down the ladder. Looking away from the edge and slightly down will still be considered looking up the ladder
in ladder space, so walking backwards will climb down the ladder as expected.

See Also
ContactLadder

InteractiveLadder

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

Motion Graph Moving Platforms
Overview
A moving platform is a kinematic or dynamic rigidbody that the player can stand on. The player will move and rotate with the
moving platform.

For a demonstration of the moving platforms, you can check out the sample scene.

How To Set Up A Moving Platform
Creating a moving platform is relatively simple. The key things that need setting up correctly are the rigidbody and the object
layers.

https://docs.unity3d.com/Manual/class-Rigidbody.html

In the above image there are 2 objects. The first is the physical platform that the character interacts with. This uses one or more
primitive colliders to define a rough shape and should be set to use the Moving Platform layer. It also requires an object that
derives from the IMovingPlatform interface or BaseMovingPlatform abstract class. These communicate with the
NeoCharacterController to smoothly move the character. Moving platform movement should always be handled through the
Rigidbody move and rotate methods. NeoFPS relies on rigidbody interpolation to get smooth interpolation between the fixed
update frames. You should use Rigidbody.MovePosition() and Rigidbody.MoveRotation() instead of setting the position and
rotation directly. If you don't do this, then the platforms will appear to stutter when you ride them.

The second object is the render geometry. This should be set to use the EnvironmentDetail layer and the collider should match
the render geometry as closely as possible.

When a character is in contact with the moving platform it will match any change of position or rotation of the platform each
frame. Any character movement will be additive on top of this.

Example Moving Platform Behaviours
NeoFPS comes with the following moving platform types already implemented, though it is easy to add more with scripting:

NAME D ES CR IPTION

SimpleMovingPlatform The SimpleMovingPlatform behaviour is used to create a platform that moves between 2 points at set
intervals.

SimpleRotatingPlatform The SimpleRotatingPlatform behaviour is used to create a platform that rotates at set intervals.

ConstantRotatingPlatform The ConstantRotatingPlatform behaviour is used to create a platform that constantly turns at a set rate.

DrivenMovingPlatform The DrivenMovingPlatform behaviour is added to a rigidbody that is driven by physics or a script and turns it
into a moving platform. See the above note on rigidbody interpolation.

WaypointMovingPlatform The WaypointMovingPlatform behaviour is used to create a platform that moves between a set of waypoints
in sequence or directly.

ElevatorMovingPlatform The ElevatorMovingPlatform behaviour is used to control the movement of an elevator cab. It is attached to
the kinematic rigidbody that acts as the elevator cab or platform, and moves the character smoothly with it.

See Also
NeoCharacterController

The Motion Graph

The Motion Graph Editor

https://docs.unity3d.com/Manual/class-Rigidbody.html

Motion Graph Swimming
Overview

Swimming in NeoFPS is broken down into 3 sets of states: surface, underwater, and wading. The motion graph has the flexibility
to craft a range of swimming movement styles using any of those states, while controlling things like capsule height and camera
effects using the various graph behaviours.

Water Zones
Water zones are used in the scene to define a volume that the character can swim in. The BasicWaterZone behaviour is placed on
an object with a trigger box collider and will notify any character that enters it.

The water zone provides the motion graph with details of the water surface height and normal, as well as the flow velocity, at a
specific point.

The BasicWaterZone simply returns the top face of the attached box collider, along with a constant flow vector. More complex
water zone behaviours can be created by inheriting from the IWaterZone interface. This requires the following methods:

Vector3 FlowAtPosition(Vector3 position);
WaterSurfaceInfo SurfaceInfoAtPosition(Vector3 position);

Surface Swimming
The surface swimming states will try to keep the character's head at a certain height above the water surface. If the surface level
rises too fast, or the character is already moving up/down too quickly, then the head can breach the water's surface. In this case,
you can use the Water MotionGraphCondition to check the submerged depth of the character and transition into an underwater
state.

The available surface swimming states are:

SwimSmoothSurfaceState which moves smoothly along the water surface
SwimStrokeSurfaceState which moves in pulses to simulate swimmming strokes. The pulse frequency is based on
movement direction.

Underwater Swimming
The underwater swimming states move in the direction of the character's aim (including pitch), while jump and crouch are used to
move straight up and down.

The available underwater swimming states are:

SwimSmoothUnderwaterState which moves smoothly
SwimStrokeUnderwaterState which moves in pulses to simulate swimmming strokes. The pulse frequency is based on
movement direction, while jump/crouch driven movement is smooth.

Wading
The Wading state is a variation of the Movement state which is used for walking and swimming. It changes the target speed based
on how much of the character is below the water surface.

Drowning
Drowning can be implemented simply by recording the time spend in underwater states in a float parameter on the graph and
acting based on its value. The DrowningMotionGraphWatcher monobehaviour is attached to the character and applies damage
once a parameter reaches a certain value and at set increments therafter.

Future Development
The current implementation of swimming in NeoFPS should be considered version 1. Version 2 will extend this with extra features
and behaviour such as:

Swimming hand animations
Options to prevent shooting while underwater
Audio effects
Waves
Better underwater visuals and post-processing
Bouyancy and bouyant objects
Better handling of multiple overlapping water zones

See Also
The Motion Graph

The Motion Graph Editor

Motion Debugger
Overview

The motion debugger is use to help diagnose unexpected and unwanted movement behaviour by the NeoFPS Motion Graph. It
allows you to chart movement details in real time, pause, and focus in on a specific moment to inspect the input and output of the
motion graph and NeoCharacterController

Accessing The Motion Debugger
The motion debugger can be found in the menus at Tools/NeoFPS/Motion Debugger or via the Attach Debugger button on the
[MotionController][3] component attached to the character. If the character is in the scene and the game is playing then this
button will attach the selected character to the debugger and start recording its movement data. Alternatively, you can select
Attach Automatically at the top of the motion debugger, and it will attach to the local player character whenever it spawns.

Each time a new character is attached to the debugger, it resets the recorded data, so if the problem movement results in the
death of the character then you will either need to pause the game before the character respawns, or disable the automatic
attachment.

Output Graph
The graph will chart the value selected in the Graph Readout dropdown just above. Values are recorded regardless of whether

they are displayed, so changing this value does not reset the graph.

The vertical axes of the graph will resize dynamically based on the minimum and maximum value recorded in the time range.
These min and max values are displayed to one side of the graph.

If the game is paused or play mode has ended, then you can click and drag on the graph to inspect a specific frame. The selected
frame number along with the charted value at that point will be displayed alongside a vertical marker showing your position on
the graph.

Scene View Ghost

Scrubbing the graph while the game is paused will show a representation of the character at that frame in the scene view. You can
use this to help find the exact point that the character did something unexpected, and then use the readout values to diagnose the
problem. Due to the way that Unity draws object gizmos in the scene, this can only be done in pause mode and not after exiting
play mode to editor mode, though the recorded values will persist until a new character is attached to the debugger.

Readout
Underneath the graph is a readout of the various variables for the current frame and previous frame. You can filter which values
are visible using the Show Details dropdown at the top of the list.

Output
The outputs are the values the motion graph sent to the NeoCharacterController on the inspected frame. This includes the state,
target move vector and whether gravity and ground snapping should be applied.

Inputs
These are the variables the NeoCharacterController provided to the motion graph to base its decisions from. Most of these are the
result of the previous frame's movement.

Parameters
These are the values of the motion graph parameters at the point the output was sent to the NeoCharacterController. These can
help diagnose which of the conditions were valid that frame, though bear in mind that these can be modifed by the conditions
and behaviours on the graph, as well as external sources.

See Also
ContactLadder

InteractiveLadder

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

AdaptiveJetpack MotionGraphState
Overview
The AdaptiveJetpack state adds an upward force to the character while allowing some control over direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Jetpack Fuel FloatParameter An optional parameter for the jetpack fuel. Will be consumed based on output.

Jetpack Force FloatData An acceleration force (ignores mass) upwards for the jetpack

Horizontal
Acceleration Float Data The input driven acceleration while falling. This can either be set as a value, or by referencing a

float data entry.

Top Speed Float Data The top horizontal movement speed (for keyboard input or max analog input). This can either be
set as a value, or by referencing a float data entry.

Strafe Multiplier Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a
value, or by referencing a float data entry.

Reverse Multiplier Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be
set as a value, or by referencing a float data entry.

Mode Dropdown
How the jetpack should work. Smooth reduces power as approaching the max vertical speed.
Burst sets a minimum jetpack burst duration and gap between bursts to create a bouncier
hover.

m_MaxVerticalSpeed Float The maximum vertical speed, at which the jetpack stops pushing upwards. A speed of zero is
hovering.

m_SpeedFalloff Float
The speed below the max at which jetpack power (and fuel consumption) starts to fall off. The
power will fade out exponentially the closer you get to the max speed. Only shown if the "Mode"
dropdown is set to Smooth.

m_Hysteresis Float A speed differential where the jetpack will switch on/off. Max + half this = off. Max - half this =
on. Only shown if the "Mode" dropdown is set to Burst.

m_FuelBurnRate Float The amount of fuel burned per second at full burn. Only shown if the "Jetpack Fuel" parameter is
not null.

m_FuelDamping Float A damping amount for the fuel consumption to smooth it out. Set to zero for direct feedback.
Only shown if the "Jetpack Fuel" parameter is not null.

m_MinFuelBurn Float The fuel burn rate when at the target speed, as opposed to accelerating towards it. Only shown
if the "Jetpack Fuel" parameter is not null.

Clamp Speed Boolean Should the speed of the character decelerate to top speed.

Damping Float The amount of damping to apply when changing direction.

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

AnimCurveDash MotionGraphState
Overview
The AnimCurveDash state is a simple movement state that layers a directional dash with speed based on an animation curve, on
top of a basic movement system. This gives a lot of control over the feel of the dash, and also allows the player to have some
control over the exit speed and dash distance.

Inspector

Properties
NAME T YPE D ES CR IPTION

Dash Speed FloatData The target speed for the dash to reach. This will be layered on top of the control speed.

m_MaxControlSpeed FloatData The maximum speed the character can reach under motor control (driven by input). The dash velocity
will be layered on top of this.

Strafe Multiplier Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value, or
by referencing a float data entry.

Reverse Multiplier Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set as
a value, or by referencing a float data entry.

Acceleration Float Data The input driven acceleration.

Dash Direction Dropdown The direction to base the dash off. This can be Yaw Relative or Move Relative.

Dash Angle Float The angle offset for the dash direction. For example, yaw relative and an angle of 90 will dash to the
right. -90 will dash to the left.

Dash In Time Float The amount of time it takes to reach the dash speed. At this point, the animation curve kicks in to
ease out of the dash. A Dash In Time of 0 is instant.

Dash Out Time Float The amount of time it takes for the animation curve kicks to ease out of the dash.

Dash Out Curve Animation
Curve

The ease out curve for the dash velocity. This should start at 1. Dipping below zero will mean the
dash is moving backwards.

Apply Gravity Boolean Should the character fall with gravity during the dash.

Control Damping Float The amount of damping to apply to the controlled velocity when changing direction.

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

https://docs.unity3d.com/Manual/EditingCurves.html

AnimCurveWallDash MotionGraphState
Overview
The AnimCurveWallDash state is a simple movement state that layers a directional dash with speed based on an animation curve,
on top of a basic movement system. This gives a lot of control over the feel of the dash, and also allows the player to have some
control over the exit speed and dash distance.

Inspector

Properties
NAME T YPE D ES CR IPTION

Dash
Speed FloatData The target speed for the dash to reach. This will be layered on top of the control speed.

Wall
Normal Vector Parameter The wall normal parameter, as used by the wall run states.

Dash In
Time Float The amount of time it takes to reach the dash speed. At this point, the animation curve kicks in to

ease out of the dash. A Dash In Time of 0 is instant.

Dash
Out
Time

Float The amount of time it takes for the animation curve kicks to ease out of the dash.

Dash
Out
Curve

[Animation Curve]
[unity-animationcurve]

The ease out curve for the dash velocity. This should start at 1. Dipping below zero will mean the
dash is moving backwards.

Yaw
With
Curve

Boolean Should the yaw direction of the character be turned if the character must change directions to curve
with the wall. It's easy to become disoriented with this disabled.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

BoostPad MotionGraphState
Overview
The BoostPad state is a simple one frame movement state which sets the character's velocity to the velocity vector scaled.

Inspector

Properties
NAME T YPE D ES CR IPTION

Boost
Vector VectorParameter The movement velocity to apply.

Boost
Mode Dropdown

How the boost vector is applied to the character. Options are: Absolute sets the character velocity,
Additive adds the boost to the character velocity, MaintainPerpendicular sets the velocity in the
direction of the boost, but keeps any velocity along the plane perpendicular to the boost.

Multiplier FloatData A multiplier for the movement velocity.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

[MotionControllerData ScriptableObject][6]

ConstantMove MotionGraphState
Overview
The ConstantMove state accelerates to a set velocity and then maintains it indefinitely.

Inspector

Properties
NAME T YPE D ES CR IPTION

Move Direction VectorParameter A vector parameter used to define the direction in world space.

Move Speed FloatData The target movement speed. This can also be negative to move back along the direction vector.

Acceleration FloatData The maximum acceleration.

Damping Float The amount of damping to apply when changing direction or speed.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

[MotionControllerData ScriptableObject][6]

ContactLadder MotionGraphState
Overview
The contact ladder state handles climbing up and down physics ladders. As soon as the character walks into one of these ladders,
the ladder TransformProperty will be set. You should set up an in-bound connection to this state with a TransformCondition that
checks if the property is not null, and an outbound connection with another that checks if the property is null.

The character can exit the ladder by jumping or moving past the ladder limits (horizontal and vertical). Doing either of these will
set the ladder TransformProperty to null and the state completed flag to true.

Inspector

Properties
NAME T YPE D ES CR IPTION

Transform
Parameter TransformParameter The transform parameter on the graph that is used to attach to ladder transforms in the scene.

Climb
Speed Float Data The maximum climb speed (based on input and aim). This can either be set as a value, or by

referencing a float data entry.

Ground
Speed Float Data The top movement speed with ground under foot (top and bottom of the ladder). This can either be

set as a value, or by referencing a float data entry.

Strafe
Multiplier Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value,

or by referencing a float data entry.

Reverse
Multiplier Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set

as a value, or by referencing a float data entry.

Acceleration Float Data The maximum acceleration. This can either be set as a value, or by referencing a float data entry.

Use Aimer
V Dropdown

Should the direction of the camera aim influence the vertical move direction?
IgnoreAimer = No
AimerAbsolute = Direction of aim changes direction of move
AimerSmooth = Direction of aim changes direction and speed of move
AimerHeading = Direction and speed based on yaw only (factors in both input axes)
AimerAllAxes = Direction and speed based on yaw and pitch (factors in both input axes)

Center
Zone Float For AimerAbsolute, the angle past the horizontal you need to aim to flip directions. For

AimerSmooth or AimerAllAxes, the angle past the horizontal that reaches full speed.

Use Aimer
H Dropdown

Should the camera aim influence the horizontal move direction?
IgnoreAimer = No
AimerAbsolute = Direction of aim changes direction of move
AimerSmooth = Direction of aim changes direction and speed of move
AimerHeading = Direction and speed based on yaw only (factors in both input axes)
AimerAllAxes = Direction and speed based on yaw and pitch (factors in both input axes)

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

ControlledJetpack MotionGraphState
Overview
The ControlledJetpack state adds an upward force to the character while allowing some control over direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Jetpack Power FloatParameter An optional parameter that acts as a multiplier for the jetpack force (0.5 is half power, etc)..

Jetpack Force FloatData An acceleration force (ignores mass) upwards for the jetpack

Horizontal
Acceleration Float Data The input driven acceleration while falling. This can either be set as a value, or by referencing a

float data entry.

Top Speed Float Data The top horizontal movement speed (for keyboard input or max analog input). This can either be set
as a value, or by referencing a float data entry.

Strafe
Multiplier Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value, or

by referencing a float data entry.

Reverse
Multiplier Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set as

a value, or by referencing a float data entry.

Clamp Speed Boolean Should the speed of the character decelerate to top speed.

Damping Float The amount of damping to apply when changing direction.

See Also

The Motion Graph

The Motion Graph Editor

Motion Graph States

Dash MotionGraphState
Overview
The Dash state is a simple movement state that surges in a specific direction. The direction can be based off the character's yaw
forward or the direction it is currently moving, along with an angle offset.

Once the dash has attempted to move a specific distance it will signal completion.

Inspector

Properties
NAME T YPE D ES CR IPTION

Dash Speed FloatData The target speed for the dash to reach.

Dash
Acceleration FloatData The acceleration to reach the target dash speed.

Dash Distance FloatData The distance to dash before the state completes.

Dash
Direction Dropdown The direction to base the dash off. This can be Yaw Relative or Move Relative.

Dash Angle Float The angle offset for the dash direction. For example, yaw relative and an angle of 90 will dash to the right. -
90 will dash to the left.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

Dodge MotionGraphState
Overview
The dodge state adds a simple directional impulse to the character for a single tick and then sets its completed flag. You should
add an out-bound connection from this state that uses the CompletedCondition, connecting to an airborne state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Vertical Speed Float Data The vertical dodge speed. This can either be set as a value, or by referencing a float data entry.

Horizontal
Speed Float Data The horizontal dodge speed. This can either be set as a value, or by referencing a float data entry.

Dodge Direction
Parameter IntParameter

The dodge direction is a simple compass heading relative to the character's forward direction. It is set
in one of the graph properties and conforms to the following:

1. North
2. North East
3. East
4. South East
5. South
6. South West
7. West
8. North West

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Falling MotionGraphState
Overview
The falling state behaves as the name suggests, but provides some level of control when in the air.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal
Acceleration

Float
Data

The input driven acceleration while falling. This can either be set as a value, or by referencing a
float data entry.

Top Speed Float
Data

The top horizontal movement speed (for keyboard input or max analog input). This can either be set as a
value, or by referencing a float data entry.

Strafe Multiplier Float
Data

The multiplier applied to the max movement speed when strafing. This can either be set as a value, or by
referencing a float data entry.

Reverse
Multiplier

Float
Data

The multiplier applied to the max movement speed when moving in reverse. This can either be set as a
value, or by referencing a float data entry.

Clamp Speed Boolean Should the speed of the character decelerate to top speed.

Damping Float The amount of damping to apply when changing direction.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Fly MotionGraphState
Overview
The Fly state is a simple noclip style flying style. The character moves based on their aim direction. Jump moves up, while crouch
moves down.

Inspector

Properties
NAME T YPE D ES CR IPTION

Jump Hold SwitchParameter The crouch hold parameter (used for flying up).

Crouch Hold SwitchParameter The crouch hold parameter (used for flying down).

Top Speed FloatData The top movement speed (for keyboard input or max analog input).

Strafe Multiplier FloatData The multiplier applied to the max movement speed when strafing.

Reverse Multiplier FloatData The multiplier applied to the max movement speed when moving backwards.

Up Down Multiplier FloatData The multiplier applied to the max movement speed when moving up/down.

Acceleration FloatData The maximum acceleration.

Pitch Mode Dropdown

How does the camera pitch affect the movement. The available options are:
Up Down Ignores means jump/crouch move straight up or down.
Affects All Axes means that up/down are along the camera up axis.
Ignore only takes yaw into account for all movement

Damping Float The amount of damping to apply when changing direction or speed.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

GrappleSwing MotionGraphState
Overview
The GrappleSwing state pulls the character towards a grapple point and swings as though tethered to it with a springy rope. One
option for setting the grapple point is by using the GrappleToolModule with the wieldable tools system

Inspector

Properties
NAME T YPE D ES CR IPTION

Grapple Point VectorParameter The point in space that the grapple is tethered to.

Target Distance
Multiplier Float When entering the state, a target distance will be calculated based on multiplying the current

distance to the grapple point by this multiplier.

Min Distance Float Below this distance from the grapple point, the character will actually be pushed away.

Acceleration Per
Meter Float The acceleration towards the grapple point per meter distance above the target distance.

Max Accel Float The maximum acceleration towards the grapple point.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

GrappleToolModule

Impulse MotionGraphState
Overview
The Impulse state is a one frame state that adds or sets the character velocity. An example use is at the start of a crouch-slide to
add an instantaneous speed boost.

Inspector

Properties
NAME T YPE D ES CR IPTION

Impulse VectorParameter The velocity impulse to apply.

Frame Of
Reference Dropdown The coordinate space to apply the impulse in. Options are Self and World.

Impulse
Mode Dropdown How should the impulse be applied. Additive will add the impulse velocity to the original velocity.

Replace Velocity will ignore the original velocity and use the impulse alone.

Ground
Constrained Boolean If true, the impulse vector will be aligned onto the ground surface normal plane.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

InteractiveLadder MotionGraphState
Overview
The InteractiveLadder state handles climbing up and down interactive ladders. These are ladders are simple obstacles until
interacted with, at which point the ladder TransformProperty will be set. You should set up an in-bound connection to this state
with a TransformCondition that checks if the property is not null, and an outbound connection with another that checks if the
property is null.

The character can exit the ladder by interacting with it again, jumping, or moving past the ladder limits. Doing any of these will set
the ladder TransformProperty to null and the state completed flag to true.

The state has various properties for how the character climbs the ladder, along with camera constraints.

Inspector

Properties
NAME T YPE D ES CR IPTION

Transform
Parameter TransformParameter The transform parameter on the graph that is used to attach to ladder transforms in the scene.

Climb
Speed Float Data The maximum climb speed (based on input and aim). This can either be set as a value, or by

referencing a float data entry.

Acceleration Float Data The acceleration when on the ladder or attching / dismounting. This can either be set as a value, or
by referencing a float data entry.

Use Aimer
V Dropdown

Should the direction of the camera aim influence the vertical move direction?
IgnoreAimer = No
AimerUpDown = Only direction
AimerSmooth = Direction and speed

Center
Zone Float For AimerUpDown, the angle past the horizontal you need to aim to flip directions. For

AimerSmooth, the angle past the horizontal that reaches full speed.

Dismount
Delay Float

How long is the character blocked from stepping straight off the ladder using up/down? For
example, if they attach to the top of the ladder then they should not immediately step off by
pressing up.

Constrain
Camera Boolean If true, constrain the camera's horizontal rotation to a maximum range from looking directly at the

ladder.

Look Range Float The angle range (degrees) that the camera can turn from looking straight at the ladder (180 = 90
degrees to either side).

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Jetpack MotionGraphState
Overview
The Jetpack state maintains horizontal velocity and adds an upward force.

Inspector

Properties
NAME T YPE D ES CR IPTION

Power FloatParameter An optional parameter that acts as a multiplier for the jetpack force (0.5 is half power, etc).

Force FloatData An acceleration force (ignores mass) upwards for the jetpack

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

Jump MotionGraphState
Overview
The jump state adds a simple upward impulse to the character for a single tick and then sets its completed flag. You should add
an out-bound connection from this state that uses the CompletedCondition, connecting to an airborne state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Charge
Parameter FloatParameter The charge property is a float with value 0 to 1 that defines how high to jump. If no graph property is

selected, the jump will always be performed with full strength.

Maximum
Height Float Data

The height the player will jump when fully charged. Note: Changes to gravity or physics multiplier after
start will affect this. Also does not take step height into account. This can either be set as a value, or by
referencing a float data entry.

Minimum
Height Float Data The smallest height the player will jump (at the equivalent of a zero tap - actually unattainable). This can

either be set as a value, or by referencing a float data entry.

Ground
Influence Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal. This

can either be set as a value, or by referencing a float data entry.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

JumpDirection MotionGraphState
Overview
The jump direction state adds a jump direction to the Jump state. You should add an out-bound connection from this state that
uses the CompletedCondition, connecting to an airborne state. This state should be replaced with the JumpDirectionV2 motion
graph state instead, as it gives more predictable results with analogue controllers.

Inspector

Properties
NAME T YPE D ES CR IPTION

Jump Speed Float Data The instant speed of the jump.

Maximum Height Float Data The angle the jump direction will be tilted in the character input direction when input scale is 1.

Ground Influence Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal.

Velocity Mode Dropdown

How should the velocity be applied. Available options are:
Additive will add the jump velocity to the original velocity.
Absolute will ignore the original velocity.
Minimum will boost the character velocity if it is less than the jump speed in the jump direction.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

JumpDirectionV2 MotionGraphState
Overview
The JumpDirectionV2 state adds a jump direction to the Jump state. This version gives a more consistent result with analogue
controllers than the original JumpDirection motion graph state and should be used in its place.

Inspector

Properties
NAME T YPE D ES CR IPTION

Horizontal Speed Float Data The horizontal speed of the jump.

Vertical Speed Float Data The upward speed of the jump.

Ground Influence Float Data The amount of influence the ground has over the direction of the jump. 0 = up, 1 = ground normal.

Velocity Mode Dropdown

How should the velocity be applied. Available options are:
Additive will add the jump velocity to the original velocity.
Absolute will ignore the original velocity.
Minimum will boost the character velocity if it is less than the jump speed in the jump direction.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

MaintainVelocity MotionGraphState
Overview
The MaintainVelocity state is a utility state that simply moves the character at the same velocity as last frame. This will be affected
by collisions.

Inspector

Properties
NAME T YPE D ES CR IPTION

Ground Snapping Boolean Should ground snapping be applied.

Apply Gravity Boolean Should gravity force be applied.

Ignore Platforms Boolean Should the character inherit movement from platforms it's touching.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

Mantle MotionGraphState
Overview
The Mantle state is used to climb a wall ledge onto its top surface. It is paired with the Climbable condition to test if a wall impact
is climbable.

Inspector

Properties
NAME T YPE D ES CR IPTION

Wall Normal VectorParameter The normal of the wall to climb. This value will be read from and written to each frame.

Wall Check
Distance FloatData The cast distance for the initial wall check. Using a motion data entry allows the value to be

shared with the Climbable condition.

Climb Speed FloatData The movement speed while climbing the surface.

Wall Collision
Mask LayerMask The collision mask to use when checking the wall normal.

Starting Speed
Multiplier Float The climb speed multiplier (for the data value above) on entering the state.

Ending Speed
Multiplier Float The climb speed multiplier (for the data value above) on completing the ledge mantle.

Overshoot
Distance Float The distance to move past the edge onto flat ground before completing.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

MatchTransform MotionGraphState
Overview
The MatchTransform state makes the character move as though it is attached to a transform in the scene. This allows you to sync
the character to animated cut-scenes or create complex on-rails movement systems for certain situations.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target
Transform

Transform
Parameter The transform to match to.

Matching
Mode Dropdown

What transform components to match. Options are: Position (match the position but ignore rotation),
PositionAndUp (match the position and keep the character up-vector aligned but ignore yaw),
PositionAndDirection (match position and yaw direction or heading, but maintain the character's up vector),
and All (match position, up vector and heading).

Blend In
Time Float The time taken to blend from current position and velocity to match the transform.

Disable
Collisions Boolean Should collisions be disabled for the duration of the movement.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Movement MotionGraphState
Overview
The movement state handles basic ground based movement such as walking, sprinting and sneaking.

Inspector

Properties
NAME T YPE D ES CR IPTION

Top Speed Float Data The top movement speed (for keyboard input or max analog input). This can either be set as a value,
or by referencing a float data entry.

Strafe
Multiplier Float Data The multiplier applied to the max movement speed when strafing. This can either be set as a value, or

by referencing a float data entry.

Reverse
Multiplier Float Data The multiplier applied to the max movement speed when moving in reverse. This can either be set as a

value, or by referencing a float data entry.

Acceleration Float Data The maximum acceleration. This can either be set as a value, or by referencing a float data entry.

Deceleration Float Data The maximum deceleration (when no input is applied). This can either be set as a value, or by
referencing a float data entry.

Slope Speed
Curve SlopeSpeedCurve an optional slope speed curve which controls the movement speed on sloping surfaces. Without this,

the character controller will handle the speed change automatically.

Gravity
Mode Dropdown When to apply gravity to the resulting move vector. Options are: Always Apply, When Not

Grounded and Never Apply.

Damping Float The amount of damping to apply when changing direction.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

SlopeSpeedCurve ScriptableObject

MoveToPoint MotionGraphState
Overview
The MoveToPoint state is used to move directly from the starting point to a target point with various interpolation options.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target
Position

Vector
Parameter The position to move to.

Duration Float The time required to reach the target.

Interpolation Dropdown The interpolation method from start to end. Options are: Linear, EaseOutQuadratic, EaseOutCubic,
Spring and Bounce.

Disable
Collisions Boolean Should collisions be disabled for the duration of the movement.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Null MotionGraphState
Overview
The null state is only used to branch to other states in the graph. The state always has the completed flag set, so it is best practice
to set the last outbound connection from this state to one that uses the CompletedCondition. This would act as a default
connection if none of the others are valid.

Inspector

Properties
NAME T YPE D ES CR IPTION

Name String The name of the state as visible in the graph viewport.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

PushOff MotionGraphState
Overview
The PushOff state is a one frame state which adds velocity based on a direction vector and can add an optional extra vertical
boost.

Inspector

Properties
NAME T YPE D ES CR IPTION

Push
Direction VectorParameter The world direction to push in (you can fill this parameter using enhanced cast conditions).

Push Up
Angle FloatData An additional upward rotation applied to the push direction. Resulting direction won't rotate past

up/down.

Push Speed FloatData The speed to along the rotated push direction.

Additive Boolean Should the resulting velocity be added to the original character velocity or replace it.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

Repulse MotionGraphState
Overview
The repulse state adds a simple directional impulse away from the repulsor transform to the character for a single tick and then
sets its completed flag. You should add an out-bound connection from this state that uses the CompletedCondition, connecting to
an airborne state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Repulsor
Transform TransformParameter The transform parameter on the graph that is used to specify which transform to repulse from.

Nullify Transform Boolean Should the transform be nullified after use?

Repulsion Vector Vector3 The velocity vector to apply to the character relative to the repulsor transform.

Repulse
Multiplier Float Data A multiplier for the repulsion vector. This can either be set as a value, or by referencing a

float data entry.

See Also
The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

Ski MotionGraphState
Overview
The Ski state maintains forward velocity and allows the player to steer left and right. Steering turn rate is based on movement
speed, with slower movement speed allowing turning in tighter circles.

Inspector

Properties
NAME T YPE D ES CR IPTION

Max Turn
Rate FloatData The maximum turn rate in degrees per second.

Deceleration FloatData A constant deceleration (meters per second squared) while skiing. Once the character speed reaches zero, the
state completes.

Gravity
Effect FloatData A multiplier for gravity which affects speed on slopes.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

SteepSlide MotionGraphState
Overview
The steep slide state handles sliding down slopes that are too steep to walk on. The character has some degree of control while
sliding, but only in the horizontal direction. They can't affect the speed of the slide down the slope.

Inspector

Properties
NAME T YPE D ES CR IPTION

Slide Angle Float
Data

The angle above which a character loses motor control and is in pure slide mode. This can either be set as a value,
or by referencing a float data entry.

Speed
Minimum

Float
Data

The sliding speed the character will reach (downwards only) at the lowest slope angle for a full slide. This can
either be set as a value, or by referencing a float data entry.

Speed
Maximum

Float
Data

The fastest possible sliding speed the character can reach (downwards only) during a near vertical slide. This can
either be set as a value, or by referencing a float data entry.

Acceleration
Minimum

Float
Data

The down-slope acceleration multiplier applied to a character during a shallow slide. This can either be set as a
value, or by referencing a float data entry.

Acceleration
Maximum

Float
Data

The down-slope acceleration multiplier applied to a character during a near vertical slide. This can either be set as
a value, or by referencing a float data entry.

Horizontal
Speed Limit

Float
Data

The top speed the character can reach against the slide (side to side).This can either be set as a value, or by
referencing a float data entry.

Horizontal
Acceleration

Float
Data

The across slope accleration when trying to redirect slide sideways (0 is instant).This can either be set as a value,
or by referencing a float data entry.

See Also

The Motion Graph

Motion Graph States

Motion Graph Parameters And Data

SwimSmoothSurfaceState MotionGraphState
Overview
The SwimSmoothSurfaceState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the
recovering.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.

Swim Speed FloatData The top movement speed (for keyboard input or max analog input).

Acceleration FloatData The maximum acceleration.

Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.

Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving
backwards.

Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.

Target Head
Height Float A target for the distance the character capsule should be above the surface.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

SwimSmoothUnderwaterState MotionGraphState
Overview
The SwimSmoothUnderwaterState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the
recovering.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.

Jump Hold SwitchParameter A switch parameter which tracks if the jump button is held (swim up).

Crouch Hold SwitchParameter A switch parameter which tracks if the crouch button is held (swim down).

Swim Speed FloatData The top movement speed (for keyboard input or max analog input).

Acceleration FloatData The maximum acceleration.

Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.

Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving backwards.

Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.

Up Down Speed FloatData The maximum movement speed and acceleration due to up or down input.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

SwimStrokeSurfaceState MotionGraphState
Overview
The SwimStrokeSurfaceState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the
recovering.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.

Stroke Speed FloatData The top movement speed (for keyboard input or max analog input).

Acceleration FloatData The maximum acceleration.

Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.

Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving
backwards.

Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.

Target Head Height Float A target for the distance the character capsule should be above the surface.

Stroke Duration Float The length of time a swimming stroke lasts (will be scaled by strafe / reverse
multipliers).

Recovery Duration Float The length of time in between swimming strkes (will be scaled by strafe / reverse
multipliers).

Recovery Speed Multiplier Float A multiplier applied to the speed in between strokes.

Recovery Acceleration
Multiplier Float A multiplier applied to the acceleration (and deceleration) in between strokes.

Slow Input Time Scale Float At the minimum input amount, how much slower are strokes and recovery.

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

SwimStrokeUnderwaterState MotionGraphState
Overview
The SwimStrokeUnderwaterState state is used to move in all axes when underwater. It moves in strokes, pulling forward and the
recovering.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.

Jump Hold SwitchParameter A switch parameter which tracks if the jump button is held (swim up).

Crouch Hold SwitchParameter A switch parameter which tracks if the crouch button is held (swim down).

Stroke Speed FloatData The top movement speed (for keyboard input or max analog input).

Acceleration FloatData The maximum acceleration.

Strafe Multiplier FloatData The multiplier applied to the max movement speed and acceleration when strafing.

Reverse Multiplier FloatData The multiplier applied to the max movement speed and acceleration when moving
backwards.

Idle Multiplier FloatData The multiplier applied to the acceleration when no input is detected.

Up Down Speed FloatData The maximum movement speed and acceleration due to up or down input.

Stroke Duration Float The length of time a swimming stroke lasts (will be scaled by strafe / reverse
multipliers).

Recovery Duration Float The length of time in between swimming strkes (will be scaled by strafe / reverse
multipliers).

Recovery Speed Multiplier Float A multiplier applied to the speed in between strokes.

Recovery Acceleration
Multiplier Float A multiplier applied to the acceleration (and deceleration) in between strokes.

Slow Input Time Scale Float At the minimum input amount, how much slower are strokes and recovery.

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

SwimSubmergeState MotionGraphState
Overview
The SwimSubmergeState state is used to transition from surface to underwater swimming while adapting to a moving water
surface (eg waves).

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone Parameter TransformParameter The transform parameter which contains the transform of the water zone object.

Submerge Distance Float The distance below the surface of the water to submerge.

Duration Float The time to take while submerging (will be instant if already below submerge distance).

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

VerticalWallRun MotionGraphState
Overview
The VerticalWallRun state is used to make a character run up a wall when they run and jump into it. The state completes once the
upward speed reaches zero.

The VerticalWallRun state is often paired with the PushOff state, using the wall normal to jump away from the wall.

Inspector

Properties
NAME T YPE D ES CR IPTION

Up Boost FloatData An upward speed boost applied when entering the state.

Max Boost Speed FloatData The upward speed can not be boosted above this value (though it can start higher than this).

Gravity Multiplier FloatData A multiplier that is used to reduce the effects of gravity when running up the wall.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

Wading MotionGraphState
Overview
The Wading state is a variation of the Movement state which slows the character down based on how much of their capsule is
below the water line.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water Zone TransformParameter The transform parameter which contains the transform of the water zone object.

Name FloatData The multiplier for the standard movement speed when submerged to min speed depth.

Name Float The depth the character must be submerged to move at minimum speed.

Name Float The submersion depth of the character where their speed is not affected.

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

WallRun MotionGraphState
Overview
The WallRun state sticks the character to a wall and runs along it. It maintains the horizontal velocity and reduces gravity so that
the character slowly moves down the wall. The state completes when the wall angles away from its initial plane, but you can also
use conditions to transition out for things like downwards velocity over a certain threshold or input away from the wall.

The WallRun state is often paired with the PushOff state, using the wall normal to jump away from the wall.

Inspector

Properties
NAME T YPE D ES CR IPTION

Wall Normal VectorParameter The vector parameter containing the wall normal. This will be read and written to each frame.

Climb
Gravity
Multiplier

FloatData A multiplier applied to gravity acceleration when moving up the wall.

Fall Gravity
Multiplier FloatData A multiplier applied to gravity acceleration when moving down the wall.

Vertical
Target FloatData The target vertical speed. Visible if Horizontal Mode is set to CappedBoost, Minimum or

FixedSpeed.

Vertical
Boost FloatData An upward speed boost when first entering the state. Visible if Horizontal Mode is set to Vertical

Boost or CappedBoost.

Max Fall
Speed FloatData The maximum downward speed the character can reach while wall running. This property is only visible

if Cap Fall Speed is set to true.

Horizontal
Speed FloatData The target horizontal speed. Only visible if Horizontal Mode is set to TargetSpeed or

MinimumSpeed.

Acceleration FloatData The acceleration up to the target speed. Only visible if Horizontal Mode is set to TargetSpeed or
MinimumSpeed.

Deceleration FloatData The deceleration down to the target speed. Only visible if Horizontal Mode is set to TargetSpeed.

Horizontal
Mode Dropdown

How the horizontal wall run speed is calculated. MaintainExisting keeps the horizontal speed from the
previous frame, TargetSpeed accelerates / decelerates to a set horizontal speed, MinimumSpeed
accelerates up to the minimum speed if falling below it, but does not decelerate if faster.

Horizontal
Damping Float The amount of damping to apply when changing direction or speed. Only visible if Horizontal Mode

is set to TargetSpeed or MinimumSpeed.

Vertical
Mode Dropdown

How the vertical speed is calculated when entering the wall run. VerticalBoost adds an upward speed
boost, CappedBoost adds an upward boost up to a maximum vertical speed, Minimum raises the
vertical speed up to the minimum, MaintainExisting uses the vertical entry speed with no changes,
FixedSpeed sets the vertical speed to a specific value

Cap Fall
Speed Boolean Should the downwards fall speed be limited .

NAME T YPE D ES CR IPTION

See Also
The Motion Graph

The Motion Graph Editor

Motion Graph States

AddForce MotionGraphBehaviour
Overview
The AddForce behaviour adds a force to the character at specific points. This can have a variety of uses, but one key one is as an
alternative way to handle jumping that doesn't require interrupting other states like the jump motion state does.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the force be added to the character. Options are OnEnter, OnExit and WhenTriggered.

Trigger
Parameter

Trigger
Parameter

A trigger that will be checked each frame, and the force applied if the trigger is set. This property is only visible
if "When" is set to WhenTriggered.

Force
Parameter

Vector
Parameter The force to apply to the character.

Force Vector The force to apply to the character. This property is shown if a "Force Parameter" has not been chosen.

Force
Mode ForceMode How should the force be applied. Options are Force (takes mass and time into account), Impulse (takes mass

into account), VelocityChange (mass and time are irrelevant), Acceleration (takes time into account).

See Also
NeoCharacterController

Motion Graph Parameters And Data

AnimatorInputVector MotionGraphBehaviour
Overview
The AnimatorInputVector behaviour outputs the current move input of the character to animator controller parameters for use in
blend trees.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform
Parameter A parameter that points to the transform of the character's animator component.

Forward Param
Name String The animator parameter name the forward input value should be written to.

Strafe Param Name String The animator parameter name the strafe input value should be written to. (positive =
right).

See Also
NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

AnimatorSpeed MotionGraphBehaviour
Overview
The AnimatorSpeed behaviour outputs the current move speed of the character to an animator controller parameter for use in
blend trees or clip speeds.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.

Speed Param Name String The animator parameter name the speed value should be written to.

See Also
NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

AnimatorVelocity MotionGraphBehaviour
Overview
The AnimatorVelocity behaviour outputs the current velocity of the character (in local space) to animator controller parameters
for use in blend trees.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform
Parameter A parameter that points to the transform of the character's animator component.

Forward Param
Name String The animator parameter name the forward input value should be written to.

Strafe Param Name String The animator parameter name the strafe input value should be written to. (positive =
right).

See Also
NeoCharacterController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

BlockSwitchParameter MotionGraphBehaviour
Overview
The BlockSwitchParameter behaviour will block the specified switch parameter, meaning that it can only return false for the
duration of the block.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter SwitchParameter The parameter to modify.

OnEnter Dropdown Whether to block or unblock the parameter on entering the state. Options are Block, Unblock, Nothing.

OnEnter Dropdown Whether to block or unblock the parameter on exiting the state. Options are Block, Unblock, Nothing.

See Also
Motion Graph Parameters And Data

BlockTriggerParameter MotionGraphBehaviour
Overview
The BlockTriggerParameter behaviour will block the specified trigger parameter, meaning that it cannot fire. This is useful for
situations like preventing jump triggers while crouched.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter TriggerParameter The propery to modify.

OnEnter Dropdown Whether to block or unblock the parameter on entering the state. Options are Block, Unblock,
Nothing.

OnEnter Dropdown Whether to block or unblock the parameter on exiting the state. Options are Block, Unblock, Nothing.

See Also
Motion Graph Parameters And Data

BodyTilt MotionGraphBehaviour
Overview
The BodyTilt behaviour tilts the character based on the specified tilt mode. Some example uses are:

It is used in the parkour demo to tilt away from the wall by using the wall normal
It is also used in the parkour demo to tilt back when crouch sliding by setting the mode to velocity, and the tilt angle to
negative
It is used to add a bob to the swimming in the swimming demo by setting the mode to velocity

Inspector

Properties
NAME T YPE D ES CR IPTION

Tilt Angle Float The angle to tilt.

Normalised Tilt
Point Float The point on the character to tilt from. 0 is the bottom, 1 is the top.

Tilt Mode Dropdown

How the tilt direction is calculated:
Character Relative uses a vector parameter to specify a tilt vector relative to the character.
World Space does the same but in world space.
Velocity tilts in the direction of movement of the character.
Velocity Lateral tilts left or right based on the speed of the character in those directions.
Input tilts based on the player input and the direction the character is facing.
Input Lateral tilts left or right based on the player input.

Direction Vector Vector
Parameter

The direction to tilt in. This property is only shown if the tilt mode is set to Character Relative or
World Space.

Velocity Based Boolean If set then the tilt angle will be based on the speed of the character.

Min Speed Float The speed below which the tilt angle will be 0.

Max Speed Float The speed above which the tilt will reach the full tilt angle specified above.

See Also
NeoCharacterController

Motion Graph Parameters And Data

CameraJiggleSpring MotionGraphBehaviour
Overview
The CameraJiggleSpring behaviour triggers the player character's camera jiggle spring additive effect with the supplied strength.

Inspector

Properties
NAME T YPE D ES CR IPTION

Switch
Condition SwitchParameter An optional switch condition that defines if the jiggle should be triggered.

Trigger
Condition TriggerParameter An optional trigger condition that defines if the jiggle should be triggered.

When Dropdown When should the camera jiggle spring be triggered.

Angle Float The strength of the jiggle effect (max angle is set in the Additive Jiggle component on the camera
spring transform).

Angle Float Should the CW/CCW direction of the jiggle be chosen at random each time.

See Also
MotionController

Motion Graph Parameters And Data

Additive Transforms and Effects

CameraKickSpring MotionGraphBehaviour
Overview
The CameraKickSpring behaviour triggers the player character's camera kick spring additive effect with the supplied offset and
rotation.

Inspector

Properties
NAME T YPE D ES CR IPTION

Switch
Condition SwitchParameter An optional switch condition that defines if the kick should be triggered.

Trigger
Condition TriggerParameter An optional trigger condition that defines if the kick should be triggered.

When Dropdown When should the camera kick spring be triggered.

Position
Kick Vector3 The position offset for the camera at the strongest point of the kick. Keep these values small (cm, not

meters) or you risk clipping scenery or weapon geometry.

Rotation
Kick Vector3 The rotation offset for the camera at the strongest point of the kick. Positive X nods forwards. Positive Y

turns right. Positive Z tilts counter-clockwise.

Kick
Duration Float The amount of time the kick effect should last.

See Also
MotionController

Motion Graph Parameters And Data

Additive Transforms and Effects

CameraPulseFoV MotionGraphBehaviour
Overview
The CameraPulseFoV behaviour can apply a brief pulsed multiplier to the player camera's field of view. This is great for quick
acceleration and impact effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the camera FoV pulse be triggered.

FovMultiplier Float The FoV multiplier to apply to the camera when the animation curve Y-axis is at 1.

PulseDuration Float The duration in seconds for the pulse to last.

PulseCurve Animation
Curve

A curve for the strength of the pulse. X is normalised time. Y = 0 means the FoV is 1x (no effect), Y = 1
means the FoV is the target FoV multiplier.

See Also
MotionController

Additive Transforms and Effects

https://docs.unity3d.com/Manual/EditingCurves.html

CameraShake MotionGraphBehaviour
Overview
The CameraShake behaviour adds a constant shake to the camera whilst in the current state or sub-graph. You can also use the
shake multiplier to fade in or out the effect over time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Shake
Multiplier FloatParameter An optional float parameter to multiply the shake value by. This allows for increasing shake while

falling, etc.

Shake
Strength Float The strength of the jiggle effect (max angle is set in the Additive Jiggle component on the camera

spring transform).

See Also
MotionController

Motion Graph Parameters And Data

Additive Transforms and Effects

ClampFloat MotionGraphBehaviour
Overview
The ClampFloat behaviour can be used to clamp a float parameter within a specific range. The clamp is applied every tick.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter FloatParameter The parameter to modify.

From Float The minimum parameter value.

To Float The maximum parameter value.

See Also
Motion Graph Parameters And Data

ClampInt MotionGraphBehaviour
Overview
The ClampInt behaviour can be used to clamp a int parameter within a specific range. The clamp is applied every tick.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter IntParameter The parameter to modify.

From Float The minimum parameter value.

To Float The maximum parameter value.

See Also
Motion Graph Parameters And Data

ConstrainCameraPitch MotionGraphBehaviour
Overview
The ConstrainCameraPitch behaviour is used to constrain the player character's camera to a specific pitch range direction while
inside a motion state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Minimum Pitch Float The minimum angle the camera can look down.

Maximum Pitch Float The maximum angle the camera can look up.

See Also
MotionController

ConstrainCameraYaw MotionGraphBehaviour
Overview
The ConstrainCameraYaw behaviour is used to constrain the player character's camera to a specific yaw direction while inside a
motion state. An example is using the wall normal vector during a wall run to prevent the character turning into the wall (and to
turn when running along curving walls).

Inspector

Properties
NAME T YPE D ES CR IPTION

Direction VectorParameter The vector parameter to use as the constraint direction.

Angle Range Float The angle range to constrain to.

Flipped Boolean Flip the direction vector.

Continuous Boolean Should the constraints be updated each frame (if the vector parameter changes).

See Also
MotionController

Debug MotionGraphBehaviour
Overview
The Debug behaviour can be used to help understand when the motion graph enters or exits a specific state or sub-graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Enter Message String A message to print to the console on entering the state or sub-graph.

On Exit Message String A message to print to the console on exiting the state or sub-graph.

Log Elapsed Time Boolean If set, prints the time spent in the state or sub-graph to the console on exiting it.

DisableCollider MotionGraphBehaviour
Overview
The DisableCollider behaviour will completely disable the character's CharacterController. This is useful in situations such as
scripted or animated movements where environment collisions could interfere.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Enter Dropdown What to do to the character collider on entering the state. Options are: Enable, Disable, Nothing.

On Exit Dropdown What to do to the character collider on exiting the state. Options are: Enable, Disable, Nothing.

See Also
Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html
https://docs.unity3d.com/Manual/class-CharacterController.html

DrainStamina MotionGraphBehaviour
Overview
The DrainStamina behaviour applies a constant stamina drain to a StaminaSystem attached to the character.

Inspector

Properties
NAME T YPE D ES CR IPTION

Drain Rate Float The rate to drain the stamina at (bear in mind the stamina system also refreshes at a certain rate too, so these can
cancel out).

Scale By
Input Boolean Should the controller's move input scale also scale the stamina drain.

Limit
Drain Boolean Is there a lower limit that the behaviour will drain stamina to before the drain rate falls off. The following

properties will be exposed if this is true.

Drain
Target Float The minimum level that the behaviour can drain stamina to.

Drain
Falloff Float The stamina drain falls away to 0 as it approaches the target level, starting at this falloff value above it.

See Also
StaminaSystem

FootstepAudio MotionGraphBehaviour
Overview
The FootstepAudio behaviour plays footsteps based on the character speed and the ground surface below them.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data SurfaceAudioData The surface audio library for the slide audio clips.

Cast Direction Dropdown

The direction to perform the footstep surface check. Available options are:
Down casts downwards (based on the character up vector).
LocalVector casts based on the Cast Vector property in local space.
WorldVector casts based on the Cast Vector property in world space.
WorldParameter casts based on the vector value of the Vector Parameter property in world
space.
WorldParameterInverse casts based on the flipped vector value of the Vector Parameter
property in world space.
LocalParameter casts based on the vector value of the Vector Parameter property in local
space.
LocalParameterInverse casts based on the flipped vector value of the Vector Parameter
property in local space.

Cast Vector Vector3 The direction to cast in for footstep surface checks.

Vector
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.

Step Interval Float The interval between steps. Higher numbers mean the steps are further apart.

Minimum
Speed Float The speed below which no footstep audio will be played.

Maximum
Speed Float The maximum speed that the actual speed will be clamped to. Prevents rapid fire footsteps.

Max Ray
Distance Float The downward raycast length for the ground surface test.

Ray Offset Float The vertical offset above the absolute bottom of the character collider to start the downward surface
test.

See Also
SurfaceAudioData

Motion Graph Parameters And Data

ImpactDamage MotionGraphBehaviour
Overview
The ImpactDamage behaviour enables or disables character damage on impact when entering or exiting a state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Fall Damage On Enter Dropdown Should fall damage be enabled, disabled or unchanged on entering the state.

Fall Damage On Exit Dropdown Should fall damage be enabled, disabled or unchanged on exiting the state.

Body Impact Damage On Enter Dropdown Should body impact damage be enabled, disabled or unchanged on entering the state.

Body Impact Damage On Exit Dropdown Should body impact damage be enabled, disabled or unchanged on exiting the state.

Head Impact Damage On Enter Dropdown Should head impact damage be enabled, disabled or unchanged on entering the state.

Head Impact Damage On Exit Dropdown Should head impact damage be enabled, disabled or unchanged on exiting the state.

See Also
Motion Graph Parameters And Data

Health and Damage

InvokeEvent MotionGraphBehaviour
Overview
The InvokeEvent behaviour will invoke the specified event on entering the state, on exiting or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter EventParameter The event parameter to invoke.

When Dropdown When should event be invoked. Options are EnterAndExit, EnterOnly, ExitOnly.

See Also
Motion Graph Parameters And Data

LadderAudio MotionGraphBehaviour
Overview
The LadderAudio behaviour is used to trigger audio cues when climbing a ladder. This works in a similar way to the footsteps
system, but based on movement along the ladder's up axis.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data SurfaceAudioData The surface audio library for the slide audio clips.

Ladder Transform TransformProperty The transform property holding the ladder transform.

Spacing Multiplier Float How many rungs apart to play a sound. This is based on the ladder spacing property.

Minimum Speed Float The speed below which no audio will be played.

See Also
Ladders

SurfaceAudioData

LockInventorySelection MotionGraphBehaviour
Overview
The LockInventorySelection behaviour will lock the character's inventory selection to the specified item until unlocked by an
UnlockInventorySelection behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the inventory selection be set. Options are: OnEnter and OnExit.

What Dropdown What to lock the inventory selection to. Options are: Nothing, BackupItem and SlotIndex

Slot Index Float The quick slot to lock the selection to.

See Also
Inventory

UnlockInventorySelection

LoopingAudio MotionGraphBehaviour
Overview
The LoopingAudio behaviour plays a looping audio clip from the specified source.

Inspector

Properties
NAME T YPE D ES CR IPTION

Clip [AudioClip][unity-audioclip] The looping audio clip to play.

Source FpsCharacterAudioSource The source ID to play from (generated constant).

Pitch Float The pitch of the loop.

See Also
Generated Constants

ModifyCharacterVelocity MotionGraphBehaviour
Overview
The ModifyCharacterVelocity behaviour can change the character controller's velocity in various ways on entering or exiting the
state.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the velocity be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown
How should the velocity be modified. SetLocal sets the velocity relative to the character's current heading,
SetWorld applies the new velocity in world space, ClampSpeed reduces the speed to the limit value if it is
above it, and Multiply multiplies the current velocity by a value.

Local
Velocity Vector3 The target velocity of the character controller relative to its direction. Only visible if "What" is set to SetLocal.

World
Velocity Vector3 The target velocity of the character controller in world space. Only visible if "What" is set to SetWorld.

Max
Speed Float The maximum speed the character can travel at. Only visible if "What" is set to ClampSpeed.

Multiplier Float A multiplier to apply to the character's velocity. Only visible if "What" is set to Multiply.

See Also
NeoCharacterController

Motion Graph Parameters And Data

ModifyFloatParameter MotionGraphBehaviour
Overview
The ModifyFloatParameter behaviour either sets or modifies the specified float parameter on entering the state, on exit or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter FloatParameter The parameter to modify.

When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown How should the parameter be modified. Options are Set, Reset, Add, Subtract, Floor (round down to the
nearest whole number) and Ceiling (round up to the nearest whole number) .

Value Float The value to set to, add or subtract based on the What parameter.

See Also
Motion Graph Parameters And Data

ModifyIntParameter MotionGraphBehaviour
Overview
The ModifyIntParameter behaviour either sets or modifies the specified int parameter on entering the state, on exit or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter IntParameter The parameter to modify.

When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown How should the parameter be modified. Options are Set, Reset, Add, Subtract.

Value Int The value to set to, add or subtract based on the What parameter.

See Also
Motion Graph Parameters And Data

ModifyStamina MotionGraphBehaviour
Overview
The ModifyStamina behaviour performs an operation on the StaminaSystem attached to the character.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should stamina be modified. Options are: OnEnter, OnExit and Both.

What Dropdown
What should the modification be. Options are: Increment, Decrement, IncrementNormalised,
DecrementNormalised, SetToValue, SetToValueNormalised, SetToMax, SetToZero. The normalised options
act on the stamina as a factor of max stamina.

Amount Float Value to use for modifying the stamina.

See Also
StaminaSystem

ModifySwitchParameter MotionGraphBehaviour
Overview
The ModifySwitchParameter behaviour sets the specified switch on entering the state, on exit or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter SwitchParameter The parameter to set.

On Enter Dropdown How should the parameter be modified on entering the state. Options are Unchanged, True, False,
Toggle, Reset, Previous.*

On Exit Dropdown How should the parameter be modified on exiting the state. Options are Unchanged, True, False,
Toggle, Reset, Previous.*

* Previous is only valid on exit, and will set the switch to its state before entering.

See Also
Motion Graph Parameters And Data

ModifyTransformParameter MotionGraphBehaviour
Overview
The ModifyTransformParameter behaviour either sets or resets the specified transform parameter on entering the state, on exit or
both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter TransformParameter The parameter to modify.

When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown What is the action to do. Nullify clears the value and Find will set the value using GameObject.Find.

See Also
Motion Graph Parameters And Data

GameObject.Find

https://docs.unity3d.com/ScriptReference/GameObject.Find.html
https://docs.unity3d.com/ScriptReference/GameObject.Find.html

ModifyTriggerParameter MotionGraphBehaviour
Overview
The ModifyTriggerParameter behaviour either sets or resets the specified trigger on entering the state, on exit or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter TriggerParameter The parameter to modify.

When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown What is the action to do. Options are Set and Reset.

See Also
Motion Graph Parameters And Data

ModifyVectorParameter MotionGraphBehaviour
Overview
The ModifyVectorParameter behaviour either sets or modifies the specified vector parameter on entering the state, on exit or
both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter VectorParameter The parameter to modify.

When Dropdown When should the parameter be modified. Options are EnterAndExit, EnterOnly, ExitOnly.

What Dropdown

How should the parameter be modified. The available options are:
Set will set the vector to the specified value.
Reset resets the vector to its starting value.
Add adds the specified vector to the parameter.
Subtract subtracts the specified vector from the parameter.
Multiply multiplies the parameter by the specified multiplier.
Normalize normalizes the parameter vector to magnitude.

1

Flatten flattens the parameter vector onto the horizontal plane of the character
ClampMagnitude clamps the magnitude to a specified maximum length | | Value | Vector3 | The value to set to, add or
subtract based on the What property. | | Multiplier | Float | A multiplier to apply to the vector if the What property is set to
Multiply. | | Clamp | Float | The magnitude to clamp the vector to if the What property is set to ClampMagnitude. |

See Also
Motion Graph Parameters And Data

PassiveSlide MotionGraphBehaviour
Overview
The PassiveSlide behaviour lowers ground friction when the character is on a steep enough slope, and is not attempting to move.
If the motion controller receives move input then the NeoCharacterController slope friction will be set to its value on entering the
state or sub-graph. If not, then the slope friction will be set to Slide Friction setting as long as this is lower than the friction
already set and the angle is steep enough.

By default, the character must be stood on a slope steeper than 30 degrees in order to slide. If the Slope Data Key corresponds
to a valid Slope MotionControllerDataEntry then the slide will be triggered when the angle is greater than its Slope Slide Angle
property.

Inspector

Properties
NAME T YPE D ES CR IPTION

Slope
Angle

Float
Data

A slope angle that chooses when to start sliding. This can either be set as a value, or by referencing a
float data entry.

Slide
Friction Float The slope friction to apply when sliding.

See Also
NeoCharacterController

Motion Graph Parameters And Data

PlayAudioClip MotionGraphBehaviour
Overview
The PlayAudioClip behaviour plays an audio clip on entering the state, on exiting, or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Clip AudioClip The audio clip to play.

Volume Float The volume to play the clip at.

Where Vector3 The offset from the character controller transform position to play the clip at.

When Dropdown When should the clip be played. Options are EnterAndExit, EnterOnly, ExitOnly.

See Also
Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

PlayCharacterAudio MotionGraphBehaviour
Overview
The PlayCharacterAudio behaviour will play an audio clip on entering the state, exiting the state, or both.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio FpsCharacterAudio The audio ID to play (generated constant).

When Dropdown When should the audio be played. Options are EnterAndExit, EnterOnly, ExitOnly.

See Also
Generated Constants

RecordVelocity MotionGraphBehaviour
Overview
The RecordVelocity behaviour outputs the current velocity of the character to a vector parameter on the graph for use in other
conditions or states.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter Vector
Parameter The parameter to modify.

When Dropdown At what point should the velocity be recorded. Options are OnEnter, OnExit and Always. The latter records the
velocity each frame while in the state or subgraph it's attached to.

See Also
NeoCharacterController

Motion Graph Parameters And Data

SetAnimatorBool MotionGraphBehaviour
Overview
The SetAnimatorBool behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.

Parameter Name String The name of the animator parameter to write to.

When Dropdown When should the parameter be modified.

On Enter Value Boolean The value to write to the parameter on entering the state / subgraph.

On Exit Value Boolean The value to write to the parameter on exiting the state / subgraph.

See Also
MotionController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorFloat MotionGraphBehaviour
Overview
The SetAnimatorFloat behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.

Parameter Name String The name of the animator parameter to write to.

When Dropdown When should the parameter be modified.

On Enter Value Float The value to write to the parameter on entering the state / subgraph.

On Exit Value Float The value to write to the parameter on exiting the state / subgraph.

See Also
MotionController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorInt MotionGraphBehaviour
Overview
The SetAnimatorInt behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.

Parameter Name String The name of the animator parameter to write to.

When Dropdown When should the parameter be modified.

On Enter Value Integer The value to write to the parameter on entering the state / subgraph.

On Exit Value Integer The value to write to the parameter on exiting the state / subgraph.

See Also
MotionController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetAnimatorBool MotionGraphBehaviour
Overview
The SetAnimatorTrigger behaviour writes to an animator controller parameter on entering or exiting the state or sub-graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Transform Transform Parameter A parameter that points to the transform of the character's animator component.

Parameter Name String The name of the animator parameter to write to.

On Enter Dropdown The action to perform on entering the state / subgraph.

On Exit Dropdown The action to perform on exiting the state / subgraph.

See Also
MotionController

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html

SetSteering MotionGraphBehaviour
Overview
The NeoCharacterController that NeoFPS is based on has a steering system that can decouple the aim direction from the
character's move direction. The SetSteering behaviour is used set a speed at which the body rotates to match the aim direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Enter Dropdown What to do to the steering rate on entering the state.

On Exit Dropdown What to do to the steering rate on exiting the state.

Entry Value Float The value to set the steering rate to on entering the state.

Exit Value Float The value to set the steering rate to on exiting the state.

See Also
NeoCharacterController

MotionController

SetTargetHeight MotionGraphBehaviour
Overview
The SetTargetHeight behaviour signals the desired character height multiplier for the controller to lerp to.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the target height be set. Options are EnterAndExit, EnterOnly, ExitOnly.

On Enter
Value Float The character height multiplier (standing height) to set on entering this state (if when is set to EnterandExit

or EnterOnly).

On Exit Value Float The character height multiplier (standing height) to set on exiting this state (if when is set to EnterandExit
or ExitOnly).

Resize
Duration Float The time taken to change heights.

From Point Dropdown

Where is the character resized from. Available options are:
Automatic will scale from the bottom if grounded and the top if airborne and crouch jumping is
enabled.
Bottom always resizes from the bottom of the character.
Top always resizes from the top of the character.

See Also
MotionController

SetTimeScale MotionGraphBehaviour
Overview
The SetTimeScale behaviour is used to trigger slow motion effects when entering a motion state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time Scale Float The target timescale to set. Will be reset to 1 on exit.

Charge Drain Float The amount of charge drained per (real, unscaled) second.

See Also
MotionController

SetWieldableStance MotionGraphBehaviour
Overview
The SetWieldableStance behaviour is used to choose the pose that a wieldable inventory item such as a firearm or melee weapon
is held in. This can be used to telegraph when the character is crouching or falling, for example.

Inspector

Properties
NAME T YPE D ES CR IPTION

Stance
Name String The name of the stance to use. The wieldable item needs a WieldableStanceManager component, with a stance that

has this name.

See Also
Inventory

SlidingAudio MotionGraphBehaviour
Overview
The SlidingAudio behaviour plays a looping audio clip based on the ground contact surface, pitch shifted based on the character
speed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data SurfaceAudioData The surface audio library for the slide audio clips.

Surface Test
Interval Int Every n-th frame, the behaviour will check what the ground surface is and switch the sliding

audio if required.

Minimum Speed Float The speed below which the pitch will be at its minimum.

Maximum Speed Float The speed above which the pitch will be at its maximum.

Minimum Pitch Float The minimum pitch for the slide loop.

Maximum Pitch Float The maximum pitch for the slide loop.

Max Ray Distance Float The downward raycast length for the ground surface test.

Ray Offset Float The vertical offset above the absolute bottom of the character collider to start the downward
surface test.

See Also
SurfaceAudioData

SurfaceAudio MotionGraphBehaviour
Overview
The SurfaceAudio behaviour plays an audio clip based on the current ground surface.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data SurfaceAudioData The surface audio library for the audio clips.

When Dropdown When should the audio be played. Options are EnterAndExit, EnterOnly, ExitOnly.

Cast Direction Dropdown

The direction to perform the footstep surface check. Available options are:
Down casts downwards (based on the character up vector).
LocalVector casts based on the Cast Vector property in local space.
WorldVector casts based on the Cast Vector property in world space.
WorldParameter casts based on the vector value of the Vector Parameter property in world
space.
WorldParameterInverse casts based on the flipped vector value of the Vector Parameter
property in world space.
LocalParameter casts based on the vector value of the Vector Parameter property in local
space.
LocalParameterInverse casts based on the flipped vector value of the Vector Parameter
property in local space.

Cast Vector Vector3 The direction to cast in for footstep surface checks.

Vector
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.

Max Ray
Distance Float The downward raycast length for the ground surface test.

See Also
Surfaces

Audio Systems

SurfaceFootstepAudio MotionGraphBehaviour
Overview
The SurfaceFootstepAudio behaviour interacts with the [SurfaceFootstepAudioSystem][3] monobehaviour on the root of the
character to control how it processes footsteps.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data SurfaceAudioData The surface audio library for the slide audio clips.

Cast
Direction Dropdown

The direction to perform the footstep surface check. Available options are:
Down casts downwards (based on the character up vector).
LocalVector casts based on the Cast Vector property in local space.
WorldVector casts based on the Cast Vector property in world space.
WorldParameter casts based on the vector value of the Vector Parameter property in
world space.
WorldParameterInverse casts based on the flipped vector value of the Vector Parameter
property in world space.
LocalParameter casts based on the vector value of the Vector Parameter property in local
space.
LocalParameterInverse casts based on the flipped vector value of the Vector Parameter
property in local space.

Cast Vector Vector3 The direction to cast in for footstep surface checks.

Transform
Parameter TransformParameter A parameter containing the transform to use for the cast's space. If none is selected or the

parameter value is null then the cast is performed in world space.

Vector
Parameter VectorParameter A vector parameter containing the direction vector to cast in for footstep surface checks.

Minimum
Speed Float The speed below which no footstep audio will be played.

Max Ray
Distance Float The downward raycast length for the ground surface test.

Persistent Boolean If persistent is true, then exiting this state or sub-graph will keep the footstep settings until they
are explicitly set from elsewhere.

See Also
[SurfaceFootstepAudioSystem][3]

SurfaceAudioData

Motion Graph Parameters And Data

TimeOps MotionGraphBehaviour
Overview
The TimeOps behaviour modifies a float parameter on the graph based on the Time. It can be used to record the time that specific
events occur or to track the time spent in one or more states or sub-graphs.

Inspector

Properties
NAME T YPE D ES CR IPTION

What Dropdown

How should the parameter be modified. Available options are:
Add Elapsed Time adds elapsed time to the output parameter.
Add Elapsed Time Scaled adds elapsed time, multiplier by a scale factor to the output parameter.
Record Entry Time sets the output parameter to the current time on entering the state or sub-
graph.
Record Exit Time sets the output parameter to the current time on exiting the state or sub-graph.
Record Time sets the output parameter to the current time every frame.

Output FloatParameter The parameter to modify.

Multiplier Float A multiplier to apply to the output if What is set to Add Elapsed Time Scaled.

See Also
Motion Graph Parameters And Data

TrackStepsBehaviour MotionGraphBehaviour
Overview
The TrackStepsBehaviour behaviour is used to provide a consistent step count for use by the various bob effects such as
PositionBob and RotationBob. Stride length will be reset to the previous value on exiting the behaviour, so these behaviours can
be nested.

Inspector

Properties
NAME T YPE D ES CR IPTION

Stride Length Float The travel distance for one stride.

See Also
PositionBob

RotationBob

UnlockInventorySelection MotionGraphBehaviour
Overview
The UnlockInventorySelection behaviour will unlock the character's inventory selection after being locked by a
LockInventorySelection behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

When Dropdown When should the inventory selection be set. Options are: OnEnter and OnExit.

See Also
Inventory

LockInventorySelection

AirTime MotionGraphCondition
Overview
The AirTime condition checks against the airtime value of the character's NeoCharacterController.

Inspector

Properties
NAME T YPE D ES CR IPTION

Comparison Dropdown The comparison type between the airtime and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
NeoCharacterController

CapsuleCast MotionGraphCondition
Overview
The CapsuleCast condition performs a cast of the NeoCharacterController capsule in the specified direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Cast
Vector Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be the

maximum distance.

Layer
Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

See Also
Layers And Tags

CapsuleLookahead MotionGraphCondition
Overview
The CapsuleLookahead condition performs a cast of the CharacterController capsule based on either its movement, the direction
it's facing, or the input direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.
Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

See Also
Layers And Tags

https://docs.unity3d.com/Manual/class-CharacterController.html

CharacterHeight MotionGraphCondition
Overview
The CharacterHeight condition checks the height of the character capsule, or its multiplier compared to its standing height.

Inspector

Properties
NAME T YPE D ES CR IPTION

Compare Dropdown What to check. Available options are Multiplier and Actual Height.

Comparison Dropdown The comparison type between the character height and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
NeoCharacterController

Climbable MotionGraphCondition
Overview
The Climbable condition performs is a complex condition which checks if a character can climb onto a ledge. It has a number of
steps:

1. It capsule casts to find the wall surface to climb
2. It sphere casts up to check available head height
3. It casts forward into the wall plane at either the maximum climb height or the point the head cast hit in order to check that

the space is clear to climb

The condition outputs the wall normal found in step 1 to a Vector Parameter which can then be used by the Mantle state to
actually perform the climbing action. The mantle state performs its own checks each frame so you do not need to keep testing if a
wall is climbable once the mantle state has control.

Since the climbable condition uses a number of complex checks, it is worth putting any cheaper conditions ahead of it in the
transition in order to narrow down the situations where it will be checked.

Inspector

Properties
NAME T YPE D ES CR IPTION

Output
Wall
Normal

Vector
Parameter The vector parameter used to store the wall normal.

Check
Direction Dropdown The direction to perform the initial wall check in Yaw Forward checks straight ahead of the character. Inverse

Wall Normal reads the value of the wall normal parameter above and flips it, casting back into the wall.

Check
Distance Float Data The distance of the initial capsule cast to check wall contact. It is advised to set up a motion data entry and

share it with the Mantle state to ensure they have the same value.

Wall
Collision
Mask

Layermask The layers to check against.

Max
Climb
Height

Float The maximum height the character can pull itself up to reach the top surface.

Climb
Forward Float After reaching the top surface, this is the distance to move in past the edge before the state completes.

Output
Climb
Height

Float
Parameter An optional parameter to store the climb height.

See Also
Motion Graph Parameters And Data

Layers And Tags

CollisionFlags MotionGraphCondition
Overview
The CollisionFlags condition checks the NeoCharacterController collision flags that resulted from the last movement frame.

Inspector

Properties
NAME T YPE D ES CR IPTION

Comparison Dropdown Check if the NeoCharacterController collision flags Include or Exclude the "Compare To"
flags.

Compare
To NeoCharacterControllerHit The collision flags to check against.

Note
If you want to check against individual sides, then use the Mask values. Using the non-mask versions also sets the Sides flag
which is shared between all of them.

See Also
NeoCharacterController

CompareFloats CapsuleCastCondition
Overview
The CompareFloats condition compares two float parameters.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter
A FloatParameter The left hand side parameter of the comparison

Comparison Dropdown
The comparison between the two parameters for which the condition is true. Options are Equal To (=),
Not Equal To (!=), Greater Than (>), Greater Or Equal To (>=), Less Than (<), Less Than Or Equal
To (<=).

Parameter
B FloatParameter The right hand side parameter of the comparison

See Also
Motion Graph Parameters And Data

CompareInts CapsuleCastCondition
Overview
The CompareInts condition compares two int parameters.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter
A IntParameter The left hand side parameter of the comparison

Comparison Dropdown
The comparison between the two parameters for which the condition is true. Options are Equal To (=),
Not Equal To (!=), Greater Than (>), Greater Or Equal To (>=), Less Than (<), Less Than Or Equal To
(<=).

Parameter
B IntParameter The right hand side parameter of the comparison

See Also
Motion Graph Parameters And Data

CompareSwitches CapsuleCastCondition
Overview
The CompareSwitches condition compares two switch parameters.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter
A SwitchParameter The left hand side parameter of the comparison

Comparison Dropdown The comparison between the two parameters for which the condition is true. Options are Equal To (=),
Not Equal To (!=).

Parameter
B SwitchParameter The right hand side parameter of the comparison

See Also
Motion Graph Parameters And Data

CompareTime MotionGraphCondition
Overview
The CompareTime condition is used in conjunction with the TimeOps motion graph behaviour to check the current time against
the parameter values it outputs.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time
Parameter FloatParameter The float parameter with the time stored in it byyt TimeOps.

Comparison Dropdown The comparison type between the parameter and value. Options are GreaterThan (>), GreaterOrEqual
(>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
Motion Graph Parameters And Data

TimeOps MotionGraphBehaviour

Completed MotionGraphCondition
Overview
The Completed condition checks the current state's completed flag. If the state has completed, the condition is true.

Inspector

Properties
The Completed condition has no properties exposed in the motion graph inspector.

See Also

ConditionGroup MotionGraphCondition
Overview
The ConditionGroup condition is used to group conditions together to allow for more complex rules than any and all. For
example, when swimming on the surface of a water zone, you might transition to the underwater state if you either press crouch
or look down and press forwards.

Inspector

Properties
NAME T YPE D ES CR IPTION

Condition Group Dropdown A dropdown that lists the available groups on the connection or allows you to create a new one.

Note
The result of a condition group is recorded when it is evaluated, so you will not be able to create infinite loops where group A
checks group B which checks group A again.

See Also
Motion Graph Conditions

Debug MotionGraphCondition
Overview
The Debug condition is only used to check the float of a motion graph. Add it to connections that are not behaving as expected,
before and after the problem condition with a message to help check when the condition is hit. Do not leave debug conditions in a
complete motion graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Message String A message to send to the debug console when this condition is checked.

Result Boolean The result the condition should give.

See Also

Direction MotionGraphCondition
Overview
The Direction condition checks the specified vector parameter against the character's direction

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter VectorParameter The vector parameter to check against.

Compare Dropdown

What direction to compare against the parameter. Available options are:
YawVsVector checks the character's yaw forward direction against the parameter.
YawVsHorizontal checks the character's yaw forward direction against the parameter aligned to
the character's horizontal plane.
AimVsVector checks the character's aim direction against the parameter.
VelocityVsVector checks the character's move direction against the parameter.
VelocityVsHorizontal checks the character's movement direction against the horizontal aligned
parameter.
InputVsHorizontal checks the character's input direction (aligned to the character) against the
horizontal aligned parameter.

Comparison Dropdown The comparison type between the parameter and value. This can be less than "<" or greater than ">".

Angle Float The angle value to check against.

See Also
NeoCharacterController

Motion Graph Parameters And Data

ElapsedTime MotionGraphCondition
Overview
The Elapsed Time condition checks how long the motion graph has been in the current state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timeout
Value Float The time after which the condition will be valid. If the parameter is set, this will be ignored.

Timeout
Property FloatProperty An optional parameter containg a value for the time after which the condition will be valid. Selecting a

parameter will remove the value field until this parameter is removed again.

See Also
Motion Graph Parameters And Data

EnhancedCapsuleCast MotionGraphCondition
Overview
The EnhancedCapsuleCast condition performs a cast of the NeoCharacterController capsule in the specified direction and then
outputs the results to motion graph parameters for use in other conditions and states.

Inspector

Properties
NAME T YPE D ES CR IPTION

Cast Type Dropdown

What to use for the cast vector. Available options are:
LocalVector uses a preset vector relative to the character. Magnitude is distance.
WorldVector uses a preset vector in world space. Magnitude is distance.
LocalParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.
LocalParameterInverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.
WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.
WorldParameterInverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

Cast
Vector Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be

the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.

Direction
Parameter VectorParameter The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.

Distance Float The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.

Layer
Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit
Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

See Also
Motion Graph Parameters And Data

Layers And Tags

EnhancedCapsuleLookahead MotionGraphCondition
Overview
The EnhancedCapsuleLookahead condition performs a cast of the NeoCharacterController capsule based on either its movement,
the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal
plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed
distance ahead.
Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local
space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point Output Vector Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output Vector Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

See Also
Motion Graph Parameters And Data

Layers And Tags

EnhancedRayCast MotionGraphCondition
Overview
The EnhancedRayCast condition performs a raycast from the specified point on the character. The cast results are output to
motion graph parameters for later use.

Inspector

Properties
NAME T YPE D ES CR IPTION

Source
Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of

the capsule centerline.

Cast Type Dropdown

What to use for the cast vector. Available options are:
LocalVector uses a preset vector relative to the character. Magnitude is distance.
WorldVector uses a preset vector in world space. Magnitude is distance.
LocalParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.
LocalParameterInverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.
WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.
WorldParameterInverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

Cast
Vector Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be

the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.

Direction
Parameter VectorParameter The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.

Distance Float The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.

Layer
Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit
Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

NAME T YPE D ES CR IPTION

See Also
Motion Graph Parameters And Data

Layers And Tags

EnhancedRayLookahead MotionGraphCondition
Overview
The EnhancedRayLookahead condition performs a raycast from the specified point on the character and based on either its
movement, the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.
Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Source Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top
of the capsule centerline.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

See Also
Motion Graph Parameters And Data

Layers And Tags

EnhancedSphereCast MotionGraphCondition
Overview
The EnhancedSphereCast condition performs a spherecast from the specified point on the character. The cast results are output to
motion graph parameters for later use.

Inspector

Properties
NAME T YPE D ES CR IPTION

Source
Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of

the capsule centerline.

Cast Type Dropdown

What to use for the cast vector. Available options are:
LocalVector uses a preset vector relative to the character. Magnitude is distance.
WorldVector uses a preset vector in world space. Magnitude is distance.
LocalParameter uses a vector parameter to get the direction relative to the character and casts
a set distance.
LocalParameterInverse uses a vector parameter to get the direction relative to the character
(reversed) and casts a set distance.
WorldParameter uses a vector parameter to get the direction in world space and casts a set
distance.
WorldParameterInverse uses a vector parameter to get the direction (reversed) in world space
and casts a set distance.

Cast
Vector Vector3 The direction and distance to cast. The vector does not have to be normalised, as the magnitude will be

the maximum distance. Visible if Cast Type is set to World Vector or Local Vector.

Direction
Parameter VectorParameter The direction to cast in. Only visible with Cast Vector set to one of the Parameter settings.

Distance Float The distance to cast. Only visible with Cast Vector set to one of the Parameter settings.

Layer
Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit
Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

NAME T YPE D ES CR IPTION

See Also
Motion Graph Parameters And Data

Layers And Tags

EnhancedSphereLookahead MotionGraphCondition
Overview
The EnhancedSphereLookahead condition performs a spherecast from the specified point on the character and based on either its
movement, the direction it's facing, or the input direction. The cast results are output to motion graph parameters for later use.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.
Direction Horizontal Plane uses the character movement direction constrained to its
horizontal plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Source Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top
of the capsule centerline.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

Hit Point
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit point to.

Hit Normal
Output

Vector
Parameter An optional graph parameter to output the capsule cast hit normal to.

Hit Transform
Output

Transform
Parameter An optional graph parameter to output the capsule cast hit transform to.

See Also
Motion Graph Parameters And Data

Layers And Tags

Float MotionGraphCondition
Overview
The Float condition checks the specified parameter against a value.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter FloatParameter The parameter to check.

Comparison Dropdown The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
Motion Graph Parameters And Data

GroundContact MotionGraphCondition
Overview
The GroundContact condition checks if the character is airborne or touching the ground.

Inspector

Properties
NAME T YPE D ES CR IPTION

Equals Boolean Is the condition true if the character is touching the ground or not.

See Also
MotionController

GroundNormal MotionGraphCondition
Overview
The GroundNormal condition is used to check against the angle of the character ground contact.

This condition differs from the GroundSurfaceNormal condition in that it is only aware of the point of contact and does not take
the shape of the collision geometry into account. As a character walks off the edge of a flat surface, this angle will slope down,
whereas the ground surface normal will stay pointing straight up until the character loses contact with the surface.

Inspector

Properties
NAME T YPE D ES CR IPTION

Comparison Dropdown The comparison type. Options are GreaterThan (), GreaterOrEqual (), LessThan (), LessOrEqual (),
EqualTo ().

Angle Float The ground slope angle in degrees from horizontal.

See Also
MotionController

GroundSurfaceNormal Condition

GroundSurfaceNormal MotionGraphCondition
Overview
The GroundSurfaceNormal condition is used to check against the slope of the ground surface the character is currently standing
on. If the character is in contact with a flat surface then the resulting angle is the angle of the slope. If the character is in contact
with an edge then the resulting angle is the slope of the top face the edge belongs to.

This condition differs from the GroundNormal condition which only takes into account the point of contact and not the shape of
the collision geometry.

Inspector

Properties
NAME T YPE D ES CR IPTION

Comparison Dropdown The comparison type. Options are GreaterThan (), GreaterOrEqual (), LessThan (), LessOrEqual (),
EqualTo ().

Angle Float The ground slope angle in degrees from horizontal.

See Also
MotionController

GroundNormal Condition

HeightRestriction MotionGraphCondition
Overview
The HeightRestriction condition checks if the character height is restricted by a ceiling. This is useful for situations such as
preventing the character moving to a sprint state while stuck in an air vent.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Height Float The target height multiplier for the character to check against.

Is Blocked Boolean Is the condition true if the character height is blocked or not blocked.

See Also
MotionController

InputVector MotionGraphCondition
Overview
The InputVector condition checks against the input vector provided by the motion controller.

Inspector

Properties
NAME T YPE D ES CR IPTION

InputComponent Dropdown

What component of the input to check. Available options are:
Magnitude 0 is no input, while 1 is one of the direction keys, or full tilt on an analog stick.
InputY the forward or back amount (1 is forward, -1 is back).
InputX the left or right amount (1 is right, -1 is left).
AbsoluteY the absolute forward or back amount.
AbsoluteX the absolute left or right amount.

Comparison Dropdown The comparison type between the actual input vector magnitude and the value specified. Options are
greater than (>), less than (<).

Value Float The value to compare against.

See Also

Int MotionGraphCondition
Overview
The Int condition checks the specified parameter against a value.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter IntParameter The parameter to check.

Comparison Dropdown The comparison type between the propery and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Int The value to check against.

See Also
Motion Graph Parameters And Data

Pitch MotionGraphCondition
Overview
The Pitch condition checks pitch (up/down rotation) of the character's aim controller.

Inspector

Properties
NAME T YPE D ES CR IPTION

Comparison Dropdown The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Angle Float The pitch angle value to check against. 90 is straight up and -90 is straight down.

See Also
Aim Controllers

RayCast MotionGraphCondition
Overview
The RayCast condition performs a cast in the specified direction and from the specified source.

Inspector

Properties
Properties

NAME T YPE D ES CR IPTION

Normalise
Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the

capsule centerline.

Cast Vector Vector3 The direction and distance to cast relative to the character. The vector does not have to be normalised, as the
magnitude will be the maximum distance.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the condition true if the cast hits something or if it does not.

See Also
Layers And Tags

RayLookahead MotionGraphCondition
Overview
The RayLookahead condition performs a raycast from the specified point on the character and based on either its movement, the
direction it's facing, or the input direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.
Direction Horizontal Plane uses the character movement direction constrained to its horizontal
plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Source Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the
capsule centerline.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

See Also
Motion Graph Parameters And Data

Layers And Tags

ScriptedComponent MotionGraphCondition
Overview
The ScriptedComponent condition attaches to a component on the controller's game object. Each time the condition is checked,
the component is queried and the result returned. Valid components must implement the IScriptedComponentCondition
interface.

Inspector

Properties
NAME T YPE D ES CR IPTION

Key String The name of the specific component. This is used to distinguish between multiple components on the same game object.

See Also

SphereCast MotionGraphCondition
Overview
The SphereCast condition performs a cast in the specified direction and from the specified source.

Inspector

Properties
NAME T YPE D ES CR IPTION

Normalise
Height Float The point on the character capsule to cast from. 0 is the base of the capsule. 1 is the top of the capsule.

Cast Vector Vector3 The direction and distance to cast relative to the character. The vector does not have to be normalised, as the
magnitude will be the maximum distance.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the condition true if the cast hits something or if it does not.

See Also
Layers And Tags

SphereLookahead MotionGraphCondition
Overview
The SphereLookahead condition performs a spherecast from the specified point on the character and based on either its
movement, the direction it's facing, or the input direction.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lookahead Dropdown

How the lookahead direction is calculated. The available options are:
Velocity All Axes uses the current velocity of the character.
Velocity Horizontal Plane uses the character velocity constrained to its horizontal plane.
Velocity Vertical uses the character velocity constrained to its up-vector.
Direction All Axes uses the direction the character is moving in, but checks a fixed distance
ahead.
Direction Horizontal Plane uses the character movement direction constrained to its horizontal
plane.
Direction Vertical uses the character movement direction constrained to its up-vector.
Input Direction uses the character input vector transformed into the character's local space.

Lookahead Time Float When using the Velocity lookahead types, the distance is based on velocity x time.

Lookahead
Distance Float The cast distance when using the Direction or Input lookahead types.

Source Height Float The point on the character capsule to cast from. 0 is the base of the capsule centerline. 1 is the top of the
capsule centerline.

Layer Mask Layermask The layers to check against.

Does Hit Boolean Is the codition true if the cast hits something or does not.

See Also
Motion Graph Parameters And Data

Layers And Tags

Switch MotionGraphCondition
Overview
The Switch condition checks the value of the specified switch parameter.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter SwitchParameter The parameter to check.

Equals Boolean The value of the switch that the condition should be true for.

See Also
Motion Graph Parameters And Data

Transform MotionGraphCondition
Overview
The Transform condition checks if the specified transform parameter is null or not.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter TransformParameter The parameter to check.

Is Null Boolean Is the condition true if the transform is null or not null.

See Also
Motion Graph Parameters And Data

Trigger MotionGraphCondition
Overview
The Trigger condition checks the specified trigger parameter and then resets it if triggered.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter TriggerParameter The trigger to check.

See Also
Motion Graph Parameters And Data

Vector MotionGraphCondition
Overview
The Vector condition checks the specified parameter against a value.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter VectorParameter The parameter to check.

Compare Dropdown

What element of the vector parameter to check against. The available options are:
Magnitude checks the value against the magnitude of the vector.
X checks against the vector's x axis.
Y checks against the vector's y axis.
Z checks against the vector's z axis.
Character Horizontal checks against the magnitude of the vector after it has been projected
onto the character's horizontal plane.
Character Up checks against the magnitude of the vector after it has been projected onto the
character's up vector.

Comparison Dropdown The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
Motion Graph Parameters And Data

Velocity MotionGraphCondition
Overview
The Velocity condition checks the velocity output of the character's NeoCharacterController.

Inspector

Properties
NAME T YPE D ES CR IPTION

Compare Dropdown

What element of the velocity to check against. The available options are:
Character Speed checks the magnitude of the velocity vector against the value.
Horizontal Speed checks the velocity after it has been projected on the character's horizontal plane.
Vertical Velocity checks the velocity after it has been projected on the character's up vector.
Ground Speed checks the velocity after it has been projected on the ground normal plane.
Ground Surface Speed checks the velocity after it has been projected on the ground surface normal
plane.
Yaw Velocity checks the velocity of the character along its forward vector.
Yaw Ground Velocity checks the velocity of the character along its forward vector projected on the
ground normal plane.
Yaw Ground SurfaceVelocity checks the velocity of the character along its forward vector projected
on the ground surface normal plane.

Comparison Dropdown The comparison type between the parameter and value. Options are EqualTo (=), NotEqualTo (!=),
GreaterThan (>), GreaterOrEqual (>=), LessThan (<), LessOrEqual (<=).

Value Float The value to check against.

See Also
NeoCharacterController

Water MotionGraphCondition
Overview
The Water condition checks the character's position relative to a water zone.

Inspector

Properties
NAME T YPE D ES CR IPTION

Water
Zone TransformParameter The transform parameter with the transform of the water zone object. If this is null, the condition

returns false.

Check Dropdown

The comparison type between the character and the water zone. Available options are:
Above Water Greater Than checks if the height of the character above the water line against
the value.
Above Water Less Than checks if the height of the character above the water line against the
value.
Below Water Greater Than checks if the height of the character below the water line against
the value.
Below Water Less Than checks if the height of the character below the water line against the
value.

Value Float The value to check against.

See Also
Motion Graph Parameters And Data

BasicWaterZone MonoBehaviour
Overview
The BasicWaterZone behaviour is used to communicate water properties to the motion graph, including surface height and
normal, and flow vectors.

The water zone uses a box collider to detect when the character enters or leaves the zone.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter
Key string The name of the transform parameter on the motion graph for any character that enters the water zone. This wil

be set with the water zone's transform.

Flow Vector3 A flow velocity (m/s) for the water zone.

See Also
Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-BoxCollider.html

CharacterEventKickTrigger MonoBehaviour
Overview
The CharacterImpactHandler consumes impact events such as bullet hits, and uses them to apply a force to the character's
NeoCharacterController.

Inspector

Properties
NAME T YPE D ES CR IPTION

Force Multiplier Float A multiplier to apply to inbound forces for a more exagerrated effect.

Max Force Float The maximum force that can be applied to the character.

See Also
NeoCharacterController

ConstantRotatingPlatform MonoBehaviour
Overview
The ConstantRotatingPlatform behaviour is used to create a moving platform that constantly turns at a set rate.

Inspector

Properties
NAME T YPE D ES CR IPTION

Rotation Per Second Vector3 The rotation in degrees on each axis per second.

See Also
Moving Platforms

ContactLadder MonoBehaviour
Overview
The ContactLadder behaviour defines a ladder in the scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Trigger Zone TriggerZone The trigger area for detecting contact with the ladder.

Rough Collider BoxCollider The box collider for the ladder geometry.

Property Key String The motion graph parameter name to set the ladder to.

Top Vector3 The top of the ladder surface relative to the transform position.

Spacing Float The spacing between rungs on the ladder.

Length Float The length of the ladder along the ladder transform down axis from the top offset.

Width Float The width of the ladder surface.

See Also
Ladders

InteractiveLadder

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-BoxCollider.html

DrivenMovingPlatform MonoBehaviour
Overview
The DrivenMovingPlatform behaviour is added to a rigidbody that is driven by physics or a script and turns it into a moving
platform. It tracks the position and rotation of the object in a way that the NeoCharacterController can use.

Inspector

Properties
The DrivenMovingPlatform has no properties exposed in the inspector;

See Also
Moving Platforms

NeoCharacterController

https://docs.unity3d.com/Manual/class-Rigidbody.html

DrowningMotionGraphWatcher MonoBehaviour
Overview
The DrowningMotionGraphWatcher watches a float parameter on the character motion graph and if the float value exceeds the
specified amount then it starts to apply damage to the player's health manager.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter Key String The name of the float parameter on the motion graph that the watcher should track.

Damage
Description String A descriptive name for the damage that can be used in any HUD logs.

Damage Type Dropdown The damage type the drowning should be classed as. Used for filtering the damage.

Hold Breath
Duration Float The value the parameter needs to reach before damage is applied.

Damage Spacing Float Damage will be applied every time the parameter passes an increment of this amount above the
drown duration.

Damage Amount Float The amount of damage to apply to the character.

See Also
Health and Damage

Motion Graph Parameters And Data

InteractiveLadder MonoBehaviour
Overview
The InteractiveLadder behaviour defines a ladder in the scene.

Inspector

Properties
The InteractiveLadder inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Rough Collider BoxCollider The box collider for the ladder geometry.

Property Key String The motion graph parameter name to set the ladder to.

Top Vector3 The top of the ladder surface relative to the transform position.

Spacing Float The spacing between rungs on the ladder.

Length Float The length of the ladder along the ladder transform down axis from the top offset.

Width Float The width of the ladder surface.

See Also
Ladders

Interaction

ContactLadder

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/class-BoxCollider.html

JumpPad MonoBehaviour
Overview
The JumpPad behaviour detects when a character touches it and passes a move vector to its motion graph.

Inspector

Properties
NAME T YPE D ES CR IPTION

Parameter Name String The motion graph parameter name to set with the jump vector.

Boost Vector Vector3 The velocity vector to give to the character.

Boost Relative
To Float The space in which to apply the vector. If this is set to self, the vector will be relative to this object's

transform.

Cooldown Float The cooldown time to prevent the jumppad registering multiple times.

See Also
Motion Graph Parameters And Data

MotionController Behaviour
Overview
The MotionController is the workhorse of the MotionGraph system. It handles the actual movement of the character, ticks the
motion graph, and sends input and information to the motion graph that it needs to react to the player and environment.

Inspector

The Show Motion Graph Editor button will show the motion graph editor, with this controller's motion graph opened for
editing. If the controller is attached to a character in the scene and the game in play mode, then the opened graph will update at
runtime to show the current state.

The Attach Debugger button will open the motion debugger and attach the character to start recording its movement details.

Properties
Motion Graph & Data

NAME T YPE D ES CR IPTION

Motion
Graph MotionGraph The motion graph for the controller to use (a unique instance will be instantiated from

this).

Override MotionGraphDataOverrideAsset The motion data override for the controller to use.

Colliders

NAME T YPE D ES CR IPTION

Use
Crouch
Jump

Boolean If this is enabled, then the collider will provide an offset that can be used to give extra height to a jump so it
appears the legs are tucked up instead of the head ducked down.

Misc
NAME T YPE D ES CR IPTION

Manual
Initialisation Boolean Should the component be initialised manually or automatically in Awake and Start? Switch this on for

things like networked players.

Upper Body
Root Transform The root transform of the head hierarchy (used to determine heading).

Force Events
NAME T YPE D ES CR IPTION

On Motion Graph
State Change UnityEvent This event is called whenever the controller graph state changes (only includes the end state when

traversing multiple states in the graph).

On Ground Impact UnityEvent This event is called when the controller first contacts the ground after being airborne.
Parameters = Vector3 impulse, float mass

On Head Impact UnityEvent This event is called whenever the top of the controller capsule makes initial contact with a collider.
Parameters = Vector3 impulse, float mass

On Body Impact UnityEvent
This event is called whenever the sides of the controller capsule makes initial contact with a
collider.
Parameters = Vector3 impulse, float mass

STEP TRACKING
NAME T YPE D ES CR IPTION

Step Speed
Cap Float The maximum speed when calculating distance travelled for footsteps.

Use Dumb
Stepping Boolean Switch this to true if you aren't tracking steps in the motion graph, and they will simply be counted at a

default rate whenever the character is grounded.

See Also
The Motion Graph

Motion Controller Data

Unity CharacterController

Unity Execution Order of Event Functions

https://docs.unity3d.com/Manual/class-CharacterController.html
https://docs.unity3d.com/Manual/ExecutionOrder.html

NeoCharacterController Behaviour
Overview
The NeoCharacterController handles movement of characters and their interaction with the physical environment.

Inspector

Properties
Collisions

NAME T YPE D ES CR IPTION

Depenetration
Mask LayerMask

The physics layers that the character will depenetrate from. This cannot include anything outside of
the collision matrix for the gameobject layer. Use this to filter out small dynamic props that should
not influence the player.

Skin Width Float When performing the move loop, the capsule is shrunk by this amount. When testing for contacts it is
grown by this amount.

Slope Limit Float The maximum distance above the ground to apply a "sticky" downforce on the frame after leaving the
ground.

Slope Friction Float The friction of ground contacts when standiong on a slope. At 1, all downward velocity will be
cancelled out. At 0, the character will slide down the slope.

Ledge Friction Float The friction of ground contacts when overhanging a ledge. At 1, the character will not slide off the
ledge.

Wall Angle Float The angle (in degrees) from the vertical for a surface to be considered a wall.

https://docs.unity3d.com/Manual/LayerBasedCollision.html

Deflection
Curve AnimationCurve A curve that defines the deflection drop off based on angle from normal. Y-axis is the deflection

multiplier, X-axis is the normalised angle (0 = 0 degrees, 1 = 90 degrees)

Step Height Float
The character will traverse any ledge up to their radius in height. If the step is equal to or below the
step height then the character will not lose any horizontal speed when stepping up, and any vertical
movement does not count to the character's velocity calculations.

Ground Snap
Height Float

The maximum distance above the ground to apply a "sticky" downforce on the frame after leaving the
ground in certain conditions. This prevents leaving the ground when stepping onto down-slopes or
off low steps.

Stick To
Ground Boolean Should the character stick to the ground when walking down steep slopes or over the top of ramps.

Ground Hit
Lookahead Float The distance to check ahead of a contact (based on contact normal) to see if it was a slope or a step.

Set this higher if you are using physics with bevelled corners instead of primitives (naughty).

NAME T YPE D ES CR IPTION

Rigidbody and Character Interaction
NAME T YPE D ES CR IPTION

Push
Rigidbodies Boolean Do not apply forces to non-kinematic rigidbodies if false.

Low
Rigidbody
Push Mass

Float Any rigidbodies this mass or below will be pushed with the full push multiplier. Above this and it drops off to
zero at max mass.

Max
Rigidbody
Push Mass

Float Any rigidbodies above this mass will have zero force applied to them.

Rigidbody
Push Float

A multiplier for the push force at or below the minimum push mass. At normal gravity with no physics materials
applied, a 1m box will be on the threshold of moving when this is set to 10. Higher will push the box up to the
character's velocity with greater acceleration.

Pushed By
Characters Boolean Can this character be pushed by other INeoCharacterControllers.

Push
Characters Boolean Can this character push other INeoCharacterControllers.

Character
Push Float A multiplier for the push force when pushing characters at or below this characters mass. Drops to 0 when

approaching max push mass.

Moving Platforms
NAME T YPE D ES CR IPTION

Inherit
Platform Yaw Boolean Does the character inherit yaw changes from moving platforms.

https://docs.unity3d.com/Manual/EditingCurves.html

Inherit
Platform
Velocity

Dropdown

What component of the platform velocity should be included in the character velocity. Options are as
follows:

None - any movement of the platform is ignored when calculating the character velocity. This
prevents exponential acceleration if the character tracks momentum.
Full - the movement of the platform is included in character velocity calculations.
Horizontal Only - only the horizontal movement of the platform is included in character velocity
calculations. Vertical movement is ignored.
Vertical Only - only the vertical movement of the platform is included in character velocity
calculations. Horizontal movement is ignored.

NAME T YPE D ES CR IPTION

Gravity
NAME T YPE D ES CR IPTION

Gravity Vector3 The gravity vector (direction and acceleration) for the character.

OrientUpWithGravity Boolean If this is true, then adjusting the gravity direction will reorient the character so that down is in the
direction of gravity, and up is opposed.

UpSmoothing Float The duration (in seconds) it takes to rotate the character up vector a whole 180 degrees.

Note
Due to a change in the way ground slope collisions are resolved, the slope speed curve settings have been removed and are now
applied to the movement states in the motion graph directly.

See Also
NeoCharacterController

Unity CharacterController

https://docs.unity3d.com/Manual/class-CharacterController.html

SimpleMovingPlatform MonoBehaviour
Overview
The SimpleMovingPlatform behaviour is used to create a moving platform that moves between 2 points at set intervals.

Inspector

Properties
NAME T YPE D ES CR IPTION

Offset Position Vector3 The position to move to (offset from current position in world space).

Movement Duration Float The time it takes to move.

Pause Duration Float The pause before returning to original position or moving again.

Start Pause Float The delay before the first move.

Easing Mode Dropdown The easing mode for the movement. Options are: Linear, Quadratic, Cubic, Quartic.

See Also
Moving Platforms

SimpleRotatingPlatform MonoBehaviour
Overview
The SimpleRotatingPlatform behaviour is used to create a moving platform that rotates at set intervals.

Inspector

Properties
NAME T YPE D ES CR IPTION

Rotation Vector3 The total rotation for each rotation phase (relative to the starting rotation of the phase, in world
space).

Movement
Duration Float The time it takes to move.

Pause Duration Float The pause before returning to original position or moving again.

Start Pause Float The delay before the first move.

Easing Mode Dropdown The easing mode for the movement. Options are: Linear, Quadratic, Cubic, Quartic.

See Also
Moving Platforms

WaypointMovingPlatform MonoBehaviour
Overview
The WaypointMovingPlatform behaviour is used to create a moving platform that moves between a set of waypoints.

The waypoints include position and rotation and can be moved to in sequence or directly. The waypoints can also be set to loop
round from last back to first, or to form a broken chain.

Movement can be triggered on startup so the platform loops through waypoints, or it can be triggered via scripts and
UnityEvents. Using scripting and events you can set the platform to move to a specific waypoint, either via the intermediate
waypoints or directly, or you can start and stop the platform looping through waypoints.

Inspector

Properties
NAME T YPE D ES CR IPTION

Starting
Waypoint Integer The waypoint the platform starts at (will be repositioned on start).

Speed
Curve AnimationCurve An animation curve to apply easing to movement between waypoints.

Delay Float The delay between waypoints when moving through a sequence. The platform will stop at a waypoint for
this duration.

On Start Dropdown

What to do on start. Options are as follows:
Nothing - the platform will not do anything until another script or component triggers it.
Loop Forwards - the platform will keep looping through all of the waypoints in order until
stopped. If the waypoints are not circular, it will change directions when it reaches the last waypoint.
Loop Backwards - the platform will keep looping through all of the waypoints in reverse order
until stopped. If the waypoints are not circular, it will change directions when it reaches the first
waypoint.

Circular Boolean If the waypoints are circular then there is a direct route from the first to last waypoints without going
through the others.

The inspector then shows a list of waypoints with the following properties:

NAME T YPE D ES CR IPTION

Position Vector3 The position of the platform at this waypoint.

Rotation Vector3 The rotation of the platform at this waypoint.

Time To Waypoint X Float The journey time to reach the next platform in the sequence.

Use Current Transform Button Set the position and rotation to match the platform transform in the scene.

Move To Waypoint Button Instantly move the platform transform to the position and rotation of the waypoint in the scene.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/EditingCurves.html

Up Button Move this waypoint up in the sequence.

Down Button Move this waypoint down in the sequence.

Insert After Button This will insert a new waypoint immediately after this one.

Remove Button This will remove the waypoint from the list.

NAME T YPE D ES CR IPTION

See Also
Moving Platforms

MotionGraph ScriptableObject
Overview
The MotionGraph scriptable object contains the motion graph layout and components. During runtime, a unique instance of the
graph will be instantiated so that any modifications to the properties are unique to the character in question.

Inspector

Properties
The MotionGraph has no properties exposed in the inspector.

The Show Motion Graph Editor button will open the motion graph editor window, editing this graph.

See Also
The Motion Graph

MotionGraphDataOverrideAsset ScriptableObject
Overview
The MotionGraphDataOverrideAsset scriptable object is created from the motion graph editor in the Motion Data section. It is
permanently attached the the graph you were editing when creating the asset, and will allow you to override each of the data
entries on the graph.

Inspector

Properties
The MotionGraphDataOverrideAsset displays an override entry for each of the motion data entries on the motion graph it is
attached to. For more information see Motion Graph Parameters And Data .

See Also
The Motion Graph

Motion Graph Parameters And Data

SlopeSpeedCurve ScriptableObject
Overview
The SlopeSpeedCurve scriptable object is used by the grounded Movement state to allow more control over the character's speed
on slopes. The X axis of the curve represents the slope, from slope limit downhill at -1 to completely flat at 0 and up to the
character slope limit uphill at 1. The y value is the amount of horizontal speed that is maintained when deflected by the slope.

The Movement state aligns its target velocity to the ground surface, clamps the new move vector to the original movement speed
and then multiplies by the result of the slope speed curve at the relevant angle. This means that the character can maintain their
speed up to a set angle and then it drops off slowly as they approach the limit instead of hitting an invisible wall as the slope
angle increases.

Inspector

Properties
NAME T YPE D ES CR IPTION

Curve AnimationCurve The desired speed curve as specified above. Ensure that the x-axis extends from -1 to 1 and the y-axis does
not go below 0.

See Also
Movement MotionGraphState

https://docs.unity3d.com/Manual/EditingCurves.html

NeoFPS Input System
Overview
NeoFPS is built from the ground up to facilitate developing first person shooters for PC and console.

In order for NeoFPS' input system to work it requires a number of custom project settings to be applied. For more information
see the Input Settings page.

Unity's existing input system has a number of shortcomings when designing a control scheme. This has led Unity to develop a
new input system which is currently in testing.

NeoFPS extends the current input system to address a number of its problems. It adds features such as:

Runtime bindable keys
Consistent gamepad profiles
Mouse smoothing and accleration
Input contexts (character, menu, etc).

Once Unity's new input system is in full release the NeoFPS system will be adapted to that. You can also completely replace the
NeoFPS input system if you have an input solution that you prefer. Look at the existing input handlers to see which properties and
methods they access and use these with your preferred system.

Input Contexts
In order to categorise inputs and control which inputs are active at any time, NeoFPS makes use of input contexts. These contexts
are defined in the FpsInputContext generated constant through the [NeoFpsInputManager][6] asset. Each input handler defines
its input context in script and its inputs will only be processed if its context is None or if no higher priority context is active.
Context priority is simply based on the constant value, with higher numbers being higher priority. A context becomes active when
one or more input handlers with that context are active. For example, if a UI element has a InputMenu handler attached to it, then
when the UI element is active all character input will be blocked.

Keyboard
NeoFPS is preset with a full WASD control scheme, but any keys can be remapped from the in-game menu. The available buttons
and their default key bindings can be specified in the [NeoFpsInputManager][6] asset.

At the top of the input bindings menu is a drop down to reset to defaults. This also allows you to select a keyboard layout.
Resetting to a different keyboard layout will map the keys so that the hand positions match a Qwerty keyboard. Available
keyboard layouts currently include:

Qwerty
Azerty
Qwertz
Dvorak
Colemak

To request more keyboard layouts, please contact support via the discord, or using support@neofps.com

Mouse
NeoFPS features detailed mouse support with inverse look, smoothing and acceleration.

Smoothing
Mouse smoothing is performed with a weighted average system. You can customise the number of frames to look back as well as
the weighting to apply in the MouseAndGamepadAimController behaviour.

Acceleration

Acceleration can be customised via the MouseAndGamepadAimController behaviour, including setting limits and whether the
acceleration is linear or quadratic.

Gamepads
Gamepad support in Unity can be quite complicated, with the same gamepad being mapped differently across platforms.

For more information see the Unity Wiki

NeoFPS maps all of the available axes and buttons of the gamepad and wraps them up into preset profiles. The player can then
choose between these profiles from the in-game menus.

On console those profiles might be fairly minimal such as standard and south paw. On standalone builds there might be a
number more options as more individual controllers are supported. You can set up your own gamepad profiles via the
[NeoFpsInputManager][6].

See Also
Input Settings

Creating Custom Input Handlers

https://wiki.unity3d.com/index.php?title=Xbox360Controller

Input Settings
Overview
NeoFPS uses controller profiles to achieve consistent mapping for game controllers across multiple platforms. Since the button
layouts provided to Unity by the various controller drivers are not consistent, NeoFPS requires every available axis to be mapped
in the input settings and then builds the profiles in code using conditional compilation for the different platforms. Examples of the
different controller mappings can be found on the Unify Community Wiki.

For more details of how Unity handles input out of the box, see the Unity Input Settings.

A new input system is in development at Unity and available to use through the package manager in the editor. Once this is in full
release, a NeoFPS implementation will be added that makes use of it.

It should also be noted that you can use an alternative input system in NeoFPS by replacing the included input handlers with yoor
own implementations.

Required Axes
The following are the axes that NeoFPS uses:

Movement
PROPERTIES

Name = Horizontal

Negative Button = left

Positive Button = right

Alt Negative Button = a

Alt Negative Button = d

Gravity = 3.0

Dead = 0.001

Sensitivity = 3.0

Snap = true

Invert = false

Type = Key or Mouse Button

PROPERTIES

Name = Horizontal

Gravity = 0.0

Dead = 0.3

https://wiki.unity3d.com/index.php?title=Xbox360Controller
https://docs.unity3d.com/Manual/class-InputManager.html

Sensitivity = 1.0

Snap = false

Invert = false

Type = Joystick Axis

Axis = X Axis

Joy Num = Get Motion from all Joysticks

PROPERTIES

PROPERTIES

Name = Vertical

Negative Button = down

Positive Button = up

Alt Negative Button = s

Alt Negative Button = w

Gravity = 3.0

Dead = 0.001

Sensitivity = 3.0

Snap = true

Invert = false

Type = Key or Mouse Button

PROPERTIES

Name = Vertical

Gravity = 0.0

Dead = 0.3

Sensitivity = 1.0

Snap = false

Invert = true

Type = Joystick Axis

Axis = Y Axis

Joy Num = Get Motion from all Joysticks

PROPERTIES

Mouse Controls
PROPERTIES

Name = Mouse X

Gravity = 0.0

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = X Axis

PROPERTIES

Name = Mouse Y

Gravity = 0.0

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = Y Axis

PROPERTIES

Name = Mouse ScrollWheel

Gravity = 0.0

Dead = 0.0

Sensitivity = 0.1

Snap = false

Invert = false

Type = Mouse Movement

Axis = 3rd Axis (Joysticks and Scrollwheel)

PROPERTIES

UI
PROPERTIES

Name = Submit

Positive Button = return

Alt Positive Button = enter

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = false

Invert = false

Type = Key or Mouse Button

PROPERTIES

Name = Submit

Positive Button = joystick button 0

Alt Positive Button = joystick button 16

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = false

Invert = false

Type = Key or Mouse Button

PROPERTIES

PROPERTIES

Name = Cancel

Positive Button = escape

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = false

Invert = false

Type = Key or Mouse Button

Individual Axes
Axes 1 to 5 are mapped to generic axes with the names Gamepad Axis 1 to Gamepad Axis 5 and the following settings. The
Axis property is set to the relevant entry (1-5).

PROPERTIES

Gravity = 0.0

Dead = 0.2

Sensitivity = 1.0

Snap = false

Type = Joystick Axis

Each axis is also mapped with and inverted version called Gamepad AxisInv 1 to Gamepad AxisInv 5. As you would expect, the
non-inverse axes have the invert property set to false, while the inverse axes have the property set to true.

Individual Buttons
Gamepad buttons are mapped with the names Gamepad Button 0 to Gamepad Button 19 and the following settings. The
Positive Button property is set to joystick button , where is replaced with the corresponding button number.

PROPERTIES

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = true

Invert = false

Type = Key or Mouse Button

PROPERTIES

Button Axes
On some platforms, some controller buttons are actually presented as axes. To handle these cases the buttons are mapped with
the names Gamepad AxisBtn 3 to Gamepad AxisBtn 10 with the following settings. The Axis property is set to the relevant
entry (3-10).

PROPERTIES

Gravity = 1000.0

Dead = 0.001

Sensitivity = 1000.0

Snap = true

Invert = false

Type = Joystick Axis

There are also 2 inverse button axes called Gamepad AxisBtnInv 6 and Gamepad AxisBtnInv 7 where the Invert property is
set to true.

See Also
NeoFPS Input System

Unity Input Settings

Unify Community Wiki - Gamepads

https://docs.unity3d.com/Manual/class-InputManager.html
https://wiki.unity3d.com/index.php?title=Xbox360Controller

Creating Custom Input Handlers
Overview
NeoFPS includes a number of example input handlers:

InputCharacterMotion
InputFirearm
InputGame
InputMeleeWeapon
InputThrownWeapon
InputInventory

Handlers are attached to objects that require a unique control sceme. For example, each firearm has an input handler that is
different from the handlers attached to melee weapons.

Handlers are context based and will not return any input when the context is not current.

FpsInputButton
NeoFPS uses a generated constant to define the available button/key inputs. This constant can be expanded based on your game
requirements by changing the ConstantsSettings and regenerating the constant.

Take care that reordering entries in the constant will break those values in the inspector as they are stored based on index. Code
will adapt to the changes in order, but inspector properties will need checking.

FpsInput Base Class
All input handlers derive from the FpsInput class. This controls context and exposes functions similar to Unity's Input class but
uses the FpsInputButton constant instead of key codes and button IDs in order to separate the input from the key bindings.

The following is a simple example input handler:

public class InputExample : FpsInput
{
 public override FpsInputContext inputContext
 {
 get { return FpsInputContext.Character; }
 }

 void Update()
 {
 if (!hasFocus)
 return;

 if (GetButtonDown (FpsInputButton.PrimaryFire))
 {
 // React to the fire button
 }
 }
}

See Also

InputAbilityFirearm MonoBehaviour
Overview
The InputAbilityFirearm behaviour reads the Ability button and uses it to fire the ModularFirearm that it's attached to. These
firearms can be placed in the character hierarchy outside of the inventory system to create things like shoulder mounter
launchers.

Inspector

Properties
The InputAbilityFirearm behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

Unity Input

Modular Firearms

https://docs.unity3d.com/Manual/class-InputManager.html

InputCharacterMotion MonoBehaviour
Overview
The InputCharacterMotion behaviour passes character input to the character motion controller.

Inspector

Properties
NAME T YPE D ES CR IPTION

Enable
Dodging Boolean Should double tapping a move direction dodge the character.

Dodge
Timeout Float Multiple taps of a direction within this time range register as a double tap.

Enable
Charged
Jump

Boolean Does holding the jump button charge up a jump or does the character dodge as soon as the button is pressed.

Jump Charge
Time Float The time it takes to charge up a full power jump if charged jumps are enabled.

Toggle Lean Boolean Toggle leaning or hold to lean.

Jump Key String The key to the jump trigger parameter in the character motion graph.

Jump Charge
Key String The optional key to the jump charge float parameter in the character motion graph. This is used for charging

stronger jumps.

Jump Hold
Key String The key to the jump hold switch parameter in the character motion graph. This is used for movement like

swimming or flying where holding jump moves up.

Crouch Key String The key to the crouch switch parameter in the character motion graph.

Crouch Hold
Key String The optional key to the crouch hold switch parameter in the character motion graph. This is used for

movement like swimming or flying where holding jump moves down.

Sprint Key String The key to the sprint switch parameter in the character motion graph.

Sprint Hold
Key String The key to the sprint hold switch parameter in the character motion graph.

Dodge Left
Key String The optional key to the dodge left trigger parameter in the character motion graph.

Dodge Right
Key String The optional key to the dodge right trigger parameter in the character motion graph.

Ability Key String The optional key to the "ability" trigger parameter in the character motion graph. This can be used for a variety
of uses such as dashes, teleports, etc.

NAME T YPE D ES CR IPTION

See Also
NeoFPS Input

Unity Input

The Motion Graph

https://docs.unity3d.com/Manual/class-InputManager.html

InputCharacterSlowMo MonoBehaviour
Overview
The InputCharacterSlowMo behaviour reads the Ability button input and toggles slow-motion effects via the character's
SlowMoSystem.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time Scale Float The time-scale to use for ability based slow-mo.

Drain Rate Float The rate to drain slow-mo charge (time scale will return to normal when charge reaches zero).

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputFirearm MonoBehaviour
Overview
The InputFirearm behaviour handles input for the modular firearms

Inspector

Properties
NAME T YPE D ES CR IPTION

Aiming Key String The property key for the character motion graph (switch parammeter).

See Also
NeoFPS Input

Unity Input

Modular Firearms

https://docs.unity3d.com/Manual/class-InputManager.html

InputGame MonoBehaviour
Overview
The InputGame behaviour is a placeholder input handler for game specific input (currently does nothing).

Inspector

Properties
The InputGame behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputInventory MonoBehaviour
Overview
The InputInventory manages the character inventory.

Inspector

Properties
NAME T YPE D ES CR IPTION

Repeat Delay Float The delay between repeating input when holding the next or previous weapon buttons.

Scroll Delay Float The delay between repeating input when rolling the mouse scroll wheel.

See Also
NeoFPS Input

Unity Input

The Inventory

https://docs.unity3d.com/Manual/class-InputManager.html

InputLockpick MonoBehaviour
Overview
The InputLockpick behaviour uses the NeoFPS input system to control a simple lock-picking mini-game.

Inspector

Properties
NAME T YPE D ES CR IPTION

Analogue Turn Rate Float The maximum turn rate of the pick object in degrees per second.

See Also
NeoFPS Input

Unity Input

LockPickPopup3D Behaviour

https://docs.unity3d.com/Manual/class-InputManager.html

InputMeleeWeapon MonoBehaviour
Overview
The InputMeleeWeapon behaviour sends input to a MeleeWeapon behaviour on the same object as this.

Inspector

Properties
The InputMeleeWeapon behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputMenu MonoBehaviour
Overview
The InputMenu behaviour is added to UI elements thst should block character input when visible. It adds an input context to the
FpsInputContext.Menu context when enabled and removes it when disabled.

Inspector

Properties
The InputMenu behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

InputThrownWeapon MonoBehaviour
Overview
The InputThrownWeapon behaviour sends input to a ThrownWeapon behaviour on the same game object.

Inspector

Properties
The InputThrownWeapon behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

InputWieldableTool MonoBehaviour
Overview
The InputWieldableTool behaviour sends input to a WieldableTool behaviour on the same game object.

Inspector

Properties
The InputWieldableTool behaviour has no properties exposed in the inspector.

See Also
NeoFPS Input

Wieldable Tools

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

MouseAndGamepadAimController MonoBehaviour
Overview
The MouseAndGamepadAimController behaviour handles mouse and gamepad input for moving the camera, including
smoothing and acceleration.

Inspector

Properties
NAME T YPE D ES CR IPTION

Yaw Transform Transform The transform to yaw when aiming. This should be a parent of the pitch transform.

Aim Yaw Transform Transform This optional transform detaches the character direction from the aim direction.

Steering Rate Float The time taken to turn the character to the aim-yaw direction (if Aim Yaw Transform is set). 0
= call LerpYawToAim() manually, 1 = instant.

Pitch Transform Transform The transform to pitch when aiming. This should be a child of the yaw transform.

Max Pitch Float The maximum pitch from horizontal the aimer can rotate.

Constraints Damping Float The amount of damping applied when rotating the camera to match constraints.

Constraints
Tolerance Float Once the angle outside constraints goes below this value, the camera will snap to the

constraints. Larger values will have a visible effect.

YawConstraintsFalloff Float An angle range from the yaw constraint limits where the input falls off. This gives the effect of
softer constraint limits instead of hitting an invisible wall.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

Mouse Turn Angle
Min Float Number of degrees for 1 unit of mouse movement if sensitivity is set to 0.

Mouse Turn Angle
Max Float Number of degrees for 1 unit of mouse movement if sensitivity is set to 1.

Relative To Transform The transform to calculate the input relative to. If the character can tilt left or right then this
transform is required to prevent tilt messing up the yaw calculations.

Mouse Smoothing
Buffer Size Float The number of frames to store and use for the mouse smoothing history.

Mouse Smoothing
Multiplier Min Float The weight multiplier for the previous frame when averaging if the smoothing is set to

minimum.

Mouse Smoothing
Multiplier Max Float The weight multiplier for the previous frame when averaging if the smoothing is set to

maximum.

Mouse Accel Speed
Multiply Min Float The base acceleration multiplier when acceleration is set to the minimum.

Mouse Accel Speed
Multiply Max Float The base acceleration multiplier when acceleration is set to the maximum.

Mouse Acceleration
Max Float The maximum multiplier acceleration can apply to the mouse input (0 means no maximum).

Mouse Acceleration
Type Dropdown Does mouse speed affect the input linearly or based on the square of the speed. Options are

Linear, Quadratic.

Analog Turn Angle
Min Float Number of degrees per second for the gamepad analog at its limit, if sensitivity is set to 0.

Analog Turn Angle
Max Float Number of degrees per second for the gamepad analog at its limit, if sensitivity is set to 1.

Analog Curve AnimationCurve The input curve for analog input. This can be used to define a deadzone, and damp smaller
movements.

NAME T YPE D ES CR IPTION

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-InputManager.html

NeoFpsInputManager ScriptableObject
Overview
The NeoFpsInputManager scriptable object handles the

Inspector

Properties
The NeoFpsInputManager inspector is split into multiple sections:

Input Buttons
The input buttons section defines the button or key style controls for the game, as well as their default key bindings.

NAME T YPE D ES CR IPTION

Default
Keyboard
Layout

Dropdown
The keyboard layout that the buttons below are set up for (the system converts to qwerty and then on to the
required layout when resetting to defaults. Available options are: Qwerty, Azerty, Qwertz, Dvorak,
Colemak.

Each button has the following properties:

NAME T YPE D ES CR IPTION

Name String The input button name, as it was referenced in code.

Display
Name String The name as shown in the key binding game options.

Category Dropdown The category of the button, used to organise the buttons in the key binding game options.

Context Dropdown The context is used to define when key bindings can be shared by multiple input buttons. An example is
weapons that can be aimed, vs weapons that have a secondary function.

Default
Keys Dropdown(s) The primary and secondary key bindings for the input button. These will be overriden by the player's key

binding settings.

Changing any of the buttons in the array or adding / removing constants requires the script to be regenerated. There are also a
number of predefined buttos that will also be added for use in menus (None, Menu, Back and Cancel).

The Generate FpsInputButton Constants button will generate the button constants script. Revert To Last Generated will undo
any changes to the buttons to the values when the script was last generated. Create Snapshot will store the current button setup,
allowing you to revert back to this state using the Revert To Snapshot button, The snapshot will be reset when the script is
generated.

Input Axes

The input axes are used to track analogue and variable axes in input handlers. The input axes are a generated constants script.
Changing any of the constants in the array or adding / removing constants requires the script to be regenerated.

NAME T YPE D ES CR IPTION

Mouse X Axis String The name of the mouse x axis in the Unity input settings.

Mouse Y Axis String The name of the mouse y axis in the Unity input settings.

Mouse Scroll Axis String The name of the mouse scroll wheel axis in the Unity input settings.

Constants String Array The names of the input axes.

Gamepad Profiles
Each gamepad profile under this section can be expanded to map its controls. The Name property is the profile name as shown in
the game's gamepad options. The Analogue Setup property defines what each analogue stick on the gamepad controls. The rest
of the properties are mappings for each of the gamepad buttons based on an XBox or PS4 style controller (2 analogues, triggers,
d-pad and buttons). Gamepads are detected when connected, and the primary gamepad will be mapped to the profile for player
character control. Each gamepad button can be mapped to multiple inputs. The Add Button... dropdown will show all of the valid
inputs that you can apply. If the gamepad button already has an input then this will only show inputs that are able to clash with
this one.

Input Contexts
Input contexts are used by input handlers to define which handler should process input and which should be ignored at any one
time. Pushing a context to the stack will only allow input handlers with that context to process input. The input context is a
generated constants script. Changing any of the constants in the array or adding / removing constants requires the script to be
regenerated.

NAME T YPE D ES CR IPTION

Constants String Array The names of the input contexts.

See Also
NeoFPS Input

Unity Input

https://docs.unity3d.com/Manual/class-InputManager.html

Interaction With The World
Overview
Unity and NeoFPS provide a number of ways for characters to interact with the world.

Interactive Objects
NeoFPS also has its own system of interactive objects. These allow the player to use items in order to trigger actions.

Doors are a good example of interactive objects, and NeoFPS includes a number of examples to use as reference.

Trigger Zones
Trigger zones are a fundamental concept for level design and game design as a whole. For information on how to make use of
them, please see the Unity documentation.

NeoFPS has a number of helper behaviours that simpllify using triggers to drive game mechanics.

The CharacterZoneTrigger and CharacterZoneTriggerPersistant fire code events when a character enters. These events are not tied
to a specific implementation of the NeoFPS character and the only requirement is that they inherit from the ICharacter interface.
Some scripting is required to use these behaviours.

The SoloCharacterZoneTrigger and SoloCharacterZoneTriggerPersistant fire Unity events when an FpsSoloCharacter enters. As
such, they require less scripting knowledge to use, but they are constrained to the specific character implementation or characters
that derive from this.

See Also
Interactive Objects

Doors and Locks

Unity Colliders

https://docs.unity3d.com/Manual/CollidersOverview.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/CollidersOverview.html

Doors and Locks
Overview
NeoFPS includes a number of example doors. Each of which can be opened and closed using either trigger zones or interactive
objects.

Kinematic Hinge Doors

These are swing doors that use simple procedural animation to open or close. They use an optional double hinge system to allow
for opening in both directions without overlapping into the frame.

Kinematic doors will push the player back and do not react to physics in the scene.

For more information see the KinematicHingeDoor reference.

Physics Hinge Doors

These are swing doors that use a Unity HingeJoint to drive the door's animation. These doors react physically to the environment
and to player actions.

Physics hinge doors can only open in one direction and will automatically latch when closed.

For more information see the PhysicsHingeDoor reference.

Sliding Doors

Sliding doors involve one or more sliding components and are animated procedurally.

For more information see the SlidingDoor reference.

Elevators Doors

Elevators are a complex system of interactive objects, moving platforms and sliding doors. The elevator cab moves up and down
between floors. Only the doors for the floor the cab is currently on can open and only when the cab has stopped moving. The cab
inner door sections are shared with each of the outer doors, making them sync up as any of those are opened.

For more information see the ElevatorController reference.

Locked Doors

NeoFPS also features a system for locking and unlocking doors. The majority of locks rely on the keyring system. The KeyRing is
an inventory object which tracks the key IDs that a character knows. This can include keycodes for entering into keypads, as well
as keys for physical locks. Picking up a keyring will merge the contents with the one in the character inventory.

When you set up a locked door, you specify a key ID. If no ID is set, then the door must be unlocked via an event or the scripting
API. As an example, events can be used to unlock a door on destroying an object. This is how the destructible padlock demo is set
up in the doors demo scene. The API is used by the lockpicking mini-game to unlock the door if the player has lockpicks in their
inventory but does not have the door's key.

The following components are available for working with locks and locked doors:

NAME D ES CR IPTION

KeyRing The keyring stores multiple key IDs.

LockedDoorInteractiveObject A version of the door component that lets you specify a lock ID.

LockedDoorTrigger A trigger zone that is used to open an attached door, but only if the character entering has a key
with the correct ID.

LockedTriggerZone A trigger zone that will fire events if a character with the correct key enters.

KeypadInteractiveObject An interactive object that is attached to a locked door, and displays a UI based KeypadPopup when
interacted with. Entering the correct code will unlock the door.

KeypadPopup The UI based keypad popup that is shown by the KeypadInteractiveObject.

PickableLockedDoorInteractiveObject A locked door that displays a lockpicking mini-game when interacted with if the character does not
have the correct key to unlock it.

LockpickPopup3D One implementation of the lockpicking mini-game that is used to unlock a locked door.

LockpickPopupUI A UI overlay for the LockpickPopup3D mini-game that displays remaining pick count and lock
difficulty.

See Also
Interactive Objects

Moving Platforms

Interactive Objects
Overview
Interactive objects are objects in the scene that the player can approach and use to perform some action.

Objects can specify whether to react instantly or once the use button has been held for a set period of time.

As the player looks at an interactive object, events are fired that allow custom highlights and effects to be added. This can be
utilised to show markers as in the sample assets, to change a shader setting, or to flag up an object with a HUD element.

Example interactive objects include doors, buttons and weapon pickups.

For more information see the CharacterInteractionHandler and InteractiveObject references.

Creating An Interactive Object

Interactive objects use events to call methods on attached components and perform some function.

To make an object interactive, first add a GameObject to its hierarchy and set its layer to InteractiveObjects. Next, add a
primitive collider to the new object and set its IsTrigger property to true. With the trigger collider set up, add an InteractiveObject
component to the object and set its hold duration (0 means the object will be used instantly when the player hits the use button,
anything else means the player needs to hold the use button down for that duration). Finally, set the OnUse event on the
component to point to a relevant method on one of the original object's components.

Alternatively, you can write a script that inherits from InteractiveObject and override the Interact (ICharacter character)
method to add implement the required behaviour.

See Also
CharacterInteractionHandler

InteractiveObject

AnimatedDoorHandle MonoBehaviour
Overview
The AnimatedDoorHandle behaviour is attached to a handle object and makes it twist and release when triggered.

Inspector

Properties
NAME T YPE D ES CR IPTION

Twist Angle Vector3 The desired euler angles when twisting the handle.

Twist Duration Float How long does the twist and release last.

Twist Curve AnimationCurve The animation curve for the twist.

Jiggle Angle Vector3 The maximum euler angles when shaking the handle (if the door is locked).

Jiggle Duration Float How long does the locked door jiggle last.

Jiggle Curve AnimationCurve The animation curve for the locked door handle jiggle.

See Also
Doors

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

CharacterInteractionHandler MonoBehaviour
Overview
The CharacterInteractionHandler behaviour is attached to a character and handles interaction with interactive objects in the scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Max
Distance Float The maximum distance from the camera to trigger interactions.

Tick Rate Int How frequently does the handler cast forward to check for an object. Smaller numbers mean more
responsive but more wasted calculations.

Layers LayerMask The layers that will be checked against when casting for valid interaction targets.

Error
Audio FpsCharacterAudio The character audio clip to play for an invalid interaction.

See Also
Interactive Objects

FpsCharacterAudioHandler

https://docs.unity3d.com/Manual/Layers.html

CharacterTriggerZone MonoBehaviour
Overview
The CharacterTriggerZone behaviour fires script events when a character enters and exits the collider.

Inspector

Properties
The CharacterTriggerZone behaviour has no properties exposed in the inspector.

See Also
Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

CharacterTriggerZonePersistant MonoBehaviour
Overview
The CharacterTriggerZonePersistant behaviour fires script events when characters enter and exit.

Inspector

Properties
The CharacterTriggerZonePersistant behaviour has no properties exposed in the inspector.

See Also
Layers And Tags

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

DoorInteractiveObject MonoBehaviour
Overview
The DoorInteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close.

Inspector

Properties
The DoorInteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Door Door The door to open (will accept any door that inherits from DoorBase).

See Also
InteractiveObject

DoorTrigger MonoBehaviour
Overview
The DoorTrigger behaviour is attached to an object with a trigger collider. It will open the specified door when a character enters,
and close it when they leave.

Inspector

Properties
NAME T YPE D ES CR IPTION

Door Door The door to open (will accept any door that inherits from DoorBase).

Characters Only Boolean Should the door only open for characters, not any collider.

See Also
Doors

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

ElevatorController MonoBehaviour
Overview
The ElevatorController behaviour manages a single elevator.

An elevator also requires an ElevatorMovingPlatform to function. This acts as the cab or platform and actually moves between
floors.

Each floor has a door that will be opened when the elevator cab arrives at that floor. If that door is a SlidingDoor behaviour, then
the cab's door geometry can be added to every floor as a door section. This means that the cab's inner doors will open in sync
with the relevant floor's outer doors.

The ElevatorController exposes the PressFloorButton(int floorIndex) function. This can be attached to InteractiveObject
events for the exterior call buttons and the cab interior floor buttons. If the current floor button is pressed the doors will open for
a set time. If another floor button is pressed the doors will close, the cab will move to the correct floor, and then the doors will
open for a set time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Starting
Floor Int

The floor the elevator cab starts on. It is best to move the cab to this position in the editor to
prevent it jumping there instantly which can cause problems if there are dynamic objects in the
cab.

Cab
Speed Float The movement speed of the cab.

Cab Open
Delay Float The dlay between reaching a floor and opening the doors.

Floor
Height Float The distance between floors.

https://docs.unity3d.com/Manual/UnityEvents.html

Door
Open
Duration

Float The duration the elevator doors will remain open unless interrupted.

Cab ElevatorMovingPlatform The moving platform of the elevator cab.

Floors Door Array The doors for each floor (will accept any door that inherits from DoorBase).

On Floor
Change UnityEvent An event that is invoked every time the cab switches floors. Useful for any elevator readout or

chime.

NAME T YPE D ES CR IPTION

See Also
Doors

ElevatorMovingPlatform

SlidingDoor

InteractiveObject

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

ElevatorMovingPlatform MonoBehaviour
Overview
The ElevatorMovingPlatform behaviour is a moving platform which works with the ElevatorController. It is attached to the
kinematic rigidbody that acts as the elevator cab or platform, and moves the character smoothly with it.

Inspector

Properties
The ElevatorMovingPlatform behaviour has no properties exposed in the inspector.

See Also
ElevatorController

Moving Platforms

InteractiveObject MonoBehaviour
Overview
The InteractiveObject behaviour is used to represent any object in the world that the player can interact with via the use button.

Inspector

Properties
NAME T YPE D ES CR IPTION

Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.

Interactable On Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

See Also
Interactive Objects

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

InteractiveObjectCornerMarkerrs MonoBehaviour
Overview
The InteractiveObjectCornerMarkerrs behaviour is used to highlight interactive objects when the player looks at them. It spawns
markers on the bounding box corners of the object. These are then displayed when the object is highlighted and hidden when it is
not.

Inspector

Properties
NAME T YPE D ES CR IPTION

Box
Colliders

BoxCollider
Array The box colliders of the InteractiveObject to attach markers to.

Corner
Object GameObject The prefab to use for the corner objects. 8 instances of this will be instantiated and placed at the corners

of the box.

See Also
InteractiveObject

Unity BoxCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-BoxCollider.html

InteractiveObjectMaterialMarker MonoBehaviour
Overview
The InteractiveObjectMaterialMarker behaviour is used to highlight interactive objects when the player looks at them. It fades in a
glowing pulse effect on the object as long as it has a material that uses the NeoFPS/Standard/InteractiveHighlightMetallic or
NeoFPS/Standard/InteractiveHighlightSpecular shaders.

Inspector

Properties
NAME T YPE D ES CR IPTION

Mesh Renderer MeshRenderer The mesh renderer of the object (used to set the relevant material property blocks).

Material Index Integer The index of the highlight material on the mesh renderer.

Transition Duration Float A fade time between he highlighted state and the non-highlighted state.

See Also
InteractiveObject

[Unity BoxCollider][unity-boxcollider]

https://docs.unity3d.com/Manual/class-MeshRenderer.html

KeypadInteractiveObject MonoBehaviour
Overview
The KeypadInteractiveObject behaviour is an extension of the InteractiveObject that can be used alongside locked doors. On using
the object it displays a keypad popup, and if the player enters the correct key code then the door will be unlocked.

Inspector

Properties
The DoorInteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.

Interactable On
Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

Door Door The door to open (will accept any door that inherits from DoorBase).

m_KeypadPopup KeypadPopup The keypad UI popup to show.

m_PassCode Integer Array The key code to unlock the door.

Lock Ids String Array A unique ID for this lock. IF the player has an equivalent key in their inventory key ring then the digits
will be shown with the popup.

m_StartLocked Boolean Should the door be locked on start.

NAME T YPE D ES CR IPTION

See Also
InteractiveObject

KeypadPopup Behaviour

KeyRing Behaviour

KeypadPopup MonoBehaviour
Overview
The KeypadPopup behaviour is a UI popup which can be displayed for locked doors and items. Events are fired for correct and
incorrect passcodes. If the passcode is known, then it will be displayed alongside the keypad.

Inspector

Properties
NAME T YPE D ES CR IPTION

Starting Selection Selectable The initial UI element to select when the popup is shown.

Readout Text Text Output text when typing code.

Missing Characters Dropdown The character to use for missing digits in the code.

Digit Buttons Button Array The number buttons of the keypad in numberic order (eg 0,1,2,3,4...).

Starting Digit Integer The lowest numbered button.

Delete Button Button The delete button is used to delete the last input digit.

Clear Button Button The clear button clears all typed digits.

Completion Delay Float The time after the last digit is input before the popup closes.

https://docs.unity3d.com/Manual/script-Selectable.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Button.html
https://docs.unity3d.com/Manual/script-Button.html
https://docs.unity3d.com/Manual/script-Button.html

Pass Audio AudioClip The audio clip to play if the correct code is input.

Fail Audio AudioClip The audio clip to play if an incorrect code is input.

Close On Fail Boolean Should the popup close after the wrong code is input or allow the player to enter another.

Discovered Text Text If the keycode is known it will be shown here.

Discovered Object GameObject If the keycode is known then this object will be activated.

NAME T YPE D ES CR IPTION

See Also
Doors

Sample UI

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/script-Text.html

KeyRing MonoBehaviour
Overview
The KeyRing behaviour is an inventory item which stores keys and keycodes. Picking up a keyring will add it to the character's
inventory if they do not already have one, or merge the contents with the existing one if they do.

Inspector

Properties
NAME T YPE D ES CR IPTION

Starting Keys String Array A list of key IDs this keyring starts with.

See Also
Doors

Inventory

KinematicHingeDoor MonoBehaviour
Overview
The KinematicHingeDoor behaviour handles opening, closing and animating a basic hinge door. The door rotates around 2 points
depending on which direction it opens to prevent the door object overlapping with its frame.

Inspector

Properties
NAME T YPE D ES CR IPTION

Max Angle Float The maximum open angle of the door.

Open Duration Float The time it takes to go from fully closed to fully open and vice versa.

Open Curve AnimationCurve The interpolation curve for opening and closing the door.

Positive
Rotation
Transform

Transform The transform point for the positive rotation of the door (defaults to the transform for the
object this behaviour is attached to).

Negative
Rotation
Transform

Transform The transform point for the negative rotation of the door. This allows hinges at both edges of
a door to prevent overlap. If this is null the door will only open on one side.

Direction
Transform Transform A fixed transform used to check which side of the doorway a character is on (defaults to the

transform for the object this behaviour is attached to).

Handle AnimatedDoorHandle An optional animated door handle. This will turn and release when the door is opened.

Audio Open AudioClip The audio to play when the door is unlatched and opened.

Audio Close AudioClip The audio to play when the door closes and latches.

Audio Locked AudioClip The audio to play when attempting to open the door while locked.

Audio Unlock AudioClip The audio to play when unlocking or locking the door.

See Also
Doors

AnimatedDoorHandle

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html

LockedDoorInteractiveObject MonoBehaviour
Overview
The LockedDoorInteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close. If the
door is locked then the character must have a keyring inventory item with the correct keycode to unlock the door before it can be
opened.

Inspector

Properties
The DoorInteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.

Interactable On Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

Door Door The door to open (will accept any door that inherits from DoorBase).

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

Lock Ids String
Array

An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to
unlock. If this is empty then the door must be unlocked via events or the API. IDs can be unique
to this lock, or shared between multiple for things like skeleton keys.

m_StartLocked Boolean Should the door be locked on start.

m_OpenOnUnlock Boolean Should the door be opened when it's unlocked.

m_TooltipLockedAction String The tooltip action to use when the door is locked. Use the open action toolrip for the other tooltip
action.

NAME T YPE D ES CR IPTION

See Also
InteractiveObject

KeyRing Behaviour

LockedDoorTrigger MonoBehaviour
Overview
The LockedDoorTrigger behaviour is attached to an object with a trigger collider. It will open the specified door when a character
with the correct key code in their inventory key ring enters, and close it when they leave.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lock
Ids

String
Array

An array of IDs for this lock. The player must have an equivalent key in their inventory [key ring][3] to unlock. If
this is empty then the door must be unlocked via events or the API. IDs can be unique to this lock, or shared
between multiple for things like skeleton keys.

On
Trigger
Enter

UnityEvent The event that is fired when a character enters the trigger collider.

On
Trigger
Exit

UnityEvent The event that is fired when a character exits the trigger collider.

Door Door The door to open (will accept any door that inherits from DoorBase).

See Also
Doors

KeyRing Behaviour

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

LockedTriggerZone MonoBehaviour
Overview
The LockedTriggerZone behaviour is a trigger zone that only activates if the character has a specific key code in their inventory
key ring.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lock
Ids

String
Array

An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to activate the
trigger zone. IDs can be unique to this lock, or shared between multiple for things like skeleton keys.

On
Trigger
Enter

UnityEvent The event that is fired when a character enters the trigger collider.

On
Trigger
Exit

UnityEvent The event that is fired when a character exits the trigger collider.

See Also
KeyRing Behaviour

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

LockPickPopup3D MonoBehaviour
Overview
The LockPickPopup3D behaviour is a specific lockpicking mini-game in the style of fallout or dying light. Your scene can contain
multiple lock-picking minigames, all differentiated by their IDs, as long as their scripts inherit from the LockPickPopup base class.

Inspector

Properties
NAME T YPE D ES CR IPTION

UI Prefab LockpickPopupUI The UI popup prefab to be drawn over the top of this minigame using the prefab popup
container system.

Lock Transform Transform The transform of the lock barrel.

Rotation Speed Float The rotation speed of the lock barrel when tensioned (in degrees per second).

Lock Pick
Transform Transform The transform of the lock pick object. Its pivot should be lined up with the hole of the lock.

Min Safe Range Float The smallest size the safe range for the pick can be (at highest difficulty).

Max Safe Range Float The maximum size the safe range for the pick can be (at lowest difficulty).

Min Falloff Float The smallest falloff outside the safe range, where the lock can rotate but will still snag (at highest
difficulty).

Max Falloff Float The largest falloff outside the safe range, where the lock can rotate but will still snag (at lowest
difficulty).

Pick Break Ticks Integer The number of fixed update ticks where the pick is catching before it will break.

Jiggle Min Vector3 The minimum jiggle angle when the pick catches. It will bounce between this and max.

Jiggle Max Vector3 The maximum jiggle angle when the pick catches. It will bounce between this and min.

Jiggle Rate Float The number of shakes per second when catching.

Jiggle Start
Damping Float The amount of time it takes for the jiggle to fade in when the lock catches.

Jiggle End
Damping Float The amount of time it takes for the jiggle to fade out once tension is released.

NAME T YPE D ES CR IPTION

See Also
Doors

LockpickPopupUI Behaviour

LockPickPopupUI MonoBehaviour
Overview
The LockPickPopupUI behaviour is attached to an object with a trigger collider. It will open the specified door when a character
enters, and close it when they leave.

Inspector

Properties
NAME T YPE D ES CR IPTION

Difficulty
Text Text The UI text element that will show the difficulty rating of the lock.

Difficulty
String String The pick difficulty prefix.

Pick Count
Group GameObject The parent object of the UI elements that show the pick count. If the lock does not use inventory picks, this

object and its children will be hidden.

Pick Count
Text Text The text readout for the remaining pick count.

Pick String String The pick count prefix string.

See Also
Doors

Sample UI

LockpickPopup3D Behaviour

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html

PhysicsHingeDoor MonoBehaviour
Overview
The PhysicsHingeDoor behaviour handles latching and release of a physical hinge based door.

Inspector

Properties
NAME T YPE D ES CR IPTION

Reverse
Direction Boolean Reverses the door opening direction.

Open Angle Float The open limit of the door. When opening, force will be applied until the door reaches this
angle.

Open Velocity Float The target speed to move the door.

Open Force Float The force applied to the door when opening or closing.

Timeout Float A time limit for force to be applied. If the door is blocked, it would never reach full open or
closed and this value prevents it trying forever.

Auto Latch
Position Float The normalised position (0 to 1 translates to closed to full open angle) at which the door will

latch when closing.

Auto Latch
Block Time Float Prevent latching for a short perios when opened.

Hinge HingeJoint The hinge joint of the door.

Handle AnimatedDoorHandle An optional animated door handle. This will turn and release when the door is opened.

Audio Open AudioClip The audio to play when the door is unlatched and opened.

Audio Close AudioClip The audio to play when the door closes and latches.

Audio Locked AudioClip The audio to play when attempting to open the door while locked.

Audio Unlock AudioClip The audio to play when unlocking or locking the door.

https://docs.unity3d.com/Manual/class-HingeJoint.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

See Also
Doors

AnimatedDoorHandle

Unity HingeJoint

https://docs.unity3d.com/Manual/class-HingeJoint.html

PickableLockedDoorInteractiveObject MonoBehaviour
Overview
The PickableLockedDoorInteractiveObject behaviour is an extension of the InteractiveObject used to trigger door open and close.
If the door is locked then there are 2 ways to unlock it. Firstly, if the character has a keyring invnentory item with the correct
keycode, then they will unlock the door instantly. Secondly, if they do not have the correct keycode but do have lockpick items in
their inventory, then using the door will show a lock-picking minigame popup.

Inspector

Properties
The DoorInteractiveObject inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Tooltip Name String The name of the item in the HUD tooltip.

Tooltip Action String A description of the action for use in the HUD tooltip, eg pick up.

Interactable On Start Boolean Can the object be interacted with immediately.

Hold Duration Float How long does the use button have to be held for interaction.

On Used UnityEvent An event that is triggered when the object is used.

On Cursor Enter UnityEvent An event that is triggered when the player looks directly at the object.

On Cursor Exit UnityEvent An event that is triggered when the player looks away from the object.

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

Door Door The door to open (will accept any door that inherits from DoorBase).

Lock Ids String
Array

An array of IDs for this lock. The player must have an equivalent key in their inventory key ring to
unlock. If this is empty then the door must be unlocked via events or the API. IDs can be unique
to this lock, or shared between multiple for things like skeleton keys.

Lockpick ID String The ID for the lockpick to use. This allows for multiple lockpick styles in a single scene.

Lockpick Difficulty Float The difficulty of this specific lock.

Requires Pick Item Boolean Does the character require a lockpick item in their inventory.

m_StartLocked Boolean Should the door be locked on start.

m_OpenOnUnlock Boolean Should the door be opened when it's unlocked.

m_TooltipLockedAction String The tooltip action to use when the door is locked. Use the open action toolrip for the other tooltip
action.

NAME T YPE D ES CR IPTION

See Also
Doors

InteractiveObject

KeyRing Behaviour

LockPickPopup3D Behaviour

SlidingDoor MonoBehaviour
Overview
The SlidingDoor behaviour is used to control and animate moving door sections.

Inspector

Properties
NAME T YPE D ES CR IPTION

Open Duration Float The time it takes to go from fully closed to fully open and vice versa.

Animation Curve AnimationCurve The interpolation curve for animating the door sections.

Sections Door Section Array One or more door sections. All will move when the door opens and closes.

Audio Open [AudioClip][unity-audioclip] The audio to play when the door is unlatched and opened.

Audio Close [AudioClip][unity-audioclip] The audio to play when the door closes and latches.

Audio Locked [AudioClip][unity-audioclip] The audio to play when attempting to open the door while locked.

Audio Unlock [AudioClip][unity-audioclip] The audio to play when unlocking or locking the door.

Door Section
NAME T YPE D ES CR IPTION

Transform Transform The door section transform.

Offset Vector3 The offset from starting (closed) position when opened.

See Also
Doors

Unity AnimationCurve

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

SoloCharacterTriggerZone MonoBehaviour
Overview
The SoloCharacterTriggerZone behaviour fires script events when a character enters and exits the collider.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Trigger Enter UnityEvent The event that is fired when a character enters the trigger collider.

On Trigger Exit UnityEvent The event that is fired when a character exits the trigger collider.

See Also
Layers And Tags

Unity Events

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

SoloCharacterTriggerZonePersistant MonoBehaviour
Overview
The SoloCharacterTriggerZonePersistant behaviour fires unity events when characters enter and exit.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Trigger Enter UnityEvent The event that is fired when a character enters the trigger collider.

On Trigger Exit UnityEvent The event that is fired when a character exits the trigger collider.

On Trigger Stay UnityEvent The event that is fired each frame a character stays inside the trigger collider.

See Also
Layers And Tags

Unity Events

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

TriggerZoneColliderCounter MonoBehaviour
Overview
The TriggerZoneColliderCounter behaviour tracks and counts all the colliders that enter it with the specified layer mask.

Inspector

Properties
NAME T YPE D ES CR IPTION

Valid Layers LayerMask The valid layers for objects to track. Colliders on another layer will be ignored.

See Also
Layers And Tags

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

Audio Systems
Overview
NeoFPS has a number of audio systems for specific cases. Some are specific or important to first person shooter games, while
others are features that are missing from Unity and have had simple versions implemented in order to provide a more complete
game experience out of the box.

Systems
Footsteps
In first person games, more than any other genre, footsteps are an important part of the immersive experience. NeoFPS uses a
number of tools that tie footsteps to the character motion states and give designers full control over how the character's feet
interact with the world.

Character Audio
NeoFPS has a customisable system that allows code and events to trigger character specific audio clips. The clips are identified
using generated constants, which allows developers to expand the availabe clips with ease.

Character audio is implemented through a combination of the FpsCharacterAudioHandler MonoBehaviour and the
FpsCharacterAudioData ScriptableObject.

Surface Audio
NeoFPS has a simple in-development system for identifying surfaces (LINK). The SurfaceAudioData ScriptableObject is used in a
number of places throughout NeoFPS to specify audio for things such as footsteps, bullet hits and slides.

Contact Audio
The ClipSetContactAudioHandler MonoBehaviour is a simple component that can be added to physics objects in order to play
audio on collisions. The audio is picked at random from a set of valid clips. You can also use a SurfaceContactAudioHandler
MonoBehaviour which uses the surface system to pick the correct audio to play.

See Also
Surfaces

Generated Constants

Footsteps
Overview
Footsteps in NeoFPS are handled using a combination of MonoBehaviours and motion graph behaviours. This allows a great deal
of flexibility and control over when and how footsteps are triggered. For more information on the specific behaviours, follow the
links below.

Footstep Implementation
Basic Footsteps
The motion graph SurfaceFootstepAudioSystem is component added to the character that is used for basic footsteps on various
surfaces. It is controlled via the SurfaceFootstepAudioBehaviour motion graph behaviour. This has properties for adjusting the
frequency of the steps, the surface audio library to use, and parameters such as the cast direction and distance for surface checks.
For each step taken it will choose an audio clip at random from the surface audio library to play. The behaviour can be attached to
multiple motion graph states with different properties, so the system can be used to trigger different audio clips based on the
character's motion state such as running, sneaking, walking, etc. The component on the character also fires a C# event on steps
that can be used to tie it in to other systems.

Sliding
The motion graph SlidingAudioBehaviour is used to play looping audio when the character is sliding on various surfaces.
Properties are available to change the surface audio library, and to pitch shift the audio based on the speed of the character.

Lift-offs
The motion graph SurfaceAudioBehaviour can be used to trigger surface based audio clips in various situations, including jump
lift-offs. It can be combined with the motion graph PlayCharacterAudioBehaviour to trigger character grunts and exertion noises
when jumping.

Ladders
The motion graph LadderAudioBehaviour is used to play audio clips as the character ascends and descends a ladder. It has
properties to control the frequency of the audio clips based on the climb speed, as well selecting the relevant surface audio
library.

Landings
Landings are handled slightly differently, as they need to react to the force of the impact in order to add flavour such as bone
crunches or grunts for very heavy landings. When the character lands, the motion controller fires impact events that can be
handled by any behaviour. The demo character implements this feature and has properties for soft and hard landings.

See Also
The Motion Graph

Motion Graph Behaviours

Motion Graph FootstepAudioBehaviour

Motion Graph SlidingAudioBehaviour

Motion Graph SurfaceAudioBehaviour

Motion Graph PlayCharacterAudioBehaviour

Motion Graph LadderAudioBehaviour

file:///C:/CoreProjects/NeoFPS/websites/documentation/latest/_site-pdf/_raw/_site-pdf/manual/audioref-mb-surfacefootstepaudiosystem.html
file:///C:/CoreProjects/NeoFPS/websites/documentation/latest/_site-pdf/_raw/_site-pdf/manual/audioref-mb-surfacefootstepaudiosystem.html

SurfaceAudioData

FPS Characters

AnimationEventAudioPlayer MonoBehaviour
Overview
The AnimationEventAudioPlayer behaviour is attached to objects with an Animator component and handles any animation events
sent.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Source AudioSource The audio source to play from.

The Add New Set button will add a new audio clip set to the component with the following properties:

NAME T YPE D ES CR IPTION

Key String The name of the clip set, used as the parameter of the animation events

Next
Clip Dropdown How the next clip should be selected. Available options are: Sequential loops through the clips in order while

Random selects a clip at random.

Volume Float The volume to play the clip at.

Clips AudioClip
Array The audio clips to choose from.

Triggering Audio Clips
The audio clips are triggered by adding animation events to the animation clips of the animated object. This is usually done
through the import settings in the inspector.

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

The above example has an event set up that plays an audio clip from the "Shoot" set. The important properties are the Function
property which must be set to Play Clip, and the String property which should match the Key in the AnimationEventAudioPlayer.

See Also
Animation Events

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

AudioTimeScalPitchBend MonoBehaviour
Overview
The AudioTimeScalPitchBend behaviour alters the pitch of an audio source to match changes to time scale. Pitch also affects the
duration of an audio clip, so halving the pitch will double the duration. By default, Unity does not slow audio to match the time
scale, so this behaviour compensates for that.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Sources AudioSource Array The audio sources to modify based on time scale.

https://docs.unity3d.com/Manual/class-AudioSource.html

ClipSetContactAudioHandler MonoBehaviour
Overview
The ClipSetContactAudioHandler behaviour is attached to physics objects and triggers audio clips when they collide with other
objects or the environment.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min
Impulse Float The minimum impulse between this object and the object it collides with for an impact noise to be

played.

Min Delay Float The minimum time between impact sounds.

Clips AudioClip
Array The audio clips to choose from on impact.

https://docs.unity3d.com/Manual/class-AudioClip.html

FpsCharacterAudioData ScriptableObject
Overview
The FpsCharacterAudioData scriptable object specifies audio to play for the different character audio keys.

Inspector

Properties
The data is divided into sections for each key in the FpsCharacterAudio generated constant. Each section contains the following
properties:

NAME T YPE D ES CR IPTION

Audio Clips AudioClip Array A selection of audio clips to pick from. Will be selected at random to prevent repetition.

Volume Float The volume to play the clip at.

Min Spacing Float New clips will be blocked from playing for this duration after a clip plays. Prevents rapid fire audio.

See Also
Generated Constants

Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

FpsCharacterAudioHandler MonoBehaviour
Overview
The FpsCharacterAudioHandler plays audio clips from a library of character audio files.

Inspector

Properties
NAME T YPE D ES CR IPTION

Audio Data FpsCharacterAudioData The character audio library to use.

Mixer
Group MixerGroup The mixer group for character sound effects.

Sources AudioSource Array The sources to use for playing audio. One for each FpsCharacterAudioSource generated
constant.

See Also
FpsCharacterAudioData

Generated Constants

https://docs.unity3d.com/Manual/class-AudioMixer.html
https://docs.unity3d.com/Manual/class-AudioSource.html

NeoFpsAudioManager ScriptableObject
Overview
The NeoFpsAudioManager scriptable object specifies the audio mixer and outputs for audio in a NeoFPS project, and provides
pooled audio sources for different effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Mixer [AudioMixer][unity-
audiomixer] The audio mixer for the project.

Master Group [AudioMixerGroup][unity-
audiomixer] The audio mixer group that controls the overall volume.

Spatial Effects Group [AudioMixerGroup][unity-
audiomixer]

The audio mixer group used to control volumes and filters for spatial sound
effects.

Ui Effects Group [AudioMixerGroup][unity-
audiomixer] The audio mixer group used to control volumes and filters for UI sound effects.

Ambience Group [AudioMixerGroup][unity-
audiomixer]

The audio mixer group used to control volumes and filters for ambient sound
effects and looping ambient audio.

Music Group [AudioMixerGroup][unity-
audiomixer] The audio mixer group used to control volumes and filters for music.

Master Volume Key String The name of the master volume parameter on the audio mixer.

Effects Volume Key String The name of the volume parameter that controls sound effects volume.

Ambience Volume Key String The name of the volume parameter on the audio mixer for ambient loops and
effects.

Music Volume Key String The name of the volume parameter on the audio mixer for the music audio.

Num Spatial Effect
Sources Integer The number of pooled audio sources for spatial sound effects.

Spatial Source Prefab [AudioSource][unity-
audiosource]

An optional prefab for the spatial effects sources. If not provided then the objects
will be created from scratch.

Num Ambience One
Shot Sources Integer The number of pooled audio sources for ambient sound effects.

Ambience Source
Prefab

[AudioSource][unity-
audiosource]

An optional prefab for the ambience effects sources. If not provided then the
objects will be created from scratch.

NAME T YPE D ES CR IPTION

See Also
Surfaces

Generated Constants

[Unity AudioClip][unity-audioclip]

[AudioMixer][unity-audiomixer]: https://docs.unity3d.com/Manual/class-AudioMixer.html [unity-audioclip]:
https://docs.unity3d.com/Manual/class-AudioClip.html [unity-audiosource]: https://docs.unity3d.com/Manual/class-
AudioSource.html

SurfaceAudioData ScriptableObject
Overview
The SurfaceAudioData scriptable object specifies audio clips for each surface type. It is used to organise clip sets such as impact
sounds, footsteps and slides.

Inspector

Properties
The SurfaceAudioData entries are grouped based on the Surface generated constant. Each surface has the following properties.

NAME T YPE D ES CR IPTION

Volume Float The volume to play the clips at.

Clips AudioClip Array Audio clips (will be picked at random).

See Also
Surfaces

Generated Constants

Unity AudioClip

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

SurfaceContactAudioHandler MonoBehaviour
Overview
The SurfaceContactAudioHandler behaviour is attached to physics objects triggers sound effects when they collide with other
objects or the environment. Playing the audio itself is handled by the SurfaceManager.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Impulse Float The minimum impulse between this object and the object it collides with for an impact noise to be played.

Min Delay Float The minimum time between impact sounds.

See Also
Surface Manager

Inventory
Overview
NeoFPS has its own inventory system that it uses for all of its weapons and items. The inventory is implemented as separate
components to the itemas themselves so it should be easy to replace with an alternative system if desired.

The NeoFPS inventory system is implemented in 2 parts: inventory and quickslots.

Inventory

The inventory is a container of items. It manages item ownership and quantities and invokes events to react to changes.

The demo implementations of the inventory are not fixed. The inventory is referenced externally via the IInventory interface,
meaning that it can be swapped out with another implementation and the system as a whole will adapt.

Quick Slots

The quick-slots system binds items to slots that can be mapped to inputs. In a simple, traditional FPS system that would mean
each slot being mapped to a number key on the keyboard. It could also mean a slot for each direction on a game controller d-pad.

As with the inventory, the implementation is not fixed. It is referenced externally via the IQuickSlots interface and, like the
inventory, the implementation can be swapped and the system will adapt.

NeoFPS comes with a number of example inventories that implement quick slots in different ways to model popular first person
shooters. For more information see Inventory Examples.

Items And Quick-Slot Items
Items are objects that implement the IInventoryItem interface. The interface has properties for quantity and ownership, along
with methods that are called when added or removed from an inventory.

Quick-Slot items implement the IQuickSlotItem interface. This has properties and methods for selection and for dropping.

Inventory Pickups
Inventory items pickups can be interactive, meaning you need to look at them and hit use, or contact based, meaning you need to
walk over them.

The simplest way to create an inventory pickup is using the Pickup Wizard in the NeoFPS Hub. There are also specialised pickups
for modular firearms that track ammo count, and for other wieldable items such as melee and thrown weapons. These can all be
created from the wizard.

The Inventory Database

The inventory database is a system for managing the inventory keys used to identify each unique item. The database is made up
of tables, which are used to gather inventory IDs together. The inventory system used to use GeneratedConstant based keys. The
new database system has one fixed table that references the old FpsInventoryKey constants and uses them as keys. This allows
you to use the constants to reference inventory item IDs directly in code - useful for items like the keyring, which is a unique, but
constant item.

You can create an inventory database table for your project by right-clicking in the project browser and selecting
Create/NeoFPS/Inventory/Database Table. This allows you to add your own keys without the risk of clashing with any changes to
the NeoFPS demo inventory keys in future updates. Once you have created a table, add it to the database via the NeoFPS Hub:
Managers/Inventory Database.

To assign an ID to an object, clicking the ID button will show the inventory database browser.

From here you can browse the different tables to select an ID. You can filter by name using the filter field at the top. You can also
add new keys from the browser itself. In the NewEntry section, select the table you want to add to, input a name, and hit Add
New Entry button. This will add the a new entry to the selected table, and apply its ID to the object you are editing.

Inventory Loadouts
Inventory loadouts are a simple list of inventory objects that should be added to a character's inventory.

You can assign this to a game mode component, and it will apply the loadout on spawning a player character instead of using the
character's starting items.

See Also
Inventory Examples

Inventory Examples
Overview
NeoFPS comes with a number of example inventories that are modelled after popular first person shooters.

Inventory Base
All of the example inventories inherit from a single base class FpsInventoryBase . This base class handles both the inventory
storage and the quick-slots. It also provides inspector properties for initialising the inventory's starting contents and the priority
order for the quick slots.

Items and Wieldables
The example inventory items inherit from a single base class FpsInventoryItem . The example inventory does not require that the
items it stores use this behaviour, but all of the provided examples do.

The FpsInventoryWieldable behaviour is a subclass of FpsInventoryItem that also inherits IQuickSlotItem . It is intended as
the base for all items that the character holds and uses such as weapons and consumable items (health packs, tools, scanners, etc).

Standard PC Inventory

The "standard" quick-switch inventory emulates old-school FPS games. Each weapon has a set slot corresponding to the keyboard
keys 1 to 0. You can also cycle through the weapons using the mouse wheel and inputs for previous and next weapon. Lastly, the
inventory also implements a quick-switch system so you can switch between your current and last weapon as in games such as
Counter Strike.

Most of the NeoFPS demos use a character with the standard inventory. You can find weapon and item prefabs at the following
locations:

Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\QuickSwitchInventory for the first person weapons and pickups/drops.
Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\Ammo for the ammo pickups

Stacked Inventory

The stacked inventory emulates games like half-life with larger, more structured inventories than the older FPS games could
manage. Weapons and items are organised into stacks. Each stack holds a specific type of weapon such as melee, pistols, heavy,
thrown. Selecting the same slot multiple times cycles through the weapons in that group. The mouse wheel and previous / next
weapon inputs cycle through each of the weapons in a stack before mmoving onto the previous / next stack slots. The order of the
weapons within a stack is fixed.

The slot index of an item added to a stacked inventory must take the stack into account. The maximum stack size is 10. Slot indices

0-9 fall in the first stack, 10-19 in the second, 20-29 in the third, and so on.

The stacked inventory requires a different HUD setup to the others due to how it organises the items.

This inventory is also well suited to console based FPS games where, for example, each direction on the D-Pad is a stack.

The relevant assets for the stacked inventory can be found at the following locations:

Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\FeatureDemo_InventoryStacked.unity for a demo
scene using the inventory
Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_CharacterStackedInventory.prefab for a
player character that uses the stacked inventory
Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\StackedInventory for the first person weapons and pickups/drops.
Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_HUDStacked.prefab for a replacement
inventory HUD that is set up for stackedd inventories

Swappable Inventory

The swappable inventory emulates FPS games that keep a constrained inventory such as 2 primary weapons, one melee and one
throwable. This is a common inventory setup since more FPS games have started launching on console alongside or even ahead
of PC.

The swappable inventory groups weapons and items into types similarly to the stacked inventory. A group can hold a fixed
amount of weapons. If the group is full then the last selected weapon from that group is dropped when the character picks up
another weapon of that type. In simple cases a group will only be able to hold a single weapon or item. A group can also be larger,
and will encompass multiple quick slots. In this case, the order of weapons within the group is defined by the order they are
dropped and picked up only.

The relevant assets for the swappable inventory can be found at the following locations:

Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\FeatureDemo_InventorySwappable.unity for a
demo scene using the inventory
Assets\NeoFPS\Samples\SinglePlayer\Scenes\FeatureDemos\Inventory\Inventory_CharacterSwappableInventory.prefab for
a player character that uses the swappable inventory
Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\SwappableInventory for the first person weapons and pickups/drops.

See Also
Inventory

FpsInventoryAmmo MonoBehaviour
Overview
The FpsInventoryAmmo behaviour is an ammo type for the modular firearms that is stored in a character's inventory. It allows the
ammo to be shared between different weapons.

Inspector

Properties
The FpsInventoryAmmo behaviour inherits the properties from FpsInventoryItem. It also adds the following:

NAME T YPE D ES CR IPTION

Ammo Type SharedAmmoType The type of ammo.

See Also
FpsInventoryItem

Modular Firearms

SharedAmmoType

FpsInventoryItem MonoBehaviour
Overview
The FpsInventoryItem behaviour is an object that can be stored in a character inventory.

Inspector

Properties
NAME T YPE D ES CR IPTION

Quantity Int The quantity of items in the stack.

On Add To Inventory UnityEvent An event that is invoked when the object is first added to the character inventory.

On Remove From
Inventory UnityEvent An event that is invoked when the object is completely removed from the character

inventory.

On Quantity Change UnityEvent An event that is invoked when the quantity of objects in the stack changes.

See Also
Inventories

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

FpsInventoryQuickSwitch MonoBehaviour
Overview
The quick-switch inventory is a standard PC FPS inventory. Pressing the appropriate number button selects the item in that quick
slot. Pressing the switch weapons button will switch to the previous selected item.

Inspector

Properties
NAME T YPE D ES CR IPTION

Wieldable Root Transform The transform to set as the parent of any objects added to the inventory.

Wieldable Root
Scale Float A scale value for the wieldable root and any child items. Used to prevent weapons clipping

into the scenery.

https://docs.unity3d.com/Manual/class-Transform.html

Drop Transform Transform A proxy transform used to set the drop position and rotation when a wieldable item is
dropped.

Drop Velocity Vector3 The velocity of any dropped items relative to the character forward direction.

Holster Action Dropdown What should be selected when you holster your weapon. Options are Backup Item,
Nothing.

Slot Count Int The number of item quick slots.

Starting Slot
Choice Dropdown The selection method for the starting slot. Options are Ascending, Descending, Custom

Order.

Starting Order* Int Array This array specifies the selection order on start. The highest on the list that exists will be the
starting selection.

Backup Item FpsInventoryWieldable An item to use if no wieldables are in the inventory. This could be empty hands or an infinite
weapon such as a knife.

Empty As
Backup Boolean If this is true, then selecting an empty slot will switch to the backup item.

Starting Items FpsInventoryItem
Array A selection of inventory items to be added to the inventory on start.

Duplicate
Behaviour Dropdown What to do when trying to add an item to the inventory that already exists. Options are

Reject, DestroyOld, DropOld.

NAME T YPE D ES CR IPTION

* This property is only visible if the starting slot choice is set to Custom Order.

See Also
Inventory Examples

FpsInventoryItem

FpsInventoryWieldable

https://docs.unity3d.com/Manual/class-Transform.html

FpsInventoryStacked MonoBehaviour
Overview
The stacked inventory groups items together into stacks. Selecting a stack multiple times cycles through the items in it. Similar to
the inventory system in Half-Life.

Inspector

Properties
NAME T YPE D ES CR IPTION

Wieldable Root Transform The transform to set as the parent of any objects added to the inventory.

Wieldable Root
Scale Float A scale value for the wieldable root and any child items. Used to prevent weapons clipping

into the scenery.

Drop Transform Transform A proxy transform used to set the drop position and rotation when a wieldable item is
dropped.

Drop Velocity Vector3 The velocity of any dropped items relative to the character forward direction.

Holster Action Dropdown What should be selected when you holster your weapon. Options are Backup Item,
Nothing.

Stack Count Int The number of available stacks.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

Starting Slot
Choice Dropdown The selection method for the starting slot. Options are Ascending, Descending, Custom

Order.

Starting Order* Int Array This array specifies the selection order on start. The highest on the list that exists will be the
starting selection.

Backup Item FpsInventoryWieldable An item to use if no wieldables are in the inventory. This could be empty hands or an infinite
weapon such as a knife.

Empty As
Backup Boolean This setting does not currently work with the stacked inventory.

Starting Items FpsInventoryItem
Array A selection of inventory items to be added to the inventory on start.

Duplicate
Behaviour Dropdown What to do when trying to add an item to the inventory that already exists. Options are

Reject, DestroyOld, DropOld.

NAME T YPE D ES CR IPTION

* This property is only visible if the starting slot choice is set to Custom Order.

See Also
Inventory Examples

FpsInventoryItem

FpsInventoryWieldable

FpsInventorySwappable MonoBehaviour
Overview
The swappable inventory groups items into categories. If the quick slots for a category are all full then picking up a new item of
that category will drop the current or last accessed item of that category.

Inspector

Properties
NAME T YPE D ES CR IPTION

Wieldable
Root Transform The transform to set as the parent of any objects added to the inventory.

Wieldable
Root
Scale

Float A scale value for the wieldable root and any child items. Used to prevent weapons clipping into the
scenery.

Drop
Transform Transform A proxy transform used to set the drop position and rotation when a wieldable item is dropped.

Drop
Velocity Vector3 The velocity of any dropped items relative to the character forward direction.

Swap
Action Dropdown What to do when replacing an old item with a new one. Options are Drop, Destroy.

Holster
Action Dropdown What should be selected when you holster your weapon. Options are Backup Item, Nothing.

Group
Sizes Int

The number of quick slots available for each category. The categories are defined in a
generated constant called FpsSwappableCategory. Extending this constant will add new
categories in the FpsInventorySwappable editor.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

Starting
Slot
Choice

Dropdown The selection method for the starting slot. Options are Ascending, Descending, Custom Order.

Starting
Order* Int Array This array specifies the selection order on start. The highest on the list that exists will be the starting

selection.

Backup
Item FpsInventoryWieldable An item to use if no wieldables are in the inventory. This could be empty hands or an infinite

weapon such as a knife.

Empty As
Backup Boolean If this is true, then selecting an empty slot will switch to the backup item.

Starting
Items

FpsInventoryItem
Array A selection of inventory items to be added to the inventory on start.

Duplicate
Behaviour Dropdown

What to do when trying to add an item to the inventory that already exists. Options are Reject,
DestroyOld, DropOld, Allow. The last option will allow you to pick up multiple weapons of the
same type.

NAME T YPE D ES CR IPTION

* This property is only visible if the starting slot choice is set to Custom Order.

See Also
Inventory Examples

FpsInventoryItem

FpsInventoryWieldable

FpsInventoryWieldable MonoBehaviour
Overview
The FpsInventoryWieldable behaviour is an inventory item that can be held in the hands and used, such as a weapon.

Inspector

Properties
The FpsInventoryWieldable behaviour inherits from the FpsInventoryItem. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Inventory
ID ID Picker The inventory item key. Clicking this button will open the inventory database item picker.

Display
Image Sprite The image to use in the inventory HUD.

Quick
Slot Int The quick slot the item should be placed in. If you are using a stacked inventory, remember

that each stack is 10 slots (0-9 = stack 1, 10-19 = stack 2, etc).

Max
Quantity Int The maximum quantity you can hold.

Deselect
Action Dropdown What to do when the weapon is deselected. Available options are: Disable Game Object,

Disable Wieldable Component and Nothing.

On Select Unity Event An event called when the wieldable is selected. Use this to enable components, etc.

https://docs.unity3d.com/Manual/class-TextureImporter.html
https://docs.unity3d.com/Manual/UnityEvents.html

On
Deselect Unity Event An event called when the wieldable is deselected. Use this to disable components, etc.

Drop
Object FpsInventoryWieldableDrop The prefab to spawn when the wieldable item is dropped.

NAME T YPE D ES CR IPTION

See Also
Inventory Examples

Generated Constants

FpsInventoryItem

FpsInventoryWieldableDrop

https://docs.unity3d.com/Manual/UnityEvents.html

FpsInventoryWieldableDrop MonoBehaviour
Overview
The FpsInventoryWieldableDrop behaviour is a pickup that is spawned when a character drops a wieldable item.

Inspector

Properties
NAME T YPE D ES CR IPTION

Rigidbody Rigidbody The object rigidbody for the drop. This will be thrown away from the character that drops it.

Pickup InteractablePickup The pickup for the item. This will be initialised with the correct quantity based on the dropper's
inventory.

See Also
Inventory

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

FpsInventoryWieldable MonoBehaviour
Overview
The FpsInventoryWieldableSwappable behaviour is a variant of the FpsInventoryWieldable for the swappable inventory. It has a
property for the wieldable category instead of a specific quick slot.

Inspector

Properties
The FpsInventoryWieldable behaviour inherits from the FpsInventoryItem. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Inventory
ID ID Picker The inventory item key. Clicking this button will open the inventory database item picker.

Display
Image Sprite The image to use in the inventory HUD.

Max
Quantity Int The maximum quantity you can hold.

Deselect
Action Dropdown What to do when the weapon is deselected. Available options are: Disable Game Object,

Disable Wieldable Component and Nothing.

On Select Unity Event An event called when the wieldable is selected. Use this to enable components, etc.

https://docs.unity3d.com/Manual/class-TextureImporter.html
https://docs.unity3d.com/Manual/UnityEvents.html

On
Deselect Unity Event An event called when the wieldable is deselected. Use this to disable components, etc.

Drop
Object FpsInventoryWieldableDrop The prefab to spawn when the wieldable item is dropped.

Category FpsSwappableCategory The wieldable category.

NAME T YPE D ES CR IPTION

See Also
Inventory Examples

Generated Constants

FpsInventoryItem

FpsInventoryWieldableDrop

https://docs.unity3d.com/Manual/UnityEvents.html

InteractiveMultiPickup MonoBehaviour
Overview
The InteractiveMultiPickup behaviour is an object that will give a number of inventory items to the character that interacts with it.

Inspector

Properties
The InteractiveMultiPickup inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Items FpsInventoryItem
Array The item prefabs to add to the character inventory.

Replenish Boolean Do the inventory items replenish. If the items are removed new items will be instantiated. If they are
partially removed (to top up an existing item) the quantity will be reset afterwards.

See Also
InteractiveObject

FpsInventoryItem

InteractivePickup MonoBehaviour
Overview
The InteractivePickup behaviour is an object that must be interacted with to pick up and add an item to the character inventory.

Inspector

Properties
The InteractiveMultiPickup inherits from the InteractiveObject. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Root Transform The root object (destroyed when the item is picked up).

Item FpsInventoryItem The item prefab to add to the character inventory.

See Also
InteractiveObject

FpsInventoryItem

https://docs.unity3d.com/Manual/class-Transform.html

InteractivePickupTrigger MonoBehaviour
Overview
The InteractivePickupTrigger behaviour is used to create interactive item pickups or powerups that must be used to consume.

Inspector

Properties
The InteractivePickupTrigger behaviour has no properties exposed in the inspector.

See Also
Inventory

InteractiveObject

InventoryItemPickup MonoBehaviour
Overview
The InventoryItemPickup behaviour is combined with a PickupTriggerZone to create a pickup that is added to the character
inventory when walked over.

Inspector

Properties
NAME T YPE D ES CR IPTION

Consume
Result Dropdown What to do to the pickup object once its item has been transferred to the character inventory.

Options are Destroy, Disable, Respawn.

Item Prefab FpsInventoryItem The inventory item prefab to give to the character.

Spawn On
Awake Boolean Should the pickup be spawned immediately, or triggered externally.

Respawn
Duration Float How long to wait before respawning if the consume result is set to Respawn.

Display
Mesh GameObject The display mesh of the pickup. This should not be the same game object as this, so that if this is

disabled the pickup will still respawn if required.

See Also
InteractiveObject

FpsInventoryItem

PickupTriggerZone MonoBehaviour
Overview
The PickupTriggerZone behaviour is added to objects that also contain a pickup behaviour, and a collider set to act as a trigger. It
captures trigger events from the collider and uses them to activate the pickup.

Inspector

Properties
The PickupTriggerZone behaviour has no properties exposed in the inspector.

See Also
Inventory

Unity BoxCollider

Unity SphereCollider

Unity CapsuleCollider

https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html

FpsInventoryDbTable Scriptable Object
Overview
The FpsInventoryDbTable scriptable object contains a list of inventory items and manages their IDs. You can add new items to the
inventory database from this object, or directly from the inventory item components themselves.

Inspector

Properties
NAME T YPE D ES CR IPTION

Table Name String A unique name for this table, to help differentiate them in the database and key picker.

The entries table shows each of the current entries in this table. You can click on the options button to the right of each entry for a
list of context sensitive options, or you can click on the name to rename the item. Each item uses a unique ID code, so renaming
items will not break connections.

You can sort the table using the Sort By Name (Ascending) and Sort By Name (Descending) buttons. You can also quickly
clear all items with the Clear All Items button. Any objects that reference that item will show their ID as "Missing: (ID code)".

You can add new items by entering a name in the item name field and hitting the Add Entry button.

See Also

Inventory

NeoFpsInventoryDatabase Scriptable Object

FpsInventoryKeyDbTable Scriptable Object
Overview
The FpsInventoryKeyDbTable scriptable object is an inventory database table that takes its keys and names directly from the
FpsInventoryKey constant. This allows the relevant keys to be accessed directly from code (useful for things like keyrings).

Inspector
The FpsInventoryKeyDbTable behaviour is only visible through the NeoFpsInventoryDatabase inspector.

Properties
The FpsInventoryKeyDbTable behaviour has no properties exposed in the inspector.

See Also
Inventory

NeoFpsInventoryDatabase Scriptable Object

FpsInventoryLoadout Scriptable Object
Overview
The FpsInventoryLoadout scriptable object is used to replace a character's starting inventory on spawn. These are assigned to the
loadout property on the FpsSoloGameMinimal component.

Inspector

Properties
NAME T YPE D ES CR IPTION

Items FpsInventoryItem Array A selection of inventory items to be added to the character inventory on start.

See Also
Inventory Examples

FpsInventoryItem

FpsInventoryWieldable

NeoFpsInventoryDatabase Scriptable Object
Overview
The NeoFpsInventoryDatabase scriptable object is a global inventory database that can be accessed from scripts at runtime and in
editor code. It contains a list of database tables, allowing you to divide items up for projects and demos. The first table is always
the FpsInventoryKeyDbTable. The other table type that is provided is the FpsInventoryDbTable, though more can be added by
inheriting from the common base class.

Inspector

Properties
You can add new tables to the database by dragging and dropping it into the Add Table Asset field at the top of the database
inspector.

Underneath this is a list of the current tables in use by the database. The options button at the side of each table will show a list of
context options. Selecting a table will show its inspector below the list of tables.

See Also
Inventory

FpsInventoryKeyDbTable

Weapons
Overview
NeoFPS currently supports three types of weapons: melee, thrown and modular firearms.

Melee Weapons
Melee weapons are weapons such as clubs and swords that are held onto and swung at the enemy. For more information see
Melee Weapons.

Thrown Weapons
Thrown weapons are items such as grenades and ninja stars that are stored in the character inventory and thrown by hand. For
more information see Thrown Weapons.

Modular Firearms
Modular firearms are gun type weapons. They are assembled from a number of swappable modules that, together, model the
behaviour of a firearm. For more information see Modular Firearms.

Explosions
The NeoFPS weapons can make use of a simple explosions system which deals damage and adds a repelling force to any objects
in an explosion's blast radius. For more information see Explosions.

Wieldable Tools
Wieldable tools are items that are carried in the player character's hands and used with the primary or secondary fire buttons.
They are assembled from a number of tool modules and actions. For more information see Wieldable Tools.

Demo Weapons
The following weapons are included in the samples in order to show off the different weapon features:

The baton is a simple demonstration of the melee weapons.

The pistol is a low caliber firearm with plenty of ammunition. It uses the basic features of the modular firearms.

The revolver is a high caliber, heavy hitting firearm. The trigger pull is quite heavy so firing can have a delay.

The shotgun is a pump action weapon with a conical spread. Shells are loaded into the weapon individually and the process can
be aborted after the current round is inserted by pressing the fire button.

The assault rifle is a 5.56mm carbine with 3 fire modes: full auto, 3 round burst and semi-automatic.

The sniper rifle is a heavy caliber bolt-action rifle with a long range scope.

The grenade launcher is a single-shot break open launcher that fires 40mm high explosive grenades.

The fragmentation grenade is a thrown weapon. Pull the pin and wait 5 seconds for an explosion.

More demo weapons will be added in future updates.

See Also
Melee Weapons

Thrown Weapons

Modular Firearms

Explosions

Modular Firearms
Overview

Gun style weapons in NeoFPS use a system of modules that work together with a central ModularFirearm behaviour to model the
behaviour of a firearm. Multiple modules of each type can exist on a firearm at any time, but only one of each can be active. When
another is enabled it automatically disables the previous. Modules can be attached to a child gameobject of the firearm, or on the
same gameobject. This allows for weapon behaviour to be built on attachments that can be swapped in and out at runtime.

Creating a Modular Firearm
There are 2 ways to create a new modular firearm. The quickest and easiest is to use the Modular Firearm Wizard in the NeoFPS
Hub. You can find out more about this on the NeoFPS Wizards page. The more flexible approach is to use the Modular Firearm
component itself.

You can create a new modular firearm using the ModularFirearm behaviours setup controls in the inspector. Create a new
GameObject in the scene and add the ModularFirearm behaviour to it. To start off with, the behaviour will be in quick-setup
mode. This allows you to select a model to use, along with a few basic choices on input and inventory type. Once you have
completed quick-setup you will see a "modules" section, which allows you to pick from the available firearm modules as listed
below. Any errors in the setup of the modules will be shown in this section, and the module will be highlighted. For more
information, see the ModularFirearm behaviour reference.

Modules
The modules that work together to model the firearm are as follows:

Shooters
Shooter modules are responsible for the actual gunshot. This could mean checking a raycast or spawning a projectile. The shooter
is provided with a source position and direction, an accuracy value (0 to 1) and an ammo effect. NeoFPS comes with the following
examples:

NAME D ES CR IPTION

HitscanShooter The hitscan shooter uses a physics raycast to detect a hit.

BallisticShooter The ballistic shooter spawns a BallisticProjectile object and passes the ammo effect to it to handle any impacts.

SimpleBallisticShooter The simple ballistic shooter spawns a BallisticProjectile just like the ballistic shooter, but isn't affected by accuracy
or the camera aim.

SpreadHitscanShooter The spread shooter acts as a cone of hitscan shooters. It is used for weapons like shotguns.

SpreadBallisticShooter The ballistic shooter spawns multiple BallisticProjectile objects in a cone and passes the ammo effect to them to
handle any impacts.

PatternHitscanShooter The pattern hitscan shooter fires multiple hitscan shots in a preset pattern.

PatternBallisticShooter The pattern ballistic shooter spawns multiple BallisticProjectile objects in a preset pattern.

NAME D ES CR IPTION

The modular firearm shooters allow the choice of either hitscan or projectile versions. Hitscan shooters cast an instant ray from
the gun barrel. This helps them feel very responsive, especially at close quarters. Projectile shooters spawn a projectile at the
weapon's muzzle tip. These projectiles have full control of their movement and hit detection, and then pass the hit info back to the
relevant ammo effect. Some example projectiles include the BallisticProjectile, BallisticProjectileWithSimpleDrag and
BallisticProjectileWithParticles.

Triggers
Trigger modules handle the rate of fire of the firearm and react to input. NeoFPS comes with the following examples:

NAME D ES CR IPTION

AutomaticTrigger The automatic trigger models a machinegun with a set rate of fire. It will keep firing as long as the trigger is held.

SemiAutoTrigger The semi-auto trigger fires one shot for each press of the trigger. It can optionally repeat fire after a set time.

BurstFireTrigger The burst fire trigger fires a set number of bullets at a set rate of fire. It has options to repeat after a set time and
to allow / disallow cancelling the burst.

ChargedTrigger The charged trigger must charge up before firing. If the trigger input is released the charge drops. Once the
trigger has been charging for a set time the gun will fire.

QueuedTrigger The queued trigger will queue up shots up to a maximum count while the trigger is held, and fire once it's
released. You can optional cancel with the reload button.

TargetLockTrigger The target lock trigger will lock onto any valid targets within the firearm's detection cone. Holding the trigger will
build the lock. Releasing the trigger at full lock will fire. Releasing early or hitting reload will cancel the lock.

MultiTargetLockTrigger The multi-target lock trigger is essentially a queued trigger that locks onto a unique target for each shot.

Ammo Effects
Ammo effect modules specify what happens when a shot actually connects with something. This includes the impact visuals and
audio, dealing damage and adding impact forces. NeoFPS comes with the following examples:

NAME D ES CR IPTION

BulletAmmoEffect The bullet ammo effect uses the Surfaces system to react to a hit.

AdvancedBulletAmmoEffect The advance bullet ammo effect expands on the BulletAmmoEffect to add randomised damage and
damage drop off over range.

PooledExplosionAmmoEffect The pooled explosion ammo effect spawns an explosion at the impact point.

ParticleAmmoEffect The particle ammo effect spawns a pooled ParticleImpactEffect particle system at the impact point.

PenetratingHitscanAmmoEffect Penetrating ammo effects allow shots to penetrate through surfaces up to a specific depth. This version
performs a hitscan shot on the other side of the surface.

PenetratingProjectileAmmoEffect Penetrating ammo effects allow shots to penetrate through surfaces up to a specific depth. This version
spawns a new projectile on the other side of the surface.

RicochetHitscanAmmoEffect Ricochet ammo effects allow shots to bounce off surfaces based on the hit angle. This version performs a
hitscan shot from the point of impact.

RicochetProjectileAmmoEffect Ricochet ammo effects allow shots to bounce off surfaces based on the hit angle. This version spawns a
new projectile at the point of impact.

SurfaceBulletPhysicsAmmoEffect The surface based bullet physics ammo effect gives detailed per-surface type control over a projectile
bullet's penetration and ricochet behaviour. Surface info is specified in a SurfaceBulletPhysicsInfo asset.

TargetTrackingAmmoEffect The target tracking ammo effect is a targeting system. The last object hit with this ammo effect will
become a target for guided projectiles.

NAME D ES CR IPTION

Ammo
The ammo module handles the ammo type of the weapon. This includes the total and current amount. NeoFPS comes with the
following examples:

NAME D ES CR IPTION

SharedPoolAmmo The shared ammo pool references an ammo inventory item. This allows ammo to be shared between multiple firearms.

CustomAmmo Custom ammo is a self contained ammo component unique to the firearm it is attached to.

InfiniteAmmo The infinite ammo module is actually both an ammo module and a reloader module. It completely removes the need to
reload.

RechargingAmmo The recharging ammo will build up its ammo pool up to a maximum over time.

Reloaders
Reloader modules act like the magazine attached to the firearm. It reloads using ammo from the attached ammo module. NeoFPS
comes with the following examples:

NAME D ES CR IPTION

SimpleReloader The simple reloader holds a set amount of ammo and reloads it all in one go.

ChamberedReloader The chambered reloader uses a different delay and animation when reloading from empty vs with a round
chambered.

IncrementalReloader The incremental reloader is reloaded in chunks. It can be interrupted by firing and resumed later. It is used in
the example shotgun to reload one shell at a time.

CustomRevolverReloader
This reloader is a variant of the simple reloader that displays the correct number of bullets in the revolver drum
and swaps them for empties. It is used to demonstrate how to interact with animations to create complex
effects.

PassthroughReloader The passthrough reloader does away with the magazine and fires bullets directly from the ammo module
attached to the weapon.

NAME D ES CR IPTION

You can also add the ReloaderCountdown behaviour to a firearm to play audio clips as the magazine count approaches zero. This
can be useful for adding a warning sound that the magazine is almost empty, or for effects such as the iconic ping of a garand
rifle.

Aimer
Aimer modules describe what happens when the player tries to aim down the weapon sights. A sniper rifle would hide the
weapon geometry and show a UI scope. A pistol would raise the weapon to align its sights to the camera. NeoFPS comes with the
following examples:

NAME D ES CR IPTION

InstantScopedAimer Instantly hides the weapon geometry and shows a UI scope.

ScopedAimer Raises the weapon to align with the camera over a set duration. Once the weapon is raised the its geometry is
hidden and a UI scope is shown.

WeaponMoveAimer Raises the weapon to align its sights with the camera.

HeadMoveAimer Offsets the first person camera to align it to the weapon sights (allows tilt).

AnimOnlyAimer Sets an animation bool parameter, but does not affect the camera or crosshair. It is mainly intended for using the
modular firearm system with AI.

Recoil Handlers
Recoil handlers define how recoil affects the firearm object when it shoots. NeoFPS comes with the following examples:

NAME D ES CR IPTION

BetterSpringRecoilHandler
Uses the additive transform system to add procedural animation when the firearm recoils, along with
modifying its accuracy. This new module is more intuitive and easier to control than the old
SpringRecoilHandler module.

AccuracyOnlyRecoil
Handler Modifies the accuracy of the weapon with each shot, recovering over time.

SpringRecoilHandler (Deprecated) Uses the additive transform system to add procedural animation when the firearm recoils, along
with modifying its accuracy. This has been replaced by the BetterSpringRecoilHandler module.

Muzzle Effects
Muzzle effect modules display the muzzle flash of the weapon and plays gunshot audio. NeoFPS comes with the following
examples:

NAME D ES CR IPTION

BasicGameObjectMuzzleEffect Activates a game object for a brief period and then deactivates it again. Picks audio at random from an
array of audio clips.

SimpleParticleMuzzleEffect Triggers a particle system to emit with each shot.

AdvancedParticleMuzzleEffect Triggers one or more particle systems to emit with each shot. The particle systems are reparented to the
character on start so they can persist between weapon switches, and to allow simulation in character space.

RandomObjectMuzzleEffect Activates a game object chosen at random from a pool, and then deactivates it again after a brief delay.
Picks audio at random from an array of audio clips.

NAME D ES CR IPTION

Ejectors
Ejector modules optionally throw empty shells out of the weapon when it fires. NeoFPS comes with the following examples:

NAME D ES CR IPTION

StandardShellEject Spawns a pooled shell object and throws it out from the weapon. Can be triggered instantly on firing, after a
delay, or with an animation event.

ObjectSwapEjector Swaps the specified object with a pooled physics object. Used to swap animated shell casings with physics based
ones at a certain point in the weapon animation.

MultiObjectSwapEjector As the object swap ejector, but can swap multiple items at once.

ParticleSystemShellEject Triggers play on one or more particle systems whenever a shell is ejected.

Utilities
The modular firearms also come with various utilities to extend them with new features:

NAME D ES CR IPTION

AnimatedFirearmSprintHandler Models firearm sprint behaviour using keyframed sprint animations on an Animator.

AttachedAmmoCounter This is connected to a UI text element to display the firearm's magazine ammo on a world-space UI.

FirearmAimFatigue Applies a stamina drain to the wielder's StaminaSystem when aiming down sights.

FirearmOverheat
Adds a barrel glow and haze effect on firing. You can also enable overheating, meaning that once the
heat limit is reached, the firearm trigger will be blocked until it cools down enough. This can be paired
with a HudFirearmOverheatBar to show the heat status in the player HUD.

FirearmTransformMatchSetter Communicates with a TransformMatcher additive transform behaviour to sync the wielder's head
animation to the firearm.

FirearmWieldableStanceManager Used to specify procedural or keyframed weapon stances such as crouching or falling.

HolographicSight Controls the colour and brightness of a holographic projection weapon optic.

LaserPointerAimerSwitch Combined with a laser pointer, switches the aimer module while the laser is on.

ProceduralFirearmSprintHandler Models firearm sprint behaviour using procedural animmation.

RecoilPushback Add this to a firearm to apply a force directly away from the shot direction when firing.

https://docs.unity3d.com/Manual/class-Animator.html

RenderTextureScope Controls the camera, reticule and material for a render texture scope to add parallax and off-axis fade.

NAME D ES CR IPTION

Animations
Animation of weapons is based in part on the ModularFirearm behaviour and also on the attached modules as well. As different
modules behave in different ways they often need to be animated differently to match. For example, the semi-auto trigger uses an
animator trigger property to tell the animator to play the trigger press and release animation. The full auto trigger uses a boolean
property instead to tell the animator how long to hold the trigger, and the charged trigger uses a float property to tell the
animator how much to blend the trigger pull / hammer cock animation.

Each animation key can be changed in the firearm or module's inspector and is set by default to match the example assets
provided with NeoFPS.

In some cases, the animation can also define the timing for individual actions such as incrementing the magazine ammo count
with the incremental reloader. NeoFPS comes with an example animation event handler called the FirearmAnimEventHandler
which catches Unity animation events. It is very simple to implement your own animation event handlers and provides a great
deal of flexibility beyond using timers, however in the example modules any potentially timed actions have an option to set a
specific wait duration or to wait for an animation event before triggering.

Alongside keyframed animation, NeoFPS also allows you to add procedural animation to your weapons using Additive
Transforms and Effects. These can be very simple, such as the spring effects driven by the recoil modules. They can also be more
complicated, such as the procedural sprinting animation using the ProceduralFirearmSprintHandler. For larger scale movements,
the main modular firearm behaviour has a pose system built in which allows for seamless transitions between poses. This is used
by a number of modules such as the WeaponMoveAimer or the FirearmWieldableStanceManager.

Footstep driven animation such as sprinting or weapon bob is driven through a step tracking system attached to the character's
motion controller. This ensures that any animations like this sync up, are only active while in the correct movement state, and are
correctly driven by the character's velocity. The character's stride length (and therefore bob speed while moving) is controlled by
adding a TrackSteps motion graph behaviour to the relevant states or sub-graphs in your character's motion graph.

*Note: If you have a weapon lower animation in your animator controller, then it is a good idea to transition to weapon raise at
the end of it. The Unity animator can sometimes fail to transition if too many are triggered in very quick succession (eg tapping
between 2 weapon slots), and this will prevent it from causing a problem.

Drops and Pickups
Firearms have their own "drop" system that allows a player or character to drop them from their hands. The firearms need their
own system to account for ammo usage. When a firearm drop is spawned, the attached ammo is set to the amount in the
firearm's magazine. In the sample assets the ammo can be picked up by walking over the weapon drop, while the firearm itself
needs to be interacted with to pick back up. For more information, see ModularFirearmDrop and ModularFirearmAmmoPickup.
The easiest way to create a firearm drop is using the PickupWizard in the NeoFPS hub.

Switching Modes

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

The NeoFPS firearms have a simple system for switching weapon modes. Mode switching is delegated to the
ModularFirearmModeSwitcher behaviour, which should be attached to the GameObject with the ModularFirearm behaviour. This
works by grouping firearm modules into weapon modes and then enabling them once the mode is switched. Since only one of
each type of module can be enabled at any one time, the ModularFirearm behaviour will automatically disable the old modules
when new ones are activated.

Some examples of things you can do with the firearm mode switcher include:

Switching trigger groups to cycle between semi-auto, burst fire and full auto
Switching ammo types in a grenade launcher
Swapping aimer and trigger when switching a rifle from close combat to long range mode
Switching muzzle effect (audio and visual) once a silencer is attached to the gun

Visual Effects
The modular firearms feature various options and modules for controlling their visual effects. The samples are set up with a low
poly style that uses simple geometry and objects for muzzle effects and ejected shells. You can also use particle systems to create
more realistic effects, and the asset ships with more realistic drop-in replacements for each of the demo firearms. These muzzle
effect prefabs can be found at: *Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\MuzzleFlashes*

To use the new muzzle effects, you will need to remove the Basic Game Object Muzzle Effect from the firearm prefab. Navigate
through the weapon hierarchy until you find the MuzzleFlash game object. Delete this, and drag & drop the relevant realistic
muzzle effect from the above folder into the same place in the hierarchy. Each of these realistic effects is ready set up with an
Advanced Particle Muzzle Effect behaviour and positioned based on the main weapon mesh position.

Alongside the muzzle effects, NeoFPS also comes with a variety of hitscan bullet trail prefabs, and projectile prefabs. These can be
found in the following folders: Assets/NeoFPS/Samples/Shared/Prefabs/Weapons/Trails/ and
Assets/NeoFPS/Samples/Shared/Prefabs/Weapons/Projectiles/

These are dropped onto the relevant property on the shooter module. For hitscan trails, you can set the size/radius and the
duration of the trail (for example, the distortion bullet effect works best with a much larger size and longer duration than the
additive trails).

Lastly, the NeoFPS samples include a number of shaders to achieve the above effects. These are currently only available for the
standard pipeline and located at: E:\Projects\neofps\unity\neofps_stable\Assets\NeoFPS\Samples\Shared\Effects\Shaders

Each of the shaders has been created using the Amplify Shader Editor. If you own this asset, then you will be able to tweak them
for your needs or use them as a starting point for your own shaders. Shaders that are intended for use with particle systems, such
as the shockwave or fireball sheets make use of vertex colours to control intensity. A number of shaders also expose properties
through material property blocks such as the glow amount on the glow shaders or highlight amount on the interactive object
highlight shaders.

See Also

https://assetstore.unity.com/packages/tools/visual-scripting/amplify-shader-editor-68570?aid=1011l58Ft

Health and Damage

Explosions

Inventory

First Person Camera

ModularFirearm Reference

BallisticProjectile Reference

FirearmAnimEventHandler Reference

ModularFirearmDrop Reference

ModularFirearmAmmoPickup Reference

Unity Animation Events

https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

Hitscan vs Projectiles
One of the most important choices you can make when defining the feel of your guns is whether to use a hitscan or projectile
based shooter.

Hitscan
Hitscan uses a raycast to detect what a shot hits instantaneously. The shooter module picks a direction for the shot based on the
camera direction, the weapon direction, and the current accuracy of the firearm and draws a straight line from the muzzle tip to
the first thing it hits.

The instantaneous nature of hitscan makes it well suited to fast paced, arcade style games where responsiveness is key. You don't
need to lead your targets or compensate for bullet drop.

In NeoFPS, the visual aspects of hitscan shots are represented by the hitscan trail behaviours and a range of shaders. The hitscan
trails available are:

Line Renderer Hitscan Trail uses a Unity line renderer to draw a line from the muzzle tip to the hit point. The tracer size
property on the shooter modules acts as a multiplier on the width set in the line renderer.
Particle System Hitscan Trail emits a set number of particles per meter along the line from muzzle tip to hit point. |
Line And Particle Hitscan Trail combines a line renderer and particle system in one. This is useful for effects like tracer using
the line renderer, followed by smoke or dust from the particle system.
Noisy Line Hitscan Trail uses a particle system with noise to drive the points in a line renderer. This creates an effect where
the tracer starts as a straight line and then curls and spirals apart.

The following shaders are also available to create more interesting hitscan trail effects:

The NeoFPS_DissolveTrail shaders start out solid and then dissolve away based on the tracer duration setting on the
firearm's shooter module. There are additive and alpha shaded versions, along with edge blend versions which fade out the
material at the outside edges of the trail.
The NeoFPS_DistortionTrail adds a refraction style distortion effect similar to that scene in games like fear. This works
especially well with a larger tracer size and longer duration. The shaders are available at
Assets\NeoFPS\Samples\Shared\Effects\Shaders.

Projectiles
Projectile based shooters spawn a projectile at the firearm's muzzle tip with the specified velocity. A projectile travels over time
until it hits something. They can also optionally be affected by gravity or even driven by complex movement logic. A large and
slow projectile with gravity can be used to model grenade launchers and similar weapons, but you can also use much higher
velocities to create standard bullets. For example, the muzzle velocity of a .45" pistol is in the region of 250m/s, a grenade
launcher is more like 75m/s, while an assault rifle would be more like 750-900m/s. In games with smaller environments, you
might want to keep your muzzle velocities smaller than real life to exagerrate the visuals and bullet drop.

A number of example projectiles can be found at Assets\NeoFPS\Samples\Shared\Prefabs\Weapons\Projectiles.

Projectiles are usually comprised of a root object with the projectile component attached, a mesh, which will be enabled after the
projectile has travelled a set distance, and a trail renderer. Projectiles are implemented as a PooledObject and will be returned to
the pool on impact. They can also have a NeoSerializedGameObject component attached, allowing the NeoFPS save system to
save and load projectiles in flight.

Guided projectiles

NeoFPS has a system that lets you build guided projectiles from a combination of a tracker component and a motor component.
The tracker component is responsible for detecting and choosing a target, while the motor component is responsible for flying
towards it. Currently there are 2 motor components available:

The Simple Steering Motor simply turns towards the target each frame with a maximum steering rate that increases over
time (this prevents the projectile from orbiting targets).
The Drunk Missile Motor has a much more erratic flight path. At brief intervals it picks a random direction (tending towards
the target) and turns towards that. Once the projectile gets close enough to the target it adopts a more standard steering
system. The projectile can also boost its speed at random intervals as well. Together these give an effect similar to the
missiles seen in anime.

There are a range of tracking options for guided projectiles in NeoFPS:

The NearestObjectWithTagTracker component checks for colliders with a specific layer and tag in its vicinity. It will target the
closest valid target.
The PlayerTracker component homes in on the player character.
The TargetingSystemTracker component defers its target selection to a separate targeting system. There are multiple
targeting systems available, which are attached to the firearm. The ballistic shooter firearm modules will check for a
targeting system on the firearm, as well as a TargetingSystemTracker on the projectile, and register the projectile with the
targeting system if both are found. Targeting system options available are:
LaserTargetingSystem which is attached to a WieldableLaserPointer. If the laser is on, the projectile will home in on the
point the laser hits.
RaycastTargetingSystem casts a ray from either the weapon or the camera, and passes the hit point to the projectiles. This
can be a one-shot or continuous cast.
TargetLockTrigger is a firearm trigger that checks for valid targets within a cone in front of the weapon. Holding the trigger
will lock onto the target over time. Releasing the trigger before the lock completes will cancel the shot, while releasing the
trigger after will fire the gun and pass the locked target to the projectile. The target is tracked continuously from that point
until the projectile hits or is destroyed. You can cancel firing with the reload button.
MultiTargetLockTrigger is a firearm trigger which locks onto multiple targets one by one as you hold the trigger. Releasing
the trigger will fire as many shots as there were target locks in a burst. You can cancel firing with the reload button.
TargetTrackingAmmoEffect allows you to tag a target with a shot, which the guided projectiles will then home in on. This
can track moving targets, and will track the exact point on the target that the bullet hit. You can use this in conjunction with
a the ModularFirearmModeSwitcher to allow you to switch weapon modes between tagging and missiles.

See Also
Modular Firearms

Scopes & Optics
Overview
NeoFPS provides a number of ways to implement different scopes and optics for your weapons. These include close range and
long range optics in different styles.

Iron Sights

Iron sights are the simplest form of ADS optics. You simply need to make sure that your iron sights geometry is a sensible shape
and layout, and then use one of the firearm aimer modules to align the weapon to the camera when aiming.

Holographic Sights and Red-Dots

Holographic and red dot sights project a reticule at a distance in front of the weapon that is only visible through the sight. This
makes it easy to quickly acquire a target and adjust to the movement of the weapon during recoil.

You can increase or decrease the brightness of the reticule using the Optics Brightness +/- input buttons in game.

For more information see the HolographicSight Reference. The Demo Facility assault rifle uses a holographic sight by default.

Render Texture Scopes

Render texture based scopes are used in games such as Escape From Tarkov that emphasise realism. They provide a zoomed in
view within the scope lens, without zooming in the rest of the frame. This means that the player can maintain awareness of their
surroundings much easier than they can with a HUD or stencil based scope where their whole view is zoomed in.

The NeoFPS RT scopes also have a parallax effect when moving. This involves moving the reticule and a blurred scope ring as the
scope goes off the player camera's axis. It can also rotate the scope camera slightly to compensate for this off axis viewing so that
the scope image feels more dynamic.

When the render texture scope gets far enough from the camera axis it starts to fade out to an opaque, reflective material. Once
fully opaque, the scope camera will stop rendering.

Scopes implemented in this way incur a performance penalty since they involve rendering the scene twice. This can be mitigated
slightly by showing the scope smaller on the screen (and therefore using a smaller render texture), but you should be aware that
the increased realism comes at a cost.

For more information see the RenderTextureScope Reference. The Demo Facility sniper rifle uses a render texture scope by
default.

Stencil Based Scopes

Stencil based scopes use stencil shaders to define what parts of the weapon are visible through the lens of the scope. They
provide no zoom themselves, so the entire player camera must be zoomed in. The stencil shaders are used to cut out the scope
housing and mount behind the lens so that your view is unobstructed. They are also used in the opposite way to display the scope
reticule and inner tube, providing a slight parallax effect, while cutting out any of the geometry that extends outside your view of
the lens.

Stencil based scopes are much more performant than render texture scopes, with the trade off that the view around the scope is
also zoomed in.

The Demo Facility sniper rifle has stencil based scopes disabled in its hierarchy.

Note: The stencil based scopes are currently not working with deferred rendering. A solution is being looked into.

HUD Scopes

HUD based scopes essentially hide all weapon geometry, and overlay a crosshair over the entire screen. This can be instant, or
triggered at the end points of an aim-down-sights animation.

These scopes tend to have a much more arcadey / responsive feel than the other options, though it can be harder to make them
look good.

You should also make sure that the shooter module on the firearm is set to use the camera aim when aiming so that the bullet

hits where the crosshair is pointing every time.

The sniper rifle in the feature demos uses a HUD based scope.

See Also
RenderTextureScope Reference

HolographicSight Reference

Firearm Attachments
Overview
The firearm attachment system is still in development and not yet ready for use, but the NeoFPS demo assets include a number of
attachment models and prefabs. Besides the various optics attachments, there are also currently flashlights and laser pointers

Flashlights

The flashlights just use a spotlight object which is toggled on or off with the Flashlight input button. There is also an API for
setting the flashlight's brightness.

For more information, see the WieldableFlashlight Reference. The Demo Facility pistol and shotgun both use a wieldable flashlight
attachment by default.

Laser Pointers

The laser pointer also uses the flashlight system to toggle on or off using the Flashlight input button. It uses a line renderer with
a custom shader for the beam and a generated billboard quad for the flare at the point of impact.

Using laser pointers does have some gameplay implications. By default, the NeoFPS firearms use an accuracy system for
determining where shots hit, and also use the camera / HUD crosshair to determine the direction to fire. As accuracy decreases
due to recoil, movement or other modifiers, the bullets spread out from the aim point. This can feel wrong when you have a laser
pointer attached to the weapon which shows you where each of your bullets should hit. You can help with this by changing some
of the default settings on the weapon:

Set the shooter modules to never use the camera aim. This means that the weapon will always fire directly in front of it.
Reduced the max spread / max aim offset to a very low number.

These 2 changes will mean that bullets should always hit where the laser is pointing, though it also means that your weapons are
now incredibly accurate. You can mitigate this by emphasising the procedural animation systems and keyframed animation on
the model. For example:

Add a WeaponAimAmplifier additive transform effect to rotate the weapon as you move your view
Use a BreathingEffect additive transform effect along with either a SimpleBreathHandler or StaminaSystem on the player
character to add breathing motion.
Add a CameraShake additive transform effect to the weapon itself with a subtle amount of twist / rotation shake (no
position shake).
Add a RotationBob additive transform effect to the weapon to layer in rotation as you move instead of just the default
position bob.
Use the wander settings on the weapon's recoil handler module to increase the "spread" of the weapon when firing rapidly.

You can use the On Toggle On and On Toggle Off events on the laser pointer component to enable/disable the above
components, or to change their settings while the laser is switched on.

Another component that can be used to modify the feel of a weapon with a laser pointer is the LaserPointerAimerSwitch. This
component works by detecting the active aimer module on the firearm at start, and then switching between that and another
aimer module that you set as the laser pointer aimer. This means that you can switch to a canted pose that obstructs less of your
view with the laser on, and switch back to optics when it's off.

For more information, see the WieldableLaserPointer Reference. The Demo Facility assault rifle uses a laser pointer by default.

You can check this out for an example of how to use the laser pointer events to modify the weapon's feel when toggling the laser
on or off.

See Also
Modular Firearms

Scopes & Optics

Additive Transforms & Effects

Melee Weapons
Overview

Melee weapons in NeoFPS are a type of FpsInventoryWieldable. They inflict damage and impact force directly ahead when the
animation is at the striking point.

The NeoFPS melee system will be expanded with more options in future updates.

Weapon Pickups
You can create a pickup object for your melee weapon using the Pickup Wizard in the NeoFPS Hub. This allows you to pick the
weapon up in the scene, but also to drop it from your hands and pick it up again later.

Melee Animations

The melee weapon animations are relatively simple. See the sample assets for details on how the graph is set up.

The relevant animator controller properties are:

NAME T YPE D ES CR IPTION

Draw Trigger Used when the weapon is drawn to raise it from off the screen. This is also the entry state of the controller.

Attack Trigger Signals the start of an attack.

Attack
Hit Trigger Signals that the attack connected. This is used to trigger a bounce back reaction animation and will interrupt the

attack animation that would otherwise follow through.

Block Boolean Used to specify when the weapon should be raised in a blocking state.

Block
Hit Trigger A hit reaction knock while blocking.

The property names can be changed in the MeleeWeapon behaviour.

Alongside keyframed animation, NeoFPS also allows you to add procedural animation to your weapons using Additive
Transforms and Effects. These can be very simple, such as the weapon and head bob effects. They can also be more complicated,
such as the procedural sprinting animation using the ProceduralMeleeSprintHandler. For larger scale movements, the main melee
weapon behaviour has a pose system built in which allows for seamless transitions between poses and is used by the sprinting
system along with the MeleeWieldableStanceManager.

Adding Custom Melee Behaviour
If you have custom behaviour that you want to be applied when you use a melee weapon, the easiest way is to add a "melee hit
extension" component. This is simply a Monobehaviour that implements the IMeleeHitExtension interface. This interface has a
single OnMeleeHit(RaycastHit hit) method. Any extension components that are found on the melee weapon's root object on
start will be triggered every time you hit an object with the weapon.

If you actually want to change the hit behaviour, you can also create your own melee weapon class that inherits from the
MeleeWeapon class. You can override the virtual OnMeleeHit(RaycastHit hit, Vector3 attackDirection) method here to
either add or replace the functionality.

For more complex behaviour, you can also use the BaseMeleeWeapon class as a base for your own. This removes all the hit and
block functionality, and exposes the following methods

public abstract void PrimaryPress();
public abstract void PrimaryRelease();
public abstract void SecondaryPress();
public abstract void SecondaryRelease();

See Also
MeleeWeapon

Unity AnimatorController

Unity State Machine Behaviours

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/StateMachineBehaviours.html

Thrown Weapons
Overview

Thrown weapons in NeoFPS are a type of FpsInventoryWieldable. They spawn a PooledObject at a specified point with a set
velocity. They can be stacked so that the character can carry a number of them. Each throw the stack is reduced until all have been
used, at which point the item is removed from the character inventory.

Thrown weapons have a strong throw and a weak thrown. They can also inherit velocity from the character as it moves in a
similar style to games like Counter Strike.

The NeoFPS thrown weapons system will be expanded with more options in future updates.

Weapon Pickups
You can create a pickup object for your thrown weapon using the Pickup Wizard in the NeoFPS Hub. This allows you to pick the
weapon up in the scene, but also to drop it from your hands and pick it up again later.

Thrown Weapon Animations

The thrown weapon animations are relatively simple. See the sample assets for details on how the graph is set up.

The relevant animator controller properties are:

NAME T YPE D ES CR IPTION

Draw Trigger Used when the weapon is drawn to raise it from off the screen. This is also the entry state of the controller.

Throw Light Trigger Signals the start of a weak throw attack.

Throw Heavy Trigger Signals the start of a strong throw attack.

The property names can be changed in the ThrownWeapon behaviour.

Alongside keyframed animation, NeoFPS also allows you to add procedural animation to your weapons using Additive
Transforms and Effects. These can be very simple, such as the weapon and head bob effects. They can also be more complicated,
such as the procedural sprinting animation using the ProceduralThrownSprintHandler. For larger scale movements, the main
thrown weapon behaviour has a pose system built in which allows for seamless transitions between poses and is used by the
sprinting system along with the ThrownWieldableStanceManager.

See Also
ThrownWeapon

Unity AnimatorController

Unity State Machine Behaviours

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/StateMachineBehaviours.html

Wieldable Tools
Overview
The wieldable tools feature is a new early access feature that allows you to create wieldable items to perform a range of actions
that don't fit into the categories of firearm, melee or thrown weapon. Some examples are healing stim packs, shield boosters and
grapple hooks.

Each wieldable tool has a primary and secondary fire that you assign actions and tool modules to through the inspector. Each of
these actions and modules is a separate MonoBehaviour component that is added to the object, similarly to the modular firearm
modules.

You can find a pair of example tool prefabs in the following folder: NeoFPS/Samples/Shared/Prefabs/Tools/

The flashlight tool can be toggled via the primary fire button or the flashlight button. The grapple tool requires that the character
you use it with have a vector parameter on their motion graph that the tool can assign the grapple point to. The parkour demo
motion graph is set up with this. Note that the demo tools use the quick-switch inventory type and have specific quick slot indices
that might clash with existing demo weapons. You will need to remove those weapons from the inventory before adding these
tools in order for them to work (in the demos these are the baton and pistol).

Note: The wieldable tools system does not currently come with any art assets to demo it, but art and animations work
in the same way as for melee or thrown weapons. There is also no wizard currently set up to create wieldable tools
through the NeoFPS Hub. Once enough feedback has been provided and the systems finalised, the wizard will be
added.

Actions And The WieldableTool Component

The WieldableTool component checks for new modules and actions on the object and displays them in the Unmapped Modules
section. You can then choose if they should be assigned to the primary or secondary fire for the tool (or removed from the object).

Each module has three letters next to it: S, C, E. These represent when the actions fire: start, continuous and end. Start actions fire
as soon as the relevant fire button is pressed. Continuous actions fire each fixed update frame as long as the fire button is held.
End actions fire as soon as the fire button is released, or when the firing is interrupted. These end actions can often be set to only
fire on "success", which is defined by the other actions. For example, the ChargeToolAction uses a continuous action to build up a
charge. If the fire button is released before the charge reaches 100%, then the end actions are called with a success value of false.
If the charge reaches 100%, then the primary/secondary fire is interrupted and the end actions are called with a success value of
true. An example use for this would be recreating the shield boosters from Apex Legends. You would use a ChargeToolAction
along with a ShieldBoosterToolAction set to apply the shield boost as an end action that requires success.

A number of modules or actions allow you to specify whether they fire on start or end (including success / fail), or continuously.

If a tool has no continuous actions then the end actions will fire immediately after the start actions.

The currently available wieldable tool modules are:

NAME D ES CR IPTION

AddInventoryItemToolAction Adds an inventory item on start and/or end, or in increments as the relevant trigger is held.

AnimatorBoolToolAction Sets a bool parameter on the tool's animator controller as long as the trigger is held.

AnimatorTriggerToolAction Sets a trigger parameter on the tool's animator controller as a start and/or end action.

ChargeToolAction
Builds a charge as a continuous action, setting the end actions' success parameter to true if full charge
is reached and false if not. Charging can alse be set up to play a looping sound with a pitch shift as
charge builds, and play animations based on charge level.

BlinkToolModule Used to create an Arkane style blink ability. The tool checks for a valid blink target and sends it to a
motion graph parameter on releasing the trigger. Used with a MoveToPointState motion graph state.

ConsumeInventoryItemToolAction Consumes an inventory item on start and/or end, or in increments as the relevant trigger is held.

FlashlightToolModule A flashlight that can be toggled on or off.

GrappleToolModule
Casts a ray based on the wielder's aim, and uses it to set a motion graph parameter for the hit point.
Releasing the trigger resets the motion graph parameter. When paired with the GrappleSwingState
motion graph state, this allows for grappling and swinging around scenes.

HealToolAction Can be set to heal a set amount instantly on start and/or end, or to heal in increments continuously as
long as the trigger is held.

PlayAudioToolAction Plays a specific sound on start and/or end.

ShieldBoosterToolAction Restores shield steps on start and/or end.

UnityEventToolAction Fires a unity event on start and/or end that you can use to call methods on other components.

Wieldable Tool Pickups
You can create a pickup object for your wieldable tool using the Pickup Wizard in the NeoFPS Hub. This allows you to pick the
weapon up in the scene, but also to drop it from your hands and pick it up again later. This is done in the same way as for a melee
or thrown weapon pickup (you can use the melee baton pickup template as a starting point), by selecting the "Wieldable Item
Drop" pickup type.

Wieldable Tool Animations
Wieldable tool animations are generally dictated by the modules that are attached, though the raise and lower animations are
specified on the wieldable tool component and behave the same as for all other wieldables (firearms, melee and thrown
weapons).

The [AnimatorTriggerToolAction][tools-anim] can be used to add animations at the start and/or end actions for each fire mode by
specifying trigger parameters in the tool's animator controller.

You can also add keyframed sprinting animations using the AnimatedToolSprintHandler

file:///C:/CoreProjects/NeoFPS/websites/documentation/latest/_site-pdf/_raw/_site-pdf/manual/weaponsref-mb-animatorbooltoolaction.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

Alongside keyframed animation, NeoFPS also allows you to add procedural animation to your weapons using Additive
Transforms and Effects. These can be very simple, such as the weapon and head bob effects. They can also be more complicated,
such as the procedural sprinting animation using the ProceduralToolSprintHandler. For larger scale movements, the wieldable
tool behaviour has a pose system built in which allows for seamless transitions between poses and is used by the sprinting
system along with the WieldableToolStanceManager.

See Also
WieldableTool

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html

Explosions
Overview

NeoFPS has a simple system for spawning explosions that deal damage and repel physics objects based on their distance from
the explosion center.

The sample explosions are built from a series of particle effects, though you can turn any object into an explosion by adding a
PooledExplosion behaviour.

An explosion can be assigned a source and a damage filter for complex damage effects. For more information, see Health and
Damage.

To spawn an explosion from a script, first you need to grab an explosion from the pool manager:

var explosion = GetPooledObject<PooledExplosion> (prototype, position, rotation);

To apply damage, call the Explode() method on the pooled explosion:

explosion.Explode(damage, maxForce, sourceController, transformToIgnore);

There are a number of scripts already available to work with explosions, such as:

NAME D ES CR IPTION

PooledExplosionSpawner Simply spawns an explosion on command. Connect it to events to control execution.

ExplosiveObject Represents a destructible object that spawns an explosion when killed.

PooledExplosionAmmoEffect A firearm module that spawns an explosion when shooting something.

Explosive Barrels

Explosive barrels can be implemented using the above ExplosiveObject behaviour. This allows you to set a health amount for the
barrel, specify a PooledExplosion to spawn once health reaches zero, and specify explosion damage and forces. A Unity event is
also provided which you can use for actions like spawning debris objects.

An example can be found in the Demo Facility sample scene, and is available as a prefab at
Assets\NeoFPS\Samples\Shared\Prefabs\Props\Prop_Barrel01.prefab.

See Also
PooledExplosion

Health and Damage

Pooling

Unity Particle System Explosions

https://docs.unity3d.com/Manual/PartSysExplosion.html

AccuracyOnlyRecoilHandler MonoBehaviour
Overview
The AccuracyOnlyRecoilHandler module modifies the accuracy of the weapon with each shot.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active recoil handler immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

On Recoil UnityEvent An event that fires every time the weapon recoils.

Hip
Accuracy
Kick

Float The accuracy decrement per shot in hip fire mode (accuracy has a 0-1 range).

Hip
Accuracy
Recover

Float The accuracy recovered per second in hip fire mode (accuracy has a 0-1 range).

Sighted
Accuracy
Kick

Float The accuracy decrement per shot in sighted fire mode (accuracy has a 0-1 range).

Sighted
Accuracy
Recover

Float The accuracy recovered per second in sighted fire mode (accuracy has a 0-1 range).

See Also
Modular Firearms

https://docs.unity3d.com/Manual/UnityEvents.html

AddInventoryItemToolAction MonoBehaviour
Overview
The AddInventoryItemToolAction behaviour is used to add inventory items to the tool wielder's inventory when used. This is
useful for things like repairing armour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the item be consumed.

Item Prefab FpsInventoryItem An inventory item prefab to add to the character inventory if none is found.

Interval Integer The items should be added every nth fixed update frame in continuous mode.

Instant Boolean Should the item be added on the first frame of the continuous action, or should it wait for the
first interval to elapse.

Count Integer The number of times to add the item.

Reset Timer On
Stop Boolean Should the countdown between adding items be reset when you stop using the item.

See Also
Wieldable Tools

Inventory

AdvancedBulletAmmoEffect MonoBehaviour
Overview
The AdvancedBulletAmmoEffect module uses the surfaces system to show impact effects, and imparts damage and force to
whatever it hits. It is similar to the [BulletAmmoEffect][4] but adds damage falloff over range and damage randomisation.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage
Type DamageType The type of damage the weapon should do with this ammo.

Randomise
Damage Boolean Should the damage value be randomised or not.

Damage Float The damage the bullet does before falloff is applied. This property is only visible if Randomise Damage is
set to False.

Min
Damage Float The minimum damage the bullet does before falloff is applied. This property is only visible if Randomise

Damage is set to True.

Max
Damage Float The maximum damage the bullet does before falloff is applied. This property is only visible if Randomise

Damage is set to True.

Falloff
Mode Dropdown

How to apply damage falloff. None means damage will not fall off over distance or speed, Range means
that damage will be reduced the further the target, Speed is used with projectiles to reduce damage as they
slow down.

Effective
Range Float The max range where the bullet does the full damage (no falloff applied). This property is only visible if

Falloff Mode is set to Range.

Ineffective
Range Float The range where the bullet does 0 damage. This property is only visible if Falloff Mode is set to Range.

Effective
Speed Float The speed above which the bullet does full damage. This property is only visible if Falloff Mode is set to

Speed.

Minimum
Speed Float The speed below which the bullet does zero damage. This property is only visible if Falloff Mode is set to

Speed.

Bullet Size Float The size of the bullet. Used to size decals.

Impact
Force Float The force to be imparted onto the hit object before falloff is applied. Requires either a Rigidbody or an

impact handler.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

Surfaces

https://docs.unity3d.com/Manual/class-Rigidbody.html

AdvancedParticleMuzzleEffect MonoBehaviour
Overview
The ParticleMuzzleEffect behaviour uses one or more particle systems which are played for each shot. On start, the systems are
moved from the weapon to a specific transform in the character hierarchy so that the particles can persist when weapons are
switched. This also allows you to simulate the particles in the character's coordinate space.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active muzzle effect immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Effect
Transform Transform The root of the muzzle effect hierarchy.

Particle
Systems

Particle
System
Info Array

The particle system to play.

Firing
Sounds

AudioClip
Array The audio clips to use when firing. Chosen at random.

Particle System Info

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-AudioClip.html

NAME T YPE D ES CR IPTION

Particle
System ParticleSystem The particle system to play.

Space Dropdown
The simulation space for the particles. World means that emitted particles move freely in the world, Weapon
means that particles move relative to the weapon (if it moves, they move with it), Character moves with the
character (handles rapid character movement better than world space), NoChange leaves the simulation space
as defined in the particle system

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-ParticleSystem.html

AnimatedFirearmSprintHandler MonoBehaviour
Overview
The AnimatedFirearmSprintHandler behaviour is attached to a modular firearm to model different sprinting mechanics. This
version allows you to use keyframed sprint animations on your weapons by setting a bool parameter on an Animator component
when the sprint animation should play, and a float parameter to tell the animator the speed. You can use this to set the clip
playback speed in the AnimatorController, or to drive a blend between multiple animation clips based on speed.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Unscaled Sprint Move
Speed Float The movement speed that the sprint animations are synced to when playing at 1x speed..

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

Max Speed Float A maximum speed clamp for the character when used to calculate the animation speed multiplier.

Blend Zero Speed Float The speed below which the light sprint animation will be 100% used. Above this, the heavy animation
is blended in.

Blend Full Speed Float The speed above which the he\vy sprint animation will be 100% used. Below this, the light animation
is blended in.

Sprint Bool Parameter String A bool parameter on the Animator to signify when the weapon enters or exits sprint.

Speed Float Parameter String A float parameter on the Animator to set the playback speed of the sprint animation.

Blend Float Parameter String A float parameter on the Animator used to blend between the light and heavy sprint animations.

NAME T YPE D ES CR IPTION

Firearms
NAME T YPE D ES CR IPTION

Action
On Aim Dropdown

What to do when the firearm enters / exits ADS. Stop Sprinting completely stops the character from sprinting
until they leave ADS. Stop Animation stops the firearm sprint animation without affecting the character
movement.

Action
On
Reload

Dropdown
What to do when the firearm is reloaded. Stop Sprinting completely stops the character from sprinting until the
reload animation completes. Stop Animation stops the firearm sprint animation without affecting the character
movement.

Action
On Fire Dropdown

What to do when the firearm trigger is pulled while sprinting. Stop Sprinting completely stops the character
from sprinting until the weapon stops firing. Stop Animation stops the firearm sprint animation without
affecting the character movement (both of these have a slight delay before firing to allow the weapon to be
aligned). Cannot Fire means that the firearm trigger is blocked until the character stops sprinting.

Min Fire
Duration Float The minimum amount of time the firearm sprint animation will be paused or sprinting blocked when the trigger

is pulled. Prevents rapid tapping of the trigger popping in and out of sprint.

See Also
Modular Firearms

The Motion Graph

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimatedMeleeSprintHandler MonoBehaviour
Overview
The AnimatedMeleeSprintHandler behaviour is attached to a melee weapon to model different sprinting mechanics. This version
allows you to use keyframed sprint animations on your weapons by setting a bool parameter on an Animator component when
the sprint animation should play, and a float parameter to tell the animator the speed. You can use this to set the clip playback
speed in the AnimatorController, or to drive a blend between multiple animation clips based on speed.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Unscaled Sprint Move
Speed Float The movement speed that the sprint animations are synced to when playing at 1x speed..

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

Max Speed Float A maximum speed clamp for the character when used to calculate the animation speed multiplier.

Blend Zero Speed Float The speed below which the light sprint animation will be 100% used. Above this, the heavy animation
is blended in.

Blend Full Speed Float The speed above which the he\vy sprint animation will be 100% used. Below this, the light animation
is blended in.

Sprint Bool Parameter String A bool parameter on the Animator to signify when the weapon enters or exits sprint.

Speed Float Parameter String A float parameter on the Animator to set the playback speed of the sprint animation.

Blend Float Parameter String A float parameter on the Animator used to blend between the light and heavy sprint animations.

NAME T YPE D ES CR IPTION

Melee Weapon
NAME T YPE D ES CR IPTION

Min Attack Time Float The minimum amount of time the sprint animation will be paused after an attack.

Min Block Time Float The minimum amount of time the sprint animation will be paused when blocking (prevents tapping block).

See Also
Melee Weapons

The Motion Graph

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimatedThrownSprintHandler MonoBehaviour
Overview
The AnimatedThrownSprintHandler behaviour is attached to a thrown weapon to model different sprinting mechanics. This
version allows you to use keyframed sprint animations on your weapons by setting a bool parameter on an Animator component
when the sprint animation should play, and a float parameter to tell the animator the speed. You can use this to set the clip
playback speed in the AnimatorController, or to drive a blend between multiple animation clips based on speed.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Unscaled Sprint Move
Speed Float The movement speed that the sprint animations are synced to when playing at 1x speed..

Max Speed Float A maximum speed clamp for the character when used to calculate the animation speed multiplier.

Blend Zero Speed Float The speed below which the light sprint animation will be 100% used. Above this, the heavy animation
is blended in.

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

Blend Full Speed Float The speed above which the he\vy sprint animation will be 100% used. Below this, the light animation
is blended in.

Sprint Bool Parameter String A bool parameter on the Animator to signify when the weapon enters or exits sprint.

Speed Float Parameter String A float parameter on the Animator to set the playback speed of the sprint animation.

Blend Float Parameter String A float parameter on the Animator used to blend between the light and heavy sprint animations.

NAME T YPE D ES CR IPTION

See Also
Thrown Weapons

The Motion Graph

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimatedToolSprintHandler MonoBehaviour
Overview
The AnimatedToolSprintHandler behaviour is attached to a wieldable tool to model different sprinting mechanics. This version
allows you to use keyframed sprint animations on your tools by setting a bool parameter on an Animator component when the
sprint animation should play, and a float parameter to tell the animator the speed. You can use this to set the clip playback speed
in the AnimatorController, or to drive a blend between multiple animation clips based on speed.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Unscaled Sprint Move
Speed Float The movement speed that the sprint animations are synced to when playing at 1x speed..

Max Speed Float A maximum speed clamp for the character when used to calculate the animation speed multiplier.

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

Blend Zero Speed Float The speed below which the light sprint animation will be 100% used. Above this, the heavy animation
is blended in.

Blend Full Speed Float The speed above which the he\vy sprint animation will be 100% used. Below this, the light animation
is blended in.

Sprint Bool Parameter String A bool parameter on the Animator to signify when the weapon enters or exits sprint.

Speed Float Parameter String A float parameter on the Animator to set the playback speed of the sprint animation.

Blend Float Parameter String A float parameter on the Animator used to blend between the light and heavy sprint animations.

NAME T YPE D ES CR IPTION

See Also
Wieldable Tools

The Motion Graph

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimatorTriggerToolAction MonoBehaviour
Overview
The AnimatorTriggerToolAction sets a trigger parameter on the tool's Animator.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the trigger fire.

Parameter Key String The name of the animator trigger parameter to fire.

See Also
Wieldable Tools

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimOnlyAimer MonoBehaviour
Overview
The AnimOnlyAimer module triggers an animation, without moving the camera or weapon, or changing the crosshair. Its main
use is when using the modular firearm system with AI.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active aimer immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Aim Up
Audio AudioClip An audio clip to play when the weapon is raised.

Aim
Down
Audio

AudioClip An audio clip to play when the weapon is lowered.

Hip
Accuracy
Cap

Float The highest accuracy the firearm can achieve while not aiming down sights.

Aimed
Accuracy
Cap

Float The highest accuracy the firearm can achieve while aiming down sights.

Can Aim
While
Reloading

Boolean Should the weapon be lowered when reloading or can it stay aimed.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

On Aim
Up UnityEvent An event called when the weapon is fully raised.

On Aim
Down UnityEvent An event called when the weapon is fully lowered.

Aim Time Float The time it takes to reach full aim, or return to zero aim.

Aim Anim
Bool String The animator parameter key for a bool used to control aiming state in animations.

Block
Trigger Boolean If true then the gun cannot fire while transitioning in and out of aim mode. This is used to prevent gunshots

interrupting the animation. This property will only be shown if the Aim Anim Bool property is true.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

First Person Camera

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

AttachedAmmoCounter MonoBehaviour
Overview
The AttachedAmmoCounter behaviour is added to a world space canvas and used to track the ammo in a gun's magazine.

Inspector

Properties
NAME T YPE D ES CR IPTION

Reloader Float The reloader module to track the current magazine from.

Ammo Text [Text][unity-uitext] The text output for the current magazine count.

See Also
Modular Firearms

StaminaSystem

AudioOnlyMuzzleEffect MonoBehaviour
Overview
The AudioOnlyMuzzleEffect module plays a sound when the firearm is fired, but has no visual effect. This can be useful for
weapons like crossbows.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active muzzle effect immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Firing
Sounds

AudioClip
Array The audio clips to use when firing. Chosen at random.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioClip.html

AutomaticTrigger MonoBehaviour
Overview
The AutomaticTrigger module fires continuously

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Shot
Spacing Int How many fixed update frames between shots. The info box below this show the rate of fire based on the shot

spacing.

Trigger
Hold
Anim Key

String The AnimatorController bool property key to set while the trigger is pressed.

See Also
Modular Firearms

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

BallisticProjectile MonoBehaviour
Overview
The BallisticProjectile is a basic projectile that follows gravity. It will be given an ammo effect by the firearm that it uses when it
impacts.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Distance Float The minimum distance before the projectile will appear.

Follow Curve Boolean Should the projectile rotate so it is always facing down the curve.

Forget Ignore
Root Boolean Forget the character's "ignore root", meaning it can detonate on the character collider.

Recycle Delay Float The time after the bullet hits an object before it is returned to the pool (allows trail renderers to
complete).

See Also
Modular Firearms

BallisticShooter

BallisticProjectileWithParticles MonoBehaviour
Overview
The BallisticProjectileWithParticles behaviour is a basic projectile that follows gravity. It will be given an ammo effect by the
firearm that it uses when it impacts. This projectile uses a particle system to leave a bullet trail which is started a short distance
after firing, and ended as soon as the projectile hits its target.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Distance Float The minimum distance before the projectile will appear.

Follow Curve Boolean Should the projectile rotate so it is always facing down the curve.

Forget Ignore
Root Boolean Forget the character's "ignore root", meaning it can detonate on the character collider.

Recycle Delay Float The time after the bullet hits an object before it is returned to the pool (allows trail renderers to
complete).

Particle Systems Particle System
Array The particle systems to play.

Particle Start
Distance Float The distance the projectile must travel before it starts emitting particles.

See Also
Modular Firearms

BallisticShooter

https://docs.unity3d.com/Manual/class-ParticleSystem.html

BallisticProjectileWithSimpleDrag MonoBehaviour
Overview
The BallisticProjectileWithSimpleDrag adds a simple air resistance / drag option to the BallisticProjectile.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Distance Float The minimum distance before the projectile will appear.

Follow Curve Boolean Should the projectile rotate so it is always facing down the curve.

Forget Ignore Root Boolean Forget the character's "ignore root", meaning it can detonate on the character collider.

Recycle Delay Float The time after the bullet hits an object before it is returned to the pool (allows trail renderers to
complete).

Drag Effect Float The strength of the drag on the projectile (uses a simplified multiplier).

Drag Ignores
Gravity Float If true, then drag will only be applied to the vertical velocity while the projectile is climbing.

See Also
Modular Firearms

BallisticShooter

BallisticShooter MonoBehaviour
Overview
The BallisticShooter module spawns an BallisticProjectile.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Projectile
Prefab PooledObject The projectile to spawn.

Muzzle
Tip Transform The position and direction the projectile is spawned.

Muzzle
Speed Float The speed of the projectile.

Layers LayerMask The physics collision layers the shot can hit.

Minimum
Spread Float The minimum accuracy spread (in degrees) of the weapon when accuracy is at 1.

Maximum
Spread Float The maximum accuracy spread (in degrees) of the weapon when accuracy is at 0.

Gravity Float The gravity for the projectile.

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

BallisticProjectile

BasicGameObjectMuzzleEffect MonoBehaviour
Overview
The BasicGameObjectMuzzleEffect module simple enables a specified game object, and then disables it again after a brief wait.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active muzzle effect immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Muzzle
Flash GameObject The muzzle flash game object.

Muzzle
Flash
Duration

Float The duration the flash should remain visible in seconds.

Firing
Sounds

AudioClip
Array The audio clips to use when firing. Chosen at random.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioClip.html

BetterSpringRecoilHandler MonoBehaviour
Overview
The BetterSpringRecoilHandler module controls a FirearmRecoilEffect and a CharacterRecoilEffect behaviour to apply procedural
recoil animation to the weapon and player character.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active recoil handler immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

On Recoil
[UnityEvent]
[unity-
event]

An event that fires every time the weapon recoils.

Hip
Accuracy
Kick

Float The accuracy decrement per shot in hip fire mode (accuracy has a 0-1 range).

Hip
Accuracy
Recover

Float The accuracy recovered per second in hip fire mode (accuracy has a 0-1 range).

Sighted
Accuracy
Kick

Float The accuracy decrement per shot in sighted fire mode (accuracy has a 0-1 range).

Sighted
Accuracy
Recover

Float The accuracy recovered per second in sighted fire mode (accuracy has a 0-1 range).

NAME T YPE D ES CR IPTION

Recoil Profiles
The BetterSpringRecoilHandler module has a recoil profile for aiming down sights and for hip fire. Each of these have the
following properties:

NAME T YPE D ES CR IPTION

RecoilAngle Float The angle to rotate the gun on recoil (before modifiers).

Wander Float The maximum amount of side to side movement during a recoil. At wander = 1, the gun can
rotate anything up to 90 degrees from up. At 0, the gun will only rotate upwards.

HorizontalMultiplier Float A multiplier applied to any horizontal rotation of the recoil.

VerticalDivergence Float The split between head and weapon recoil. At 0, the head/body will rotate, and the firearm will
move with it. At 1, the firearm will rotate and the head/body will remain still.

HorizontalDivergence Float The split between head and weapon recoil. At 0, the head/body will rotate, and the firearm will
move with it. At 1, the firearm will rotate and the head/body will remain still.

PushBack Float The distance the firearm will be pushed backwards each shot.

MaxPushBack Float The maximum distance the firearm can be pushed back.

Jiggle Float The amount of jiggle (spring rotation around the z-axis) to be applied to the firearm.

Duration Float The time taken for the head and firearm to return to their pre-recoil state.

RecoilSpringCurve AnimationCurve The animation curve used to drive the amount of recoil rotation over the duration of the recoil
effect.

WeaponJiggleCurve AnimationCurve The animation curve used to drive the firearm's jiggle rotation over the duration of the recoil
effect.

https://docs.unity3d.com/Manual/EditingCurves.html
https://docs.unity3d.com/Manual/EditingCurves.html

WeaponPushCurve AnimationCurve The animation curve used to drive the firearm's push-back over the duration of the recoil
effect.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

FirearmRecoilEffect

CharacterRecoilEffect

Additive Transforms and Effects

https://docs.unity3d.com/Manual/EditingCurves.html

BlinkToolModule MonoBehaviour
Overview
The BlinkToolModule behaviour is used to model an Arkane style blink (Dishonoured, Deathloop, Prey) as a tool action. Aim at an
area of flat ground or a ledge, hold the fire button until the markers are shown. Release to blink to that location. This is intended
to be used alongside the MoveToPointState motion graph state.

Inspector

Properties
NAME T YPE D ES CR IPTION

Blink
Target Key String The key to a vector parameter in the wielder's motion graph that will be set with the target position.

Blink
Trigger
Key

String The key to a trigger parameter in the wielder's motion graph that will be set when the blink is performed
(trigger released on a valid target location).

Collision
Layers

Layer
Mask The physics layers the tool can blink onto.

Max
Distance Float The maximum distance that the character can blink.

Coyote
Time Float The last valid blink target will be stored this long and used. Makes the target selection more forgiving.

Max
Ground
Slope

Float The maximum slope that a ground plane can have for you to blink onto it.

Max Climb
Height Float The maximum distance down a wall you can look and it will blink to the top ledge.

Ledge
Overshoot Float If looking at the top of a wall, this is the distance past the edge to overshoot when blinking onto the ledge.

Max Wall
Angle Float The maximum angle away from vertical that the blink tool can register as a wall with a ledge.

Yaw Limit Float An angle range centered on the wall normal that you can blink within. At 180 degrees you can blink to any
ledge. At 0 degrees you would have to be looking perfectly flat on to the wall to blink to its ledge.

Ground
Marker Transform An object in the tool's hierarchy to use as the ground position marker for the blink target (the object will be

moved out of the tool's hierarchy).

Ledge
Marker Transform An object in the tool's hierarchy to use as the ledge position marker for the blink target (the object will be

moved out of the tool's hierarchy).

NAME T YPE D ES CR IPTION

See Also
Wieldable Tools

Motion Graph Parameters And Data

BulletAmmoEffect MonoBehaviour
Overview
The BulletAmmoEffect module uses the surfaces system to show impact effects, and imparts damage and force to whatever it hits.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Type DamageType The type of damage the weapon should do with this ammo.

Damage Float The damage the bullet does.

Bullet Size Float The size of the bullet. Used to size decals.

Impact Force Float The force to be imparted onto the hit object. Requires either a Rigidbody or an impact handler.

See Also
Modular Firearms

Surfaces

https://docs.unity3d.com/Manual/class-Rigidbody.html

BurstFireTrigger MonoBehaviour
Overview
The BurstFireTrigger module fires a set number of shots in rapid succession.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Burst Size Int The number of shots in a burst.

Burst
Spacing Int Cooldown between shots in a burst (number of fixed update frames). The info box below this show the rate of

fire based on the shot spacing.

Repeat
Delay Int How many fixed update frames from last shot of a burst before starting another (0 = requires fresh trigger

press).

Cancel
On
Release

Boolean Is the burst cancelled when the trigger is released.

See Also
Modular Firearms

ChamberedReloader MonoBehaviour
Overview
The ChamberedReloader behaviour triggers a reload animation and waits until it completes before taking ammo from the
firearm's ammo module and adding it to the magazine. The ChamberedReloader will set a bool parameter in the firearm's
[AnimatorController][unity-animatorcontroller] so that it can change the animations it plays, and it can have a different wait
duration and audio clip to play if reloading from an empty magazine compared to with a round in the chamber.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Magazine
Size Float The number of rounds that can be fit in the magazine at once.

Starting
Magazine Float The number of rounds in the magazine on initialisation.

Reload
Delay
Type

Dropdown The delay type between starting and completing a reload. The options are None, Elapsed Time, External
Trigger.

Reload
Duration Float The time taken to reload.

Reload
Duration
Empty

Float The time taken to reload if reloading from empty.

Reload
Anim
Trigger

String The [AnimatorController][unity-animatorcontroller] trigger parameter key for the reload animation.

Empty
Anim
Bool

String The key to an [AnimatorController][unity-animatorcontroller] bool parameter to set when the weapon is empty.

Reload
Audio AudioClip The audio clip to play while reloading.

Reload
Audio
Empty

AudioClip The audio clip to play if reloading from empty.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

FirearmAnimEventsHandler

[Unity Animator][unity-animator]

[Unity AnimatorController][unity-animatorcontroller]

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

ChargedTrigger MonoBehaviour
Overview
The ChargedTrigger module charges up while the fire button is held down and fires once it hits full charge.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Charge
Duration Float How long does it take to charge the trigger.

Uncharge
Duration Float How long does it take to uncharge the trigger, assuming it hasn't gone off.

Repeat Boolean Once the shot is fired, start charging the next shot if this is true.

Repeat
Delay Float The time between a shot firing and starting charging the next shot.

Audio
Source AudioSource The source to play the audio from (needs its own as it must be interrupted and seeked).

Trigger
Audio
Charge

AudioClip The audio clip to play on charge.

Trigger
Audio
Release

AudioClip The audio clip to play on release.

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

Charge
Animation Dropdown

How should the charge be animated. LayerWeight blends in a layer in the weapon's animator as charge
increases. FloatParameter sets a float parameter value on the animator. EventsOnly fires an event when the
charge changes, but does not affect the attached animator.

Layer
Index Integer The animator layer index to blend in for the charge effect. This option will only be visible if "Charge

Animation" is set to LayerWeight.

Charge
Anim Key String The float animator parameter key to set when the trigger charge changes. This option will only be visible if

"Charge Animation" is set to FloatParameter.

On
Charge
Changed

UnityEvent An event fired each frame the charge changes.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

https://docs.unity3d.com/Manual/Animator.html
https://docs.unity3d.com/Manual/Animator.html
https://docs.unity3d.com/Manual/UnityEvents.html

ChargeToolAction MonoBehaviour
Overview
The ChargeToolAction behaviour is used to add a charge up effect to a wieldable tool. Charging all the way to full will interrupt
the tool and send the success = true signal to the end actions. Releasing the trigger early will send the success = false
signal.

Inspector

Properties
NAME T YPE D ES CR IPTION

Charge Duration Float The time it takes to reach full charge.

Charge Loop AudioClip The audio to play while charging.

Volume Float The volume of the charging audio loop.

Start Pitch Float The pitch of the audio loop at the start of the charge.

End Pitch Float The pitch of the audio loop when charge hits 100%.

Is Charging Bool String A bool parameter in the tool's animator that should be set while charging.

Charge Float String A float parameter in the tool's animator used to show charge progress (0-1).

See Also
Wieldable Tools

Unity Animator

Unity AnimatorController

http://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

ConsumeInventoryItemToolAction MonoBehaviour
Overview
The ConsumeInventoryItemToolAction behaviour is used to add the effect of using an inventory item to a wieldable tool either on
start or end, or continuously over time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the item be consumed.

Item Key ID Picker The inventory ID of the object to consume. Clicking this button will open the inventory database item
picker.

Consume
Amount Integer How many of the item should be consumed when triggered or ticked.

Consume
Interval Integer The items should be consumed every nth fixed update frame in continuous mode.

Instant Boolean Should the item be consumed on the first frame of the continuous action, or should it wait for the first
interval to elapse.

See Also
Wieldable Tools

Inventory

ContactGrenadeThrownProjectile MonoBehaviour
Overview
The ContactGrenadeThrownProjectile behaviour is used to create grenades which explode the moment they hit a target.

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion PooledExplosion The explosion object to spawn on contact with an object.

Damage Float The damage the explosion does at its center.

Max
Force Float The maximum force to be imparted onto any objects in the explosion's radius. Requires either a [Rigidbody]

[unity-rigidbody] or an impact handler and drops off to zero the further from the center the object is.

See Also
Explosions

Health and Damage

CustomAmmo MonoBehaviour
Overview
The CustomAmmo module is a unique ammo for the firearm it is attached to.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ammo module immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Printable
Name String The name to show on the HUD.

Effect Dropdown A dropdown which shows all the AmmoEffect modules on the GameObject. This is the effect the bullets will
have on hitting a target.

Starting
Ammo Int The amount of ammo the weapon starts with.

Max
Ammo Int The maximum amount of ammo the weapon can carry.

See Also
Modular Firearms

CustomRevolverReloader MonoBehaviour
Overview
The CustomRevolverReloader module is adpated from the SimpleReloader. It adds functionality to make the spent and reloaded
rounds visible and the visbile count correct based on how many bullets are loaded into the gun.

Inspector

Properties
The CustomRevolverReloader module inherits most of its properties from the SimpleReloader. It adds the following properties:

NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Magazine
Size Float The number of rounds that can be fit in the magazine at once.

Starting
Magazine Float The number of rounds in the magazine on initialisation.

Empty
Shells

GameObject
Array The empty shells in the revolver cylinder.

Loader
Shells

GameObject
Array The unused shells in the revolver speed loader.

See Also

Modular Firearms

[Unity Animator][unity-animator]

[Unity AnimatorController][unity-animatorcontroller]

DrunkMissileMotor MonoBehaviour
Overview
The DrunkMissileMotor behaviour is added to a guided projectile to make it follow an erratic path towards its target.

Inspector

Properties
NAME T YPE D ES CR IPTION

Turn Rate Float The turn rate of the projectile (degrees per second).

Turn Grow Rate Float An increase to the turn rate based on elapsed time in flight (base turn rate + turn grow rate * elapsed
time).

Min Interval Float The minimum amount of time between tracking ticks (when the projectile updates its target location).

Max Interval Float The maximum amount of time between tracking ticks (when the projectile updates its target location).

Max Tracking
Angle Float The maximum angle off the forwards direction that the tracker can swivel to look at the target each tick.

Max Deviation Float The maximum deviation from the tracker angle that the projectile will steer to add the drunken effect.

Accurate Distance Float The distance from the target below which the projectile will switch to a more consistent tracking (reduces
projectiles overshooting).

Vary Speed Boolean Should the projectile's speed vary with occasional boosts.

Speed Boost Float The target boost speed (added to the base speed of the projectile when fired).

Max Boost Time Float The maximum amount of time a boost will last.

Max Slow Time Float The maximum amount of time between boosts.

Acceleration
Damping Float The damping when accelerating up to boost speed.

Deceleration
Damping Float The damping when decelerating from boost back down to base speed.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

Hitscan vs Projectiles

ExplosionSpawner MonoBehaviour
Overview
The explosion spawner will spawn an explosion at a point in space on request. This is a demo implementation.

Inspector

Properties
NAME T YPE D ES CR IPTION

Exploder Explosion The explosion to spawn. Must innherit from BaseExplosionBehaviour

See Also
Explosions

ExplosiveAmmoEffect MonoBehaviour
Overview
The ExplosiveAmmoEffect module spawns an explosion on impact, dealing damage and repelling objects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage
Type DamageType The type of damage the weapon should do with this ammo.

Explosion
Type ExplosionType The id of the explosion to spawn.

Radius Float The radius of the explosion.

Damage Float The damage the explosion does at its center.

Max
Force Float The max force to be imparted onto any objects in the explosion radius. The force falls off as distance from the

center increases. Requires either a Rigidbody or an impact handler.

See Also
Modular Firearms

Explosions

https://docs.unity3d.com/Manual/class-Rigidbody.html

ExplosiveObject MonoBehaviour
Overview
The ExplosiveObject behaviour is used to create objects like barrels that spawn a PooledExplosion when killed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion PooledExplosion The explosion object to spawn.

Offset Vector3 An offset from the object's origin that the explosion will spawn.

Damage Float The damage does at the center of the explosion. Drops off to zero at the edge of the radius.

Max Force Float
The maximum force to be imparted onto any objects in the explosion's radius. Requires either a
[Rigidbody][unity-rigidbody] or an impact handler and drops off to zero the further from the center the
object is.

Takes
Damage DamageType The type of damage the object can take.

Health Float The amount of health the object has.

Destroy
Gameobject Dropdown What to do to the object when it's killed. Available options are: Destroy, Disable, Nothing.

On
Destroyed UnityEvent An event invoked when the item's health reaches zero

See Also
Explosions

Health and Damage

https://docs.unity3d.com/Manual/UnityEvents.html

FirearmAimFatigue MonoBehaviour
Overview
The FirearmAimFatigue behaviour is used to drain a character's stamina while aiming down sights using the. This requires the
character to have a StaminaSystem behaviour attached.

Inspector

Properties
NAME T YPE D ES CR IPTION

Stamina Loss Float The stamina loss per second when aiming down sights.

Stamina Target Float The stamina level to drain down to.

Stamina Falloff Float Stamina drain fades when approaching the target, starting at this falloff value above it.

See Also
Modular Firearms

StaminaSystem

FirearmAnimEventsHandler MonoBehaviour
Overview
The FirearmAnimEventsHandler behaviour is used to catch events fired from the Animator attached to this game object. This
enables specific triggers to be synced with animation and then feed back to the firearm.

The currently captured events are:

public void WeaponRaised ()

public void FirearmReloadPartial (int count)

public void FirearmReloadComplete ()

public void FirearmEjectShell ()

Inspector

Properties
The FirearmAnimEventsHandler behaviour has no properties exposed in the inspector.

See Also
Modular Firearms

Unity Animator

Unity Animation Events

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

FirearmOverheat MonoBehaviour
Overview
The FirearmOverheat behaviour is used to model a simple heat accumulation in a gun as it shoots. It can also optionally cause the
weapon to overheat and lock the trigger until it cools to a certain threshold.

The glow effect requires that one of the NeoFPS glow shaders be used. These are found under the NeoFPS/Standard shader
path, and are named based on their PBR surface type and glow type: GlowMetallic or GlowSpecular and Alpha Masked,
Distance Masked and Position Masked.

Alpha Masked uses a greyscale glow mask. Glow will be shown wherever the texture is not black, with full strength where
it is white.
Distance Masked specifies a 3D point (in object space), and the glow fades out based on the distance from that point.
Position Masked sets start and end points on the object space z-axis, and the glow fades in and out between these points.

The haze effect requires a mesh renderer with a material using the NeoFPS/Standard/HeatHaze shader. This shader uses a
property block to set the haze strength as the heat increases, and the object is disabled when the heat is zero. A simple haze effect
can be created by combining a quad 3D geometry object with a BillboardOrientation Monobehaviour to keep it oriented at the
first person camera. An example prefab can be found at NeoFPS/Samples/Shared/Effects/Prefabs/GunBarrelHazeBillboard.

Inspector

Properties
NAME T YPE D ES CR IPTION

Glow
Renderer MeshRenderer The mesh renderer of the glow material.

Glow
Material
Index

Integer The index of the glow material in the mesh renderer.

Glow
Threshold Float The heat level (0 to 1) before the glow starts to appear.

Haze
Renderer MeshRenderer The mesh renderer of the glow material.

Haze
Material
Index

Integer The index of the haze material in the mesh renderer.

Haze
Threshold Float The heat level (0 to 1) before the haze starts to appear.

Heat Per
Shot Float The amount of heat to add with each shot of the weapon. When this reaches 1, the gun must cool down

before it can fire again.

Heat Lost
Per Second Float The amount of heat that is dissipated per second. The weapon will never overheat if this is higher than

the heat per shot multiplied by rate of fire (rounds per second).

Do Overheat Float If true, then once the weapon reaches max heat the weapon will overheat, blocking the trigger until it
has cooled down to a set threshold.

Cooling
Threshold Float Once overheated, the weapon must cool to this heat level before it can fire again.

Overheat
Sound AudioClip The audio clip to play once max heat is hit and the trigger is blocked.

Volume Float The volume to play the overheat sound at.

On
Overheat Float An event that is fired when the heat hits the max level.

See Also
Modular Firearms

BillboardOrientation Monobehaviour

https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://docs.unity3d.com/Manual/class-AudioClip.html

FirearmTransformMatchSetter MonoBehaviour
Overview
The FirearmTransformMatchSetter behaviour is attached to a firearm object. When that firearm is added to a character and
equipped it will set the transforms of the TransformMatcher additive effect attached to the character head. This can be used to
sync the character head movement to animations attached to the head, while still allowing additive effects such as recoil and
shake.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Transform The target transform to match.

Relative To Transform The transform to use when calculating the offset of the target transform.

Weight Float The strength of the effect. 1 matches the movement absolutely, while 0 is no movement.

See Also
Modular Firearms

TransformMatcher

FirearmWieldableStanceManager MonoBehaviour
Overview
The FirearmWieldableStanceManager behaviour is used to specify poses or stances for a modular firearm. The entire weapon will
be moved to match the stance, and can optionally set an animator bool parameter too.

The stance will be temporarily exited when aiming and reloading.

Inspector

Properties
Use the Add Stance buttons to add a new stance to the manager.

Stances
Individual stances have the following properties:

NAME T YPE D ES CR IPTION

Name String The name of the stance.

Animator
Bool Key String An optional name of a bool parameter in the weapon's Animator.

Position Vector The position to move the weapon to in this stance.

Rotation Vector The rotation of the weapon in this stance.

In
Position
Blend

Dropdown The easing method for blending between the source position and stance position on entering the stance.
Options are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

In
Rotation
Blend

Dropdown The easing method for blending between the source rotation and stance rotation on entering the stance.
Options are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

In Time Float The time taken to enter the stance.

https://docs.unity3d.com/Manual/class-Animator.html

Out
Position
Blend

Dropdown The easing method for blending between the stance position and idle position on exiting the stance. Options
are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

Out
Rotation
Blend

Dropdown The easing method for blending between the stance rotation and Idle rotation on exiting the stance. Options
are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

Out Time Float The time taken to enter the stance.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

FlashlightToolModule MonoBehaviour
Overview
The FlashlightToolModule behaviour is used to add a toggleable flashlight to wieldable tools.

Inspector

Properties
NAME T YPE D ES CR IPTION

m_LightObject GameObject A child object with a light component attached.

m_StartEnabled Boolean Should the flashlight be enabled on start.

See Also
Wieldable Tools

GrappleToolModule MonoBehaviour
Overview
The GrappleToolModule behaviour is used to set a vector parameter on the wielding character's motion graph with an anchor
point to grapple to. This can be combined with the GrappleSwingState motion graph state to add grapple mechanics to the game.

Inspector

Properties
NAME T YPE D ES CR IPTION

Grapple Point Key String The name of the vector parameter on the character's motion graph that you want to set the grapple
point to.

Grapple Layers LayerMask The physics layers the tool can grapple onto.

Max Grapple
Distance Float The maximum distance that a grapple can connect.

Tether Start Transform The transform to use as the start point of the tether line renderer.

See Also
Modular Firearms

The Motion Graph

GrenadeThrownProjectile MonoBehaviour
Overview
The GrenadeThrownProjectile behaviour is used to create grenades which explode after a set amount of time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion PooledExplosion The explosion object to spawn once the timer expires.

Delay Float The delay before exploding.

Damage Float The damage the explosion does at its center.

Max
Force Float The maximum force to be imparted onto any objects in the explosion's radius. Requires either a [Rigidbody]

[unity-rigidbody] or an impact handler and drops off to zero the further from the center the object is.

See Also
Explosions

Health and Damage

GuidedBallisticProjectile MonoBehaviour
Overview
The GuidedBallisticProjectile is a projectile that uses a tracker component and a motor component to control its flight path. The
tracker component is used to define what the projectile is tracking, while the motor defines its flight characteristics.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Visible
Distance Float The minimum distance before the projectile will appear.

Forget Ignore Root Boolean Forget the character's "ignore root", meaning it can detonate on the character collider.

Recycle Delay Float The time after the bullet hits an object before it is returned to the pool (allows trail renderers to
complete).

See Also
Modular Firearms

BallisticShooter

Hitscan vs Projectiles

HeadMoveAimer MonoBehaviour
Overview
The HeadMoveAimer module moves the character head to align the center of the camera with the weapon sights. This can
actually tilt the camera, providing a different effect to the standard WeaponMoveAimer

In The Scene View

With a gameobject selected that uses a HeadMoveAimer component, the aimer guide handle will be visible in the scene view. This
is used to represent the aim point of the aimer, with the blue arrow pointing forwards, and the green arrow pointing up.

Inspector

Properties

NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active aimer immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Aim Up
Audio AudioClip An audio clip to play when the weapon is raised.

Aim
Down
Audio

AudioClip An audio clip to play when the weapon is lowered.

Hip
Accuracy
Cap

Float The highest accuracy the firearm can achieve while not aiming down sights.

Aimed
Accuracy
Cap

Float The highest accuracy the firearm can achieve while aiming down sights.

Can Aim
While
Reloading

Boolean Should the weapon be lowered when reloading or can it stay aimed.

On Aim
Up UnityEvent An event called when the weapon is fully raised.

On Aim
Down UnityEvent An event called when the weapon is fully lowered.

Root
Transform Transform The root transform of the hierarchy (should align with the camera).

Aim
Offset Transform A target aim transform. The camera will be moved to align it to this transform when aiming down sights.

Offsets are calculated on Awake, so moving this transform at after this point has no effect.

Aim
Position
Offset

Vector3 The offset for the camera transform to move to align the weapon sights with the camera. This property will
only be visible if no AimOffset transform is set.

Aim
Rotation
Offset

Vector3 An euler angle offset for the camera to move to align the weapon sights with the camera. This property will
only be visible if no AimOffset transform is set.

Fov
Multiplier Float A multiplier for the camera FoV for aim zoom.

Input
Multiplier Float

A multiplier for the camera input when aiming down sights. By default, this value is locked to the FoV
multiplier. Clicking the lock icon next to the 2 multipliers allows you to modify it separately for situations such
as render texture scopes.

Aim Time Float The time it takes to reach full aim, or return to zero aim.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

Position
Spring
Multiplier

Float A multiplier for procedural spring position animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Rotation
Spring
Multiplier

Float A multiplier for procedural spring rotation animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Aim Anim
Bool String The animator parameter key for a bool used to control aiming state in animations.

Block
Trigger Boolean If true then the gun cannot fire while transitioning in and out of aim mode. This is used to prevent gunshots

interrupting the animation. This property will only be shown if the Aim Anim Bool property is true.

Crosshair
Up FpsCrosshair The crosshair to show when aiming down sights.

Crosshair
Down FpsCrosshair The crosshair to show when not aiming down sights.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

First Person Camera

HealToolAction MonoBehaviour
Overview
The HealToolAction behaviour adds the ability to heal the wielder or another subject to a wieldable tool.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the tool apply the heal.

Heal
Amount Integer How many points to heal the subject for.

Subject Dropdown Who/what to heal. Wielder means the character using the tool will heal themselves. Target means the tool will be
used on the health manager in front of the user.

Heal
Interval Integer The heal will be applied every nth fixed update tick for continuous heals.

Instant Boolean Should the heal be applied on the first frame of the continuous action, or should it wait for the first interval to
elapse.

Target
Layers LayerMask The physics layers that the tool should check against to get a valid heal subject.

Max
Range Float The maximum distance in front of the character that the tool should cast to check for valid heal subjects.

See Also
Wieldable Tools

Health and Damage

HitscanShooter MonoBehaviour
Overview
The HitscanShooter module raycasts directly out from the muzzle of the gun based on the current accuracy.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Max
Distance Float The maximum distance that the weapon will register a hit.

Muzzle
Tip Transform The transform that the bullet actually fires from.

Layers LayerMask The physics collision layers the shot can hit.

Minimum
Spread Float The minimum accuracy spread (in degrees) of the weapon.

Maximum
Spread Float The maximum accuracy spread (in degrees) of the weapon

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

Tracer
Prototype

Pooled
Object The optional pooled tracer prototype to use (must implement the IPooledHitscanTrail interface).

Tracer
Size Float The size (thickness/radius) of the tracer line.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

Tracer
Duration Float How long should the tracer object stay visible.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

HolographicSight MonoBehaviour
Overview
The InfiniteAmmo behaviour is used to define weapon optics that project a reticule in front of the weapon when viewed through
the sight. This is achieved using stencil shaders, and the holgraphic sight behaviour's main use is to control the colour and the
brightness of the reticule.

Inspector

Properties
NAME T YPE D ES CR IPTION

Color Color The base colour of the reticule.

Reticule GameObject The game object with the reticule mesh attached. This should be placed directly in front of the weapon
at the desired distance.

Brightness
Settings Float Array A series of brightness values that can be cycled through with the Optics Brightness +/- inputs.

Brightness
Setting int The index of the starting brightness setting from the above array.

See Also
Modular Firearms

Scopes & Optics

IncrementalReloader MonoBehaviour
Overview
The IncrementalReloader module is a more complex reloader that increments the ammo count bit by bit. It will increment for each
bullet required and can be interrupted. It is used by the demo shotgun.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Magazine
Size Float The number of rounds that can be fit in the magazine at once.

Starting
Magazine Float The number of rounds in the magazine on initialisation.

Rounds
Per
Increment

Integer The number of rounds to load into the gun each increment.

Use
External
Triggers

Boolean If true, requires an external trigger such as a script or animation event to increment and complete the reload. If
false, uses a timer.

Reload
Start
Duration*

Float The duration of the reload start animation.

Reload
Increment
Duration*

Float The duration of a single increment of the reload.

Reload
End
Duration*

Float The duration of the reload end.

Reload
Anim
Trigger

String The AnimatorController trigger key for the reload animation.

Reload
Anim
Count
Prop

String The AnimatorController propery key for the reload count.

Reload
Audio
Start

AudioClip The audio clip to play when the reload starts.

Reload
Audio
Increment

AudioClip The audio clip to play during an increment of the reload.

Reload
Audio
End

AudioClip The audio clip to play when the reload ends.

NAME T YPE D ES CR IPTION

* This property is not visible unless the Use External Triggers property is set to False.

See Also
Modular Firearms

FirearmAnimEventsHandler

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

InfiniteAmmo MonoBehaviour
Overview
The InfiniteAmmo module provides a limitless pool of ammo for reloader modules to reload from.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Printable
Name String The name to show on the HUD.

Fixed Size Integer The ammo quantity available to any reloaders - must be >= to the magazine size.

See Also
Modular Firearms

InstantScopedAimer MonoBehaviour
Overview
The InstantScopedAimer behaviour instantly zooms the camera and switches to a HUD scope

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active aimer immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Aim Up
Audio AudioClip An audio clip to play when the weapon is raised.

Aim
Down
Audio

AudioClip An audio clip to play when the weapon is lowered.

Hip
Accuracy
Cap

Float The highest accuracy the firearm can achieve while not aiming down sights.

Aimed
Accuracy
Cap

Float The highest accuracy the firearm can achieve while aiming down sights.

Can Aim
While
Reloading

Boolean Should the weapon be lowered when reloading or can it stay aimed.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

On Aim
Up UnityEvent An event called when the weapon is fully raised.

On Aim
Down UnityEvent An event called when the weapon is fully lowered.

Hud
Scope
Key

String The key for the specific scope to show.

Fov
Multiplier Float A multiplier for the camera FoV for aim zoom.

Position
Spring
Multiplier

Float A multiplier for procedural spring position animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Rotation
Spring
Multiplier

Float A multiplier for procedural spring rotation animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Crosshair
Up FpsCrosshair The crosshair to show when aiming down sights.

Crosshair
Down FpsCrosshair The crosshair to show when not aiming down sights.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

First Person Camera

HudScope

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

LaserPointerAimerSwitch MonoBehaviour
Overview
The LaserPointerAimerSwitch behaviour can be added to a laser pointer to give a simplified system for switching a weapon's
aimer module when the laser is active. This can be used for holding weapons tilted and using the laser to aim.

Inspector

Properties
NAME T YPE D ES CR IPTION

LaserAimerModule Aimer The aimer module associated with this laser pointer. This should be disabled on start.

LaserMinAccuracy Float The minimum accuracy of the firearm when the laser is switched on.

See Also
Modular Firearms

WieldableLaserPointer Behaviour

LaserTargetingSystem MonoBehaviour
Overview
The LaserTargetingSystem behaviour is paired with a WieldableLaserPointer to send the laser hit point to the registered guided
projectiles as a target point. Switching the laser off or pointing it at the sky will clear the projectile's target. The guided projectile
must use a TargetingSystemTracker component.

Inspector

Properties
NAME T YPE D ES CR IPTION

Tick Rate Integer The laser pointer hit location will be updated every nth fixed update frame.

See Also
Modular Firearms

TargetingSystemTracker Behaviour

WieldableLaserPointer Behaviour

Hitscan vs Projectiles

LineAndParticleHitscanTrail MonoBehaviour
Overview
The LineAndParticleHitscanTrail behaviour is used to display the trajectory of a hitscan shooter using both a line renderer and a
particle system.

Inspector

Properties
NAME T YPE D ES CR IPTION

Particles Per
Meter Float The number of particles per meter of trail. Used for the emit count to ensure a predictable density.

Random U
Offset Boolean Randomise the line renderer texture's U mapping 0-1. Requires the material to have an "_OffsetU" property

accessible via property block.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html

LineRendererHitscanTrail MonoBehaviour
Overview
The LineRendererHitscanTrail behaviour is used to display the trajectory of a hitscan shooter using a line renderer.

Inspector

Properties
NAME T YPE D ES CR IPTION

Random U
Offset Boolean Randomise the texture's U mapping 0-1. Requires the material to have an "_OffsetU" property accessible via

property block

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-LineRenderer.html

MeleeWeapon MonoBehaviour
Overview
The MeleeWeapon behaviour is a hand held melee weapon like a club or knife.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Animator The animator component of the weapon.

Damage Float The damage the weapon does.

Impact Force Float The force to impart on the hit object. Requires either a Rigidbody or an impact handler on the hit
object.

Layers Float The layers the attack will collide with.

Query Trigger
Colliders Boolean Should the attack be tested against trigger colliders.

Range Float The range that the melee weapon can reach.

Delay Float The delay from starting the attack to checking for an impact. Should be synced with the striking
point in the animation.

Recover Time Float The recovery time after a hit.

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

Crosshair FpsCrosshair The crosshair to show when the weapon is drawn.

Trigger Draw String The AnimatorController trigger key for the raise animation.

Raise Duration Float The time taken to raise the item on selection.

Trigger Lower String The AnimatorController trigger key for the weapon lower animation (blank = no animation).

Lower Duration Float The time taken to lower the item on deselection.

Trigger Attack String The AnimatorController trigger key for the attack animation.

Trigger Attack Hit String The AnimatorController trigger key for the attack hit animation.

Bool Block String The AnimatorController bool key for the block animation.

Audio Select AudioClip The audio clip when raising the weapon.

Audio Attack AudioClip The audio clip when attacking.

Audio Block Raise AudioClip The audio clip when bringing the weapon into block position.

Audio Block Lower AudioClip The audio clip when bringing the weapon out of block position.

NAME T YPE D ES CR IPTION

Origin Point
The NeoFPS weapons assume that the camera is placed at the origin. For many assets or 3rd party weapons, the origin is at the
character feet or hips and the camera is a child object of the weapon's hierarchy. To align the object to correctly work with
NeoFPS you can drag the camera object of the weapon into the Match Transform field under the Origin Point heading. This will
move everything below the spring object to match up.

See Also
Melee Weapons

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

MeleeWieldableStanceManager MonoBehaviour
Overview
The MeleeWieldableStanceManager behaviour is used to specify poses or stances for a melee weapon. The entire weapon will be
moved to match the stance, and can optionally set an animator bool parameter too.

The weapon will exit the stance temporarily while attacking or blocking.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Attack Time Float The minimum amount of time the stance will be temporarily exited for an attack.

Min Block Time Float The minimum amount of time the stance will be temporarily exited when blocking (prevents tapping block).

Use the Add Stance buttons to add a new stance to the manager.

Stances
Individual stances have the following properties:

NAME T YPE D ES CR IPTION

Name String The name of the stance.

Animator
Bool Key String An optional name of a bool parameter in the weapon's Animator.

Position Vector The position to move the weapon to in this stance.

Rotation Vector The rotation of the weapon in this stance.

In
Position
Blend

Dropdown The easing method for blending between the source position and stance position on entering the stance.
Options are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

https://docs.unity3d.com/Manual/class-Animator.html

In
Rotation
Blend

Dropdown The easing method for blending between the source rotation and stance rotation on entering the stance.
Options are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

In Time Float The time taken to enter the stance.

Out
Position
Blend

Dropdown The easing method for blending between the stance position and idle position on exiting the stance. Options
are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

Out
Rotation
Blend

Dropdown The easing method for blending between the stance rotation and Idle rotation on exiting the stance. Options
are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

Out Time Float The time taken to enter the stance.

NAME T YPE D ES CR IPTION

See Also
Melee Weapons

ModularAssaultRifle MonoBehaviour
Overview
The ModularAssaultRifle behaviour is an example of adding functionality to the Modular Firearm. Use the switch modes input
button (defaults to middle mouse button) to cycle through the trigger modules attached to the weapon, acting like a fire select.

Inspector

Properties
NAME T YPE D ES CR IPTION

Modes Fire Mode Array The different fire modes as outlined below.

Start Index Int Which fire mode should be used on start.

Switch Audio AudioClip The audio clip to play when the weapon mode is switched.

Fire Mode
NAME T YPE D ES CR IPTION

Name String The name of the fire mode for the HUD.

Trigger Trigger Module The trigger to activate.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioClip.html

ModularFirearm MonoBehaviour
Overview
The ModularFirearm behaviour manages all of the modules that make up a firearm.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Animator The weapon geometry animator (optional).

https://docs.unity3d.com/Manual/class-Animator.html

Fire Anim
Trigger String The AnimatorController trigger key for the fire animation (blank = no animation).

Raise Delay
Type Dropdown The delay type for raising the weapon (you can use FirearmAnimEventsHandler to tie delays to animation).

Options are None, Elapsed Time, External Trigger.

Raise
Duration Float The duration in seconds for raising the weapon.

Raise Anim
Trigger String The AnimatorController trigger key for the weapon raise animation (blank = no animation).

Lower Anim
Trigger String The AnimatorController trigger key for the weapon lower animation (blank = no animation).

Deselect
Duration Float The time taken to lower the item on deselection.

Dry Fire
Sound AudioClip The audio clip to play if attempting to fire while empty.

Weapon
Raise Sound AudioClip The audio clip to play when the weapon is drawn.

NAME T YPE D ES CR IPTION

Origin Point
The NeoFPS weapons assume that the camera is placed at the origin. For many assets or 3rd party weapons, the origin is at the
character feet or hips and the camera is a child object of the weapon's hierarchy. To align the object to correctly work with
NeoFPS you can drag the camera object of the weapon into the Match Transform field under the Origin Point heading. This will
move everything below the spring object to match up.

Modular Firearm Details
The modular firearm details section assists in setting up a modular firearm. It displays the current state of the firearm along with
the attached modules, and allows you to quickly add modules to the firearm.

Quick Setup
When the ModularFirearm behaviour is first added to an object, the details section will display options for quick setup. This is only
available if the object is placed in a scene. If it is accessed as a prefab in the project hierarchy, then these options will not appear
because of issues with modifying prefab object heirarchies via scripts.

This is used to set up the firearm hierarchy and attach render geometry. It has the following properties:

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

NAME T YPE D ES CR IPTION

Use
Inventory Dropdown Which of the inventory implementations do you want the firearm to use. Choosing the Custom option does

not add an inventory wieldable behaviour, meaning that you will need to add your own solution.

Use
Standard
Input

Boolean Should the firearm use the standard NeoFPS input handler. Switch this off if you wan to add your own custom
input handler.

Weapon
Geometry GameObject

This value is a prefab or model that you want to use to represent the first person weapon. If the object does
not contain a mesh renderer or skinned mesh renderer in its hierarchy then it will cause an error. There is also
a warning if the object has no animator in its hierarchy, though this is not compulsary.

With a valid weapon geometry object selected, the Set Up Firearm button will be available. Pressing this will create a spring
object set up with procedural animation behaviours for handling things like recoil and weapon bob, and then will copy the
weapon geometry under this.

Modules
If the firearm already has child objects then the details section will instead show the modules options:

To add a firearm module click the relevant dropdown button and select the desired module from the menu. If a module is
required for a firearm to operate then the info section at the top of the modular firearm details will display an error if that module
is not attached. The firearm can also have multiple modules of each type, though only one should be set to start active.

Each of the attached modules can also report back any errors to the firearm they are attached to, and broken modules will be
displayed as red in this list.

See Also
FirearmAnimEventsHandler

Additive Transform And Effects

Unity Animator

https://docs.unity3d.com/Manual/class-Animator.html

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AnimatorController.html

ModularFirearmAmmoPickup MonoBehaviour
Overview
The ModularFirearmAmmoPickup behaviour is used in tandem with the ModularFirearmDrop when a character drops the
weapon they are holding. It takes the magazine ammo count from the weapon as it is dropped, so that no extra ammo is spawned
or lost.

Inspector

Properties
NAME T YPE D ES CR IPTION

Weapon
Pickup InteractablePickup The pickup attached to the weapon drop.

Ammo
Object FpsInventoryAmmo The ammo inventory item.

Display
Mesh GameObject The display mesh for the weapon magazine. Will be hidden when the ammo is collected.

Collider
Delay Float The delay before the ammo collider is enabled. Prevents the character dropping the weapon

collecting the ammo immediately.

See Also
Modular Firearms

ModularFirearmDrop

FpsInventoryAmmo

https://docs.unity3d.com/Manual/class-Mesh.html

ModularFirearmDrop MonoBehaviour
Overview
The ModularFirearmDrop is spawned when a character drops their current firearm. It acts as an interactive pickup for other
characters to pick it up, and manages the magazine ammo as a separate pickup.

Inspector

Properties
The ModularFirearmDrop inherits from the FpsInventoryWieldableDrop. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Ammo Pickkup ModularFirearmAmmoPickup The ammo pickup for this weapon's magazine.

See Also
Modular Firearms

ModularFirearmAmmoPickup

InteractivePickup

ModularFirearmModeSwitcher MonoBehaviour
Overview
The ModularFirearmModeSwitcher behaviour is attached to modular firearms to handle mode switch commands by enabling
specific firearm modules or components.

Since only one of each module type can be enabled on a firearm at any one time, when the mode switcher enables one, the
previous is automatically disabled. This does not apply to components which are not firearm modules.

Inspector

Properties
NAME T YPE D ES CR IPTION

On Switch Modes UnityEvent An event fired whenever the firearm mode is switched.

The Add Mode button adds a new blank mode to the component. Each mode has the following properties:

NAME T YPE D ES CR IPTION

Descriptive
Name String The name displayed on the HUD for this mode. Leave this blank if you do not want the mode name

displayed.

Components Component
Array

The components to enable for this mode (for firearm module components, this will disable the old
component automatically).

See Also
Modular Firearms

https://docs.unity3d.com/Manual/UnityEvents.html

MultiObjectSwapEjector MonoBehaviour
Overview
The MultiObjectSwapEjector behaviour replaces and disables multiple animated objects with pooled bullet casing objects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ejector immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Target
Transforms

Transform
Array The transforms of the objects in the firearm heirachy to swap out.

Shell
Prefab PooledObject The bullet casing prefab object to spawn.

Eject On
Fire Boolean Should the ejector start the ejection process immediately when the gun is fired or wait until triggered by an

animation event or other.

Swap
Inactive Boolean If any of the target transforms are inactive, should they be swapped or ignored.

Delay Float The delay time between starting the ejection process and the objects being swapped

See Also
Modular Firearms

PooledObject

https://docs.unity3d.com/Manual/class-Transform.html

MultiTargetLockTrigger MonoBehaviour
Overview
The MultiTargetLockTrigger module charges up while the fire button is held down and fires once it hits full charge.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Charge
Duration Float How long does it take to charge the trigger.

Uncharge
Duration Float How long does it take to uncharge the trigger, assuming it hasn't gone off.

Repeat Boolean Once the shot is fired, start charging the next shot if this is true.

Repeat
Delay Float The time between a shot firing and starting charging the next shot.

Audio
Source AudioSource The source to play the audio from (needs its own as it must be interrupted and seeked).

Trigger
Audio
Charge

AudioClip The audio clip to play on charge.

Trigger
Audio
Release

AudioClip The audio clip to play on release.

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

See Also
Modular Firearms

NearestObjectWithTagTracker MonoBehaviour
Overview
The NearestObjectWithTagTracker behaviour is a guided projectile tracker that checks its vicinity for objects with the correct layer
and tag, then tracks the closest one.

Inspector

Properties
NAME T YPE D ES CR IPTION

Detection Tag String The object tag to home in on.

Detection Layers LayerMask The layers to check for colliders on.

Detection Range Float The max distance for targets to home in on.

Detection Counter Float The time between searching for targets.

See Also
Modular Firearms

Hitscan vs Projectiles

https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/Layers.html

NoisyLineHitscanTrail MonoBehaviour
Overview
The NoisyLineHitscanTrail behaviour is used to display the trajectory of a hitscan shooter using a line renderer. The points of the
line are driven by a particle system which applies noise over time, making the line drift over time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Points Per
Meter Float The number of particles per meter of trail. Used for the emit count to ensure a predictable density.

Max Points Integer The maximum number of points for the line.

End Size
Multiplier Float The line width once the trail dies.

Random U
Offset Float Randomise the texture's U mapping 0-1. Requires the material to have an "_OffsetU" property accessible via

property block

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html

ObjectSwapEjector MonoBehaviour
Overview
The ObjectSwapEjector behaviour replaces and disables an animated object with a pooled bullet casing object.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ejector immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Target
Transform Transform The transform of an object in the firearm heirachy to swap out.

Shell
Prefab PooledObject The bullet casing prefab object to spawn.

Eject On
Fire Boolean Should the ejector start the ejection process immediately when the gun is fired or wait until triggered by an

animation event or other.

Delay Float The delay time between starting the ejection process and the object being swapped

See Also
Modular Firearms

PooledObject

https://docs.unity3d.com/Manual/class-Transform.html

ParticleAmmoEffect MonoBehaviour
Overview
The ParticleAmmoEffect behaviour spawns a pooled particle system object on impact.

Inspector

Properties
NAME T YPE D ES CR IPTION

Impact Effect ParticleImpactEffect The object to spawn at the impact location.

Damage Float The damage the bullet does.

Impact Force Float The force to be imparted onto the hit object. Requires either a Rigidbody or an impact handler.

See Also
Modular Firearms

ParticleImpactEffect

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

ParticleSystemHitscanTrail MonoBehaviour
Overview
The ParticleSystemHitscanTrail behaviour uses a particle system to spawn particles along a hitscan bullet trajectory.

Inspector

Properties
NAME T YPE D ES CR IPTION

Particles Per Meter Float The number of particles per meter of trail. Used for the emit count to ensure a predictable density.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-ParticleSystem.html

ParticleImpactEffect MonoBehaviour
Overview
The ParticleImpactEffect behaviour manages the lifecycle of a pooled particle object that is spawned on a bullet hit by the
ParticleAmmoEffect behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lifetime Float Duration the object should remain active before being returned to the pool.

See Also
Modular Firearms

ParticleAmmoEffect

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Rigidbody.html

ParticleSystemShellEject MonoBehaviour
Overview
The ParticleSystemShellEject module triggers one or more particle systems on each shot.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ejector immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Particle
Systems

ParticleSystem
Array The particle systems to play when a shell is ejected.

Delay
Type Dropdown The delay type between firing and ejecting a shell. Options are None, Elapsed Time, External Trigger.

Delay* Float The delay time between firing and ejecting a shell.

* This property will only be visible if the delay type is set to Elapsed Time

See Also
Modular Firearms

PooledObject

https://docs.unity3d.com/Manual/class-ParticleSystem.html

ParticleToRigidbodyShellEject MonoBehaviour
Overview
The ParticleToRigidbodyShellEject module triggers one or more particle systems on each shot.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ejector immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Particle
System ParticleSystem The particle system to play when a shell is ejected.

Rigidbody
Prefab PooledObject The pooled rigidbody to swap the particles for once out of view.

Max
Particles Integer The maximum number of particles that can be visible.

Delay
Type Dropdown The delay type between firing and ejecting a shell. Options are None, Elapsed Time, External Trigger.

Delay Float The delay time between firing and ejecting a shell. This property will only be visible if the delay type is set to
Elapsed Time

See Also
Modular Firearms

PooledObject

https://docs.unity3d.com/Manual/class-ParticleSystem.html

PassthroughReloader MonoBehaviour
Overview
The PassthroughReloader module has no magazine size, but pulls ammo directly from the firearm's ammo module with every
shot.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Magazine
Size Integer The value it should report for its magazine size if any modules query it.

See Also
Modular Firearms

PatternBallisticShooter MonoBehaviour
Overview
The PatternBallisticShooter module instantly fires in a preset pattern. The pattern is defined in 2D with a max distance of 1m from
the origin on each axis. The distance setting specifies how far from the firearm's muzzle the full pattern size is achieved.

Pattern Editor

The pattern editor allows you to specify the gunshot pattern. The +, - and move buttons switch the editor mode. In + mode,
clicking will add a new point. In - mode, clicking will remove the clicked point. In move mode, you can select a point by clicking it,
and move a point by click-dragging it. The editor also has the following controls:

CONTR OL D ES CR IPTION

Copy To JSON Copy all points to the clipboard in JSON format. You can paste this to any text editor to make changes.

Paste From JSON If the clipboard contains valid JSON, replace all the points with those on the clipboard.

Clear Points Remove all points from the pattern.

Position The position of the selected point (clamped to a -1 to 1 range on each axis).

Template Load a background image to use as a template for placing points.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Pattern
Distance Float The distance from the muzzle tip at which the pattern will match the diagram.

Pattern
Points

Vector2
Array The points that make up the pattern.

Projectile
Prefab PooledObject The projectile to spawn.

Muzzle
Tip Transform The transform that the bullet actually fires from.

Muzzle
Speed Float The speed of the projectile.

Gravity Float The gravity for the projectile.

Layers LayerMask The physics collision layers the shot can hit.

Min Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 1.

Max Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 0.

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

See Also

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

Modular Firearms

PatternHitscanShooter MonoBehaviour
Overview
The PatternHitscanShooter module instantly fires in a preset pattern. The pattern is defined in 2D with a max distance of 1m from
the origin on each axis. The distance setting specifies how far from the firearm's muzzle the full pattern size is achieved.

Pattern Editor

The pattern editor allows you to specify the gunshot pattern. You can select a point by left clicking and move a point by left-click
dragging.

CONTR OL D ES CR IPTION

Template Load a background image to use as a template for placing points.

Copy To JSON Copy all points to the clipboard in JSON format. You can paste this to any text editor to make changes.

Paste From JSON If the clipboard contains valid JSON, replace all the points with those on the clipboard.

Add New Point Add a new point to the pattern (the new points will be placed at the center and selected automatically.

Remove Point Remove the selected point.

Position The position of the selected point (clamped to a -1 to 1 range on each axis).

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Pattern
Distance Float The distance from the muzzle tip at which the pattern will match the diagram.

Pattern
Points

Vector2
Array The points that make up the pattern.

Max
Distance Float The maximum distance that the weapon will register a hit.

Muzzle
Tip Transform The transform that the bullet actually fires from.

Layers LayerMask The physics collision layers the shot can hit.

Min Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 1.

Max Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 0.

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

Tracer
Prototype

Pooled
Object The optional pooled tracer prototype to use (must implement the IPooledHitscanTrail interface).

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

Tracer
Size Float The size (thickness/radius) of the tracer line.

Tracer
Duration Float How long should the tracer object stay visible.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

PenetratingHitscanAmmoEffect MonoBehaviour
Overview
The PenetratingHitscanAmmoEffect module allows projectiles to bounce off surfaces based on the impact angle and the distance
travelled. If you are using a projectile shooter, then there is a separate PenetratingProjectileAmmoEffect that should be used
instead of this.

This ammo effect is also used alongside another effect to apply damage and visual elements.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Type DamageType The type of damage the weapon should do with this ammo.

Initial Hit Effect BaseAmmoEffect The effect of the ammo when it first hits.

Second Hit
Effect BaseAmmoEffect The effect of the ammo after it has penetrated something.

Max
Penetration Float The maximum thickness of object the bullet can penetrate.

Max Distance Float The maximum distance that the weapon will register a hit (includes the distance travelled up to the
penetration).

Layers LayerMask The layers bullets will collide with.

Max Scatter
Angle Float Randomises the deflected bullet direction within this cone angle.

Exit Effect Size Float Uses the surface system to show a bullet hit effect on exit. Set this to zero if you don't want it to
happen.

Tracer
Prototype PooledObject The optional pooled tracer prototype to use (must implement the IPooledHitscanTrail interface)

Tracer Size Float How size (thickness/radius) of the tracer line.

https://docs.unity3d.com/Manual/Layers.html

Tracer Duration Float How long the tracer line will last.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

PenetratingProjectileAmmoEffect MonoBehaviour
Overview
The PenetratingProjectileAmmoEffect module allows projectiles to penetrate through surfaces based on the impact angle and the
speed the projectile is travelling. A new projectile will be spawned on the other side of the surface, with its speed and direction
altered based on the impact.

If you are using a hitscan shooter, then there is a separate PenetratingHitscanAmmoEffect that should be used instead of this.

This ammo effect is also used alongside another effect to apply damage and visual elements.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage
Type DamageType The type of damage the weapon should do with this ammo.

Initial Hit
Effect BaseAmmoEffect The effect of the ammo when it first hits.

Second Hit
Effect BaseAmmoEffect The effect of the ammo after it has penetrated something.

Max
Penetration Float The maximum thickness of object the bullet can penetrate.

Penetration
Speed Float The speed at which max penetration will be reached. The speed will also be clamped to this so that (for

example) hitscan weapons don't have infinite speed.

Layers LayerMask The layers bullets will collide with.

Max Scatter
Angle Float Randomises the deflected bullet direction within this cone angle.

Exit Effect
Size Float Uses the surface system to show a bullet hit effect on exit. Set this to zero if you don't want it to

happen.

Projectile
Prefab PooledObject The projectile to spawn.

https://docs.unity3d.com/Manual/Layers.html

Gravity Float The gravity for the projectile.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

PhysicsBulletCasing MonoBehaviour
Overview
The PhysicsBulletCasing behaviour is a bullet casing that can be ejected from firearms and will physically react with the world.

Inspector

Properties
NAME T YPE D ES CR IPTION

Detail Mesh Mesh The detail mesh to show while the bullet is in the first person view.

Low Poly Mesh Mesh The low poly mesh to switch to when not in the first person view.

Lifespan Float How long should the casing remain before being returned to the pool.

See Also
Modular Firearms

PooledObject

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Mesh.html
https://docs.unity3d.com/Manual/class-Mesh.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

PlayAudioToolAction MonoBehaviour
Overview
The PlayAudioToolAction behaviour is used to play and audio clip on the start or end of a wieldable tool's actions.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the clip be played.

Clip AudioClip The clip to play.

Volume Float The volume for the clip.

See Also
Wieldable Tools

http://docs.unity3d.com/Manual/class-AudioClip.html

PlayerTracker MonoBehaviour
Overview
The PlayerTracker behaviour is a guided projectile tracker component which directs the projectile towards the current player
character. Definitely more useful on enemy weapons than player weapons.

Inspector

Properties
NAME T YPE D ES CR IPTION

Tracking Delay Float The time from firing to starting to steer towards the player character.

See Also
Modular Firearms

Hitscan vs Projectiles

PooledExplosion MonoBehaviour
Overview
The PooledExplosion behaviour manages the lifecycle of a pooled particle object, and handles applying damage and force to items
in its area of effect.

Inspector

Properties
NAME T YPE D ES CR IPTION

Collision
Layers Float The valid collision layers the explosion will affect.

Query Trigger
Colliders Boolean Should the explosion be tested against trigger colliders.

Lifetime Float Duration the object should remain active before being returned to the pool.

Printable
Name Float A description of the damage, used when logging and displaying game events.

Damage Type Float The damage type the explosion applies (enables filtering damage types).

Radius Float The radius of the explosion.

Shake
Strength Float The strength of the camera (and other) shake due to the explosion.

Shake Inner
Radius Float The inner shake radius of the explosion. Any shake handlers within this radius will be affected at full strength,

falling off to 0 outside this based on the falloff distance.

Shake Falloff
Distance Float The distance beyond the inner radius where the shake effect drops off to 0.

Shake
Duration Float The duration of the shake effect.

See Also
Explosions

PooledExplosionAmmoEffect MonoBehaviour
Overview
The PooledExplosionAmmoEffect spawns a PooledExplosion and passes it the relevant data to inflict damage and add force.

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion PooledExplosion The explosion object to spawn at the impact location.

Damage Float The damage does at the center of the explosion. Drops off to zero at the edge of the radius.

Max
Force Float The maximum force to be imparted onto any objects in the explosion's radius. Requires either a Rigidbody

or an impact handler and drops off to zero the further from the center the object is.

Normal
Offset Float An offset from the hit point along its normal to spawn the explosion. Prevents the explosion from

appearing embedded in the surface.

See Also
Modular Firearms

Pooled Explosion

https://docs.unity3d.com/Manual/class-Rigidbody.html

PooledExplosionSpawner MonoBehaviour
Overview
The PooledExplosionSpawner .

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion PooledExplosion The explosion object to spawn.

Offset Vector3 An offset from the object's origin that the explosion will spawn.

Damage Float The damage does at the center of the explosion. Drops off to zero at the edge of the radius.

Max
Force Float The maximum force to be imparted onto any objects in the explosion's radius. Requires either a Rigidbody

or an impact handler and drops off to zero the further from the center the object is.

See Also
Explosions

PooledExplosion

https://docs.unity3d.com/Manual/class-Rigidbody.html

ProceduralFirearmSprintHandler MonoBehaviour
Overview
The AnimatedFirearmSprintHandler behaviour is attached to a modular firearm to model different sprinting mechanics. This
version uses procedural animation to move the firearm into a sprint pose and add an additive transform bob effect.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Sprint Origin
Pos Vector The neutral weapon / item position in sprint pose before bob is applied.

Sprint Origin
Rot Vector The neutral weapon / item rotation in sprint pose before bob is applied.

Sprint Offset Vector The peak position offset of the step cycle on the z and y axes (z does not change).

Sprint
Rotation Vector The peak rotation of the step cycle on each axis.

Rotation
Desync Float The offset in terms of one full step cycle (left and right) for the timing of the rotation. Positive means after the

position, Negative means before.

Full Strength
Speed Float The speed at which the full sprint animation strength is reached. This fades out the rotation aspect as the

character slows down.

NAME T YPE D ES CR IPTION

Firearms
NAME T YPE D ES CR IPTION

Action
On Aim Dropdown

What to do when the firearm enters / exits ADS. Stop Sprinting completely stops the character from sprinting
until they leave ADS. Stop Animation stops the firearm sprint animation without affecting the character
movement.

Action
On
Reload

Dropdown
What to do when the firearm is reloaded. Stop Sprinting completely stops the character from sprinting until the
reload animation completes. Stop Animation stops the firearm sprint animation without affecting the character
movement.

Action
On Fire Dropdown

What to do when the firearm trigger is pulled while sprinting. Stop Sprinting completely stops the character
from sprinting until the weapon stops firing. Stop Animation stops the firearm sprint animation without
affecting the character movement (both of these have a slight delay before firing to allow the weapon to be
aligned). Cannot Fire means that the firearm trigger is blocked until the character stops sprinting.

Min Fire
Duration Float The minimum amount of time the firearm sprint animation will be paused or sprinting blocked when the trigger

is pulled. Prevents rapid tapping of the trigger popping in and out of sprint.

See Also
Modular Firearms

The Motion Graph

Additive Transforms & Effects

ProceduralMeleeSprintHandler MonoBehaviour
Overview
The ProceduralMeleeSprintHandler behaviour is attached to a melee weapon to model different sprinting mechanics. This version
uses procedural animation to move the firearm into a sprint pose and add an additive transform bob effect.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Sprint Origin
Pos Vector The neutral weapon / item position in sprint pose before bob is applied.

Sprint Origin
Rot Vector The neutral weapon / item rotation in sprint pose before bob is applied.

Sprint Offset Vector The peak position offset of the step cycle on the z and y axes (z does not change).

Sprint
Rotation Vector The peak rotation of the step cycle on each axis.

Rotation
Desync Float The offset in terms of one full step cycle (left and right) for the timing of the rotation. Positive means after the

position, Negative means before.

Full Strength
Speed Float The speed at which the full sprint animation strength is reached. This fades out the rotation aspect as the

character slows down.

NAME T YPE D ES CR IPTION

Melee Weapon
NAME T YPE D ES CR IPTION

Min Attack Time Float The minimum amount of time the sprint animation will be paused after an attack.

Min Block Time Float The minimum amount of time the sprint animation will be paused when blocking (prevents tapping block).

See Also
Melee Weapons

The Motion Graph

Additive Transforms & Effects

ProceduralThrownSprintHandler MonoBehaviour
Overview
The ProceduralThrownSprintHandler behaviour is attached to a thrown weapon to model different sprinting mechanics. This
version uses procedural animation to move the firearm into a sprint pose and add an additive transform bob effect.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Sprint Origin
Pos Vector The neutral weapon / item position in sprint pose before bob is applied.

Sprint Origin
Rot Vector The neutral weapon / item rotation in sprint pose before bob is applied.

Sprint Offset Vector The peak position offset of the step cycle on the z and y axes (z does not change).

Sprint
Rotation Vector The peak rotation of the step cycle on each axis.

Rotation
Desync Float The offset in terms of one full step cycle (left and right) for the timing of the rotation. Positive means after the

position, Negative means before.

Full Strength
Speed Float The speed at which the full sprint animation strength is reached. This fades out the rotation aspect as the

character slows down.

NAME T YPE D ES CR IPTION

See Also
Thrown Weapons

The Motion Graph

Additive Transforms & Effects

ProceduralToolSprintHandler MonoBehaviour
Overview
The ProceduralToolSprintHandler behaviour is attached to a wieldable tool to model different sprinting mechanics. This version
uses procedural animation to move the tool into a sprint pose and add an additive transform bob effect.

Inspector

Properties
Motion Graph

NAME T YPE D ES CR IPTION

Min Speed Float The minimum speed the character must be moving for the sprint animation to play.

Sprint Input Param
Key String (Required) The switch parameter on the motion graph which is set by the input handler to tell the

character when to sprint.

Is Sprinting Param
Key String (Required) A switch parameter on the motion graph which the graph sets when the character is sprinting.

Can Sprint Param
Key String (Optional) A switch parameter on the motion graph which tells the character if it can sprint or not.

Animation
NAME T YPE D ES CR IPTION

In Time Float The time taken to blend into the sprint animation.

Out Time Float The time taken to blend out of the sprint animation to idle.

Sprint Origin
Pos Vector The neutral weapon / item position in sprint pose before bob is applied.

Sprint Origin
Rot Vector The neutral weapon / item rotation in sprint pose before bob is applied.

Sprint Offset Vector The peak position offset of the step cycle on the z and y axes (z does not change).

Sprint
Rotation Vector The peak rotation of the step cycle on each axis.

Rotation
Desync Float The offset in terms of one full step cycle (left and right) for the timing of the rotation. Positive means after the

position, Negative means before.

Full Strength
Speed Float The speed at which the full sprint animation strength is reached. This fades out the rotation aspect as the

character slows down.

NAME T YPE D ES CR IPTION

See Also
Wieldable Tools

The Motion Graph

Additive Transforms & Effects

QueuedTrigger MonoBehaviour
Overview
The QueuedTrigger module charges up while the fire button is held down and fires once it hits full charge.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Charge
Duration Float How long does it take to charge the trigger.

Uncharge
Duration Float How long does it take to uncharge the trigger, assuming it hasn't gone off.

Repeat Boolean Once the shot is fired, start charging the next shot if this is true.

Repeat
Delay Float The time between a shot firing and starting charging the next shot.

Audio
Source AudioSource The source to play the audio from (needs its own as it must be interrupted and seeked).

Trigger
Audio
Charge

AudioClip The audio clip to play on charge.

Trigger
Audio
Release

AudioClip The audio clip to play on release.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

RandomObjectMuzzleEffect MonoBehaviour
Overview
The RandomObjectMuzzleEffect module enables one out of a pool of game objects each shot, and then disables it again after a
brief wait.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active muzzle effect immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Muzzle
Flashes

GameObject
Array The muzzle flash game objects.

Muzzle
Flash
Duration

Float The duration the flash should remain active. Keep this longer for objects with particle effects.

Firing
Sounds

AudioClip
Array The audio clips to use when firing. Chosen at random.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioClip.html

RaycastTargetingSystem MonoBehaviour
Overview
The RaycastTargetingSystem behaviour is a targeting system that passes the current raycast hit point to any guided projectiles
that have been registered with it. Those projectiles require a TargetingSystemTracker component attached.

Inspector

Properties
NAME T YPE D ES CR IPTION

Raycast
Layers LayerMask The layers to cast against.

Max
Distance Float The max distance for targets to home in on.

Continuous Boolean Should the targetying system update the projectiles each tick or just pass the initial hit point.

Min
Interval Float

The targeting system will only check for new targets after the min interval has elapsed since the last time,
passing the last target to any new trackers before that. This is useful for burst launchers so that each missile
tracks the same target.

Use
Camera
Aim

Dropdown When set to use camera aim, the targeting system casts forward from the FirstPersonCamera's aim transform.
If not then it casts from the transform the targeting system is attached to.

See Also
Modular Firearms

Hitscan vs Projectiles

TargetingSystemTracker Behaviour

https://docs.unity3d.com/Manual/Layers.html

RechargingAmmo MonoBehaviour
Overview
The RechargingAmmo module is a unique ammo for the firearm it is attached to.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ammo module immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Printable
Name String The name to show on the HUD.

Effect Dropdown A dropdown which shows all the AmmoEffect modules on the GameObject. This is the effect the bullets will
have on hitting a target.

Starting
Ammo Int The amount of ammo the weapon starts with.

Max
Ammo Int The maximum amount of ammo the weapon can carry.

See Also
Modular Firearms

RecoilPushback MonoBehaviour
Overview
The RecoilPushback behaviour connects to a firearm's recoil module and pushes the wielding character backwards when they fire.

Inspector

Properties
NAME T YPE D ES CR IPTION

Force Float The force to push the character back with.

Pitch
Mode Dropdown

How character aim pitch affects the pushback. Ignore will push the character backwards horizontally with the set
force, ScaleForce will push the character back horizontally based on pitch, while Full3D will push the character
directly away from their aim direction (including pitch).

Airborne
Only Boolean Should the recoil only push back when the character is not grounded.

See Also
Modular Firearms

ReloaderCountdown MonoBehaviour
Overview
The ReloaderCountdown behaviour attaches to the firearm's reloader and tracks the magazine size. As it approaches zero then it
plays audio in sequence. This can be used to add a warning that the magazine is almost empty, or for stylistic audio such as an M1
Garand's iconic ping on the last round.

Inspector

Properties
NAME T YPE D ES CR IPTION

Countdown
Audio

Countdown
Audio Array

The audio clips to play as ammo is consumed. First element is for the last round in the magazine,
second = penultimate, and so on.

Extend
Sequence Boolean If set, then the last clip will be used for all ammo until the count is within the sequence.

Countdown Audio Element
NAME T YPE D ES CR IPTION

Clip AudioClip The audio clip to play.

Volume Float The volume to play the clip at.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioClip.html

RenderTextureScope MonoBehaviour
Overview
The RenderTextureScope is used to model a weapon scope using a separate camera attached to the weapon. The shader provided
with NeoFPS provides parallax effects that move the scope ring and reticule as the camera viewing the scope lens goes off the
scope's axis, and fades the lens to an opaque glass at the extremes (disabling the scope camera when fully opaque. Render texture
based scopes incur a performance penalty because they require rendering the scene twice, along with communicating back and
forth with the GPU each frame.

Inspector

Properties
The RenderTextureScope properties are split into a number of sections:

Camera
NAME T YPE D ES CR IPTION

Camera Camera The scope camera.

FOV Float The field of view for the scope camera.

Screen
Coverage Float The amount of the screen height the scope takes up (multiplier). Smaller screen coverage needs a smaller

render texture and therefore performs better.

Angle
Compensation Float Rotate the camera to adapt to the parallax effect. At 1, the image will track (roughly) with the scope ring. At 0,

the scope ring will be completely detached from the image.

Render Texture Material
NAME T YPE D ES CR IPTION

Mesh
Renderer MeshRenderer The mesh renderer of the scope lens which will receive the render texture.

https://docs.unity3d.com/Manual/class-Camera.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html

Material
Index Integer The material index is used to specify which material to modify from a multi-part mesh.

Opaque
Angle Float The angle in degrees off the axis of the scope where the camera stops rendering and the material

becomes completely opaque.

NAME T YPE D ES CR IPTION

Reticule
NAME T YPE D ES CR IPTION

Reticule
Transform Transform The transform of the reticule geometry. Local position (0,0,0) should be centered on the camera and

slightly in front.

Scope Ring (Inner)
NAME T YPE D ES CR IPTION

Scope Ring
Normalised Float The start of the scope ring in terms of the normalised radius. At 1, the ring is a circle that touches the

edges of the texture.

Scope Ring Focus Float The focus level of the scope ring. Setting this lower will expand the blur of the ring out from the normalised
start radius.

Parallax Effect
NAME T YPE D ES CR IPTION

Focal
Point Transform A transform that represents the lens of the scope that the player looks into. Used to determine the off-axis

angle for parallax and fade. This should be placed near the lens of the scope.

Parallax
Deadzone Float An angle range from the scope axis where there is no parallax. This prevents the reticule from going off center

during small movements like idle animations or procedural breathing.

Scope
Ring
Parallax

Float The amount of parallax to add to the scope ring as the eye-line moves away from the scope axis.

Reticule
Parallax Float The amount of parallax to add to the reticule as the eye-line moves away from the scope axis. Values above the

scope ring parallax will make the reticule seem like it is further forward than the ring.

See Also
Modular Firearms

Scopes & Optics

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

RicochetHitscanAmmoEffect MonoBehaviour
Overview
The RicochetHitscanAmmoEffect module allows projectiles to bounce off surfaces based on the impact angle and the distance
travelled. If you are using a projectile shooter, then there is a separate RicochetProjectileAmmoEffect that should be used instead
of this.

This ammo effect is also used alongside another effect to apply damage and visual elements.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Type DamageType The type of damage the weapon should do with this ammo.

Initial Hit Effect BaseAmmoEffect The effect of the ammo when it first hits.

Second Hit Effect BaseAmmoEffect The effect of the ammo after it has penetrated something.

Max Distance Float The maximum distance that the weapon will register a hit (includes the distance travelled up to
the penetration).

Layers LayerMask The layers bullets will collide with.

Normal Vs
Deflection Float A blending value based on ricocheting directly along the hit normal (0) vs the reflection of the

inbound ray (1).

Max Scatter Angle Float Randomises the deflected bullet direction within this cone angle.

Split Count Integer The number of shots to split the ricochet into (1 is no split).

Tracer Prototype [PooledObject]
[4] The optional pooled tracer prototype to use (must implement the IPooledHitscanTrail interface)

Tracer Size Float How size (thickness/radius) of the tracer line.

Tracer Duration Float How long the tracer line will last.

https://docs.unity3d.com/Manual/Layers.html

See Also
Modular Firearms

Surfaces

RicochetProjectileAmmoEffect MonoBehaviour
Overview
The RicochetProjectileAmmoEffect module allows projectiles to bounce off surfaces based on the impact angle and the speed the
projectile is travelling. If you are using a hitscan shooter, then there is a separate RicochetHitscanAmmoEffect that should be used
instead of this.

This ammo effect is also used alongside another effect to apply damage and visual elements.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage
Type DamageType The type of damage the weapon should do with this ammo.

Initial Hit
Effect BaseAmmoEffect The effect of the ammo when it first hits.

Second
Hit Effect BaseAmmoEffect The effect of the ammo after it has penetrated something.

Layers LayerMask The layers bullets will collide with.

Normal
Vs
Deflection

Float A blending value based on ricocheting directly along the hit normal (0) vs the reflection of the inbound
ray (1).

Max
Scatter
Angle

Float Randomises the deflected bullet direction within this cone angle.

Split
Count Integer The number of shots to split the ricochet into (1 is no split).

Projectile
Prefab PooledObject The projectile to spawn.

https://docs.unity3d.com/Manual/Layers.html

Speed
Mode Dropdown

ow the ricochet speed of the projectile is calculated. Multiplier multiplies the contact speed by a set
value, FixedSpeed uses a set speed, AngleBasedMultiplier multiplies the contact speed by a value
based on the contact angle, AngleBasedSpeed uses a set speed based on the contact angle.

Speed
Multiplier Float A multiplier applied to the bullet speed after ricochet. Only visible when Speed Mode is set to

Multiplier.

Fixed
Speed Float The speed of the projectile after ricochet. Only visible when Speed Mode is set to FixedSpeed.

Straight
On
Multiplier

Float A multiplier applied to the bullet speed after ricochet when the entry velocity was perpendicular to the
surface. Only visible when Speed Mode is set to AngleBasedMultiplier.

Glancing
Multiplier Float A multiplier applied to the bullet speed after ricochet if the initial bullet was travelling parallel to the

surface. Only visible when Speed Mode is set to AngleBasedMultiplier.

Straight
On Speed Float The speed of the projectile after ricochet when the entry velocity was perpendicular to the surface. Only

visible when Speed Mode is set to AngleBasedSpeed.

Glancing
Speed Float The speed of the projectile after ricochet if the initial bullet was travelling parallel to the surface. Only

visible when Speed Mode is set to AngleBasedSpeed.

Gravity Float The gravity for the projectile.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

Surfaces

SampleParticleExplosion MonoBehaviour
Overview
The SampleParticleExplosion behaviour is a basic implementation of an explosion effect involving a central fireball and a number
of after effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Offset Float The distance along the normal to offset the exposion (for raising from a surface).

Fireball ParticleSystem The central fireball of the explosion.

After Effects After Effects Array Any extra emitters for explosion after effects (smoke, sparks, etc).

After Effects
NAME T YPE D ES CR IPTION

Particle System ParticleSystem The after effect particle system.

Emit Count Int The amount of particles to emit.

See Also
Explosions

Unity ParticleSystem

https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html

ScopedAimer MonoBehaviour
Overview
The ScopedAimer module will raise the weapon and then switch to a HUD Scope when the weapon is fully raised.

In The Scene View

With a gameobject selected that uses a HeadMoveAimer component, the aimer guide handle will be visible in the scene view. This
is used to represent the aim point of the aimer, with the blue arrow pointing forwards, and the green arrow pointing up.

Inspector

Properties

NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active aimer immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Aim Up
Audio AudioClip An audio clip to play when the weapon is raised.

Aim
Down
Audio

AudioClip An audio clip to play when the weapon is lowered.

Hip
Accuracy
Cap

Float The highest accuracy the firearm can achieve while not aiming down sights.

Aimed
Accuracy
Cap

Float The highest accuracy the firearm can achieve while aiming down sights.

Can Aim
While
Reloading

Boolean Should the weapon be lowered when reloading or can it stay aimed.

On Aim
Up UnityEvent An event called when the weapon is fully raised.

On Aim
Down UnityEvent An event called when the weapon is fully lowered.

Aim
Offset Vector3 The offset for the root transform to move to align the weapon sights with the camera.

From
Transform Transform Dragging a transform in here will calculate the offset from the root transform to this transform, and set the

Aim Offset property with the result

Hud
Scope Key String The key for the specific scope to show.

Fov
Multiplier Float A multiplier for the camera FoV for aim zoom.

Aim Time Float The time it takes to reach full aim, or return to zero aim.

Position
Spring
Multiplier

Float A multiplier for procedural spring position animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Rotation
Spring
Multiplier

Float A multiplier for procedural spring rotation animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-Transform.html

Aim Anim
Bool String The animator parameter key for a bool used to control aiming state in animations.

Block
Trigger Boolean If true then the gun cannot fire while transitioning in and out of aim mode. This is used to prevent gunshots

interrupting the animation. This property will only be shown if the Aim Anim Bool property is true.

Crosshair
Up FpsCrosshair The crosshair to show when aiming down sights.

Crosshair
Down FpsCrosshair The crosshair to show when not aiming down sights.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

First Person Camera

HudScope

SemiAutoTrigger MonoBehaviour
Overview
The SemiAutoTrigger fires a single shot as fast as the player can press the trigger. If the trigger is held down it will also repeat at a
slow rate.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Cooldown Int Cooldown between trigger pulls (number of fixed update frames).

Repeat
Delay Int How many fixed update frames before firing again (0 = requires fresh trigger press).

See Also
Modular Firearms

SharedPoolAmmo MonoBehaviour
Overview
The SharedPoolAmmo module uses ammo that is stored in the character inventory and can be shared between weapons.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ammo module immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to
appear/disappear.

Effect Dropdown A dropdown which shows all the AmmoEffect modules on the GameObject. This is the effect the bullets
will have on hitting a target.

Ammo
Type SharedAmmoType The ammo type to use.

See Also
Modular Firearms

SharedAmmoType

ShieldBoosterToolAction MonoBehaviour
Overview
The ShieldBoosterToolAction behaviour is used to add an action that restores a character's shield slots to a wieldable tool.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the tool apply the shield boost.

Step Count Integer The number of shield steps to recharge.

See Also
Wieldable Tools

Health and Damage

SimpleBallisticShooter MonoBehaviour
Overview
The SimpleBallisticShooter module spawns an BallisticProjectile. It is not affected by accuracy, and has no options to use the
camera aim target. If you want these extra features then you can alternatively use the [BallisticShooter][4]

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Projectile
Prefab PooledObject The projectile to spawn.

Muzzle
Tip Transform The position and direction the projectile is spawned.

Layers LayerMask The physics collision layers the shot can hit.

Muzzle
Speed Float The speed of the projectile.

Layers LayerMask The layers that will be checked against when casting for valid interaction targets.

Gravity Float The gravity for the projectile.

See Also
Modular Firearms

BallisticProjectile

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html
https://docs.unity3d.com/Manual/Layers.html

SimpleParticleMuzzleEffect MonoBehaviour
Overview
The SimpleParticleMuzzleEffect behaviour spawns triggers a particle system to emit each shot.

Inspector

Properties
NAME T YPE D ES CR IPTION

Particle System ParticleSystem The particle system to play.

Firing Sounds AudioClip Array The audio clips to use when firing. Chosen at random.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-AudioClip.html

SimpleReloader MonoBehaviour
Overview
The SimpleReloader behaviour triggers a reload animation and waits until it completes before taking ammo from the firearm's
ammo module and adding it to the magazine.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active reloader immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Magazine
Size Float The number of rounds that can be fit in the magazine at once.

Starting
Magazine Float The number of rounds in the magazine on initialisation.

Reload
Delay
Type

Dropdown The delay type between starting and completing a reload. The options are None, Elapsed Time, External
Trigger.

Reload
Duration* Float The time taken to reload.

Reload
Anim
Trigger

String The AnimatorController trigger key for the reload animation.

Reload
Audio AudioClip The audio clip to play while reloading.

* This property is only visible if the reload delay type is set to ElapsedTime.

See Also
Modular Firearms

FirearmAnimEventsHandler

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AudioClip.html

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

SimpleSteeringMotor MonoBehaviour
Overview
The SimpleSteeringMotor behaviour is used as part of a guided projectile to steer and move it towards its target. As time goes on
its turning circle improves to prevent it getting stuck orbiting its target.

Inspector

Properties
NAME T YPE D ES CR IPTION

Base Turn Rate Float The turn rate of the projectile (degrees per second).

Turn Grow Rate Float An increase to the turn rate based on elapsed time in flight (base turn rate + turn grow rate * elapsed time).

See Also
Modular Firearms

Hitscan vs Projectiles

SpreadBallisticShooter MonoBehaviour
Overview
The SpreadShooter module is in effect a number of BallisticShooter modules in one.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Projectile
Prefab PooledObject The projectile to spawn.

Muzzle
Speed Float The speed of the projectile.

Gravity Float The gravity for the projectile.

Muzzle
Tip Transform The transform that the bullet actually fires from.

Layers LayerMask The physics collision layers the shot can hit.

Min Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 1.

Max Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 0.

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

Bullet
Count Int How many pellets are fired each shot.

Cone Float The spread of the cone in degrees.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

SpreadHitscanShooter MonoBehaviour
Overview
The SpreadHitscanShooter module is in effect a number of HitscanShooter modules in one.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active shooter immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled -
use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Max
Distance Float The maximum distance that the weapon will register a hit.

Muzzle
Tip Transform The transform that the bullet actually fires from.

Layers LayerMask The physics collision layers the shot can hit.

Min Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 1.

Max Aim
Offset Float The maximum angle from forward the shooter can fire when accuracy is 0.

Use
Camera
Aim

Dropdown
When set to use camera aim, the gun first casts from the FirstPersonCamera's aim transform, and then from
the muzzle tip to that point to get more accurate firing. Options are: HipFireOnly, HipAndAimDownSights,
AimDownSightsOnly, Never.

Bullet
Count Int How many pellets are fired each shot.

Cone Float The spread of the cone in degrees.

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/Layers.html

Tracer
Prototype

Pooled
Object The optional pooled tracer prototype to use (must implement the IPooledHitscanTrail interface).

Tracer
Size Float The size (thickness/radius) of the tracer line.

Tracer
Duration Float How long should the tracer object stay visible.

Shots Per
Tracer Int How many pellets are required per tracer line.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

SpringRecoilHandler MonoBehaviour
Overview
The SpringRecoilHandler module uses the additive transform system to move and rotate the firearm as it recoils.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active recoil handler immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

On Recoil UnityEvent An event that fires every time the weapon recoils.

Hip
Accuracy
Kick

Float The accuracy decrement per shot in hip fire mode (accuracy has a 0-1 range).

Hip
Accuracy
Recover

Float The accuracy recovered per second in hip fire mode (accuracy has a 0-1 range).

https://docs.unity3d.com/Manual/UnityEvents.html

Sighted
Accuracy
Kick

Float The accuracy decrement per shot in sighted fire mode (accuracy has a 0-1 range).

Sighted
Accuracy
Recover

Float The accuracy recovered per second in sighted fire mode (accuracy has a 0-1 range).

Weapon
Kicker AdditiveKicker The additive kicker behaviour on the object.

Weapon
Wander Float How much of the weapon recoil rotation is directed sideways instead of up.

Weapon
Rotation Float The rotation angle of the weapon recoil while firing from the hip. At 0 wander, this is how many degrees the

weapon pitches up.

Weapon
Rotation
Aimed

Float The rotation angle of the weapon recoil while aimed. At 0 wander, this is how many degrees the weapon
pitches up.

Weapon
Knock
Back

Float Knock-back is movement backwards, towards the camera.

Head
Wander Float How much of the head recoil rotation is directed sideways instead of up. At negative values this will be the

opposite of the guns sideways rotation.

Head
Rotation Float The head rotation angle of the weapon recoil when firing from the hip. At 0 wander, this is how many

degrees the weapon pitches up.

Head
Rotation
Aimed

Float The head rotation angle of the weapon recoil when aimed. At 0 wander, this is how many degrees the
weapon pitches up.

Bypass
Move
Multiplier

Boolean
Should the movement recoil effect be affected by the weapon and head spring multipliers? These affect
everything, from bob to impacts to shake. If the multiplier is at zero then the recoil will be disabled either
way.

Bypass
Rotate
Multiplier

Boolean
Should the rotation recoil effect be affected by the weapon and head spring multipliers? These affect
everything, from bob to impacts to shake. If the multiplier is at zero then the recoil will be disabled either
way.

Rotation
Duration Float The amount of time the angle recoil effect takes to return to zero.

KnockBack
Duration Float The amount of time the knockback effect takes to return to zero.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

Additive Transforms and Effects

StandardShellEject MonoBehaviour
Overview
The StandardShellEject behaviour launches a pooled bullet casing object away from the specified transform.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active ejector immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled /
disabled - use this when you have multiple modules on an object such as the firearm root. GameObject
activates / deactivates the object - use this for attachments where you want the geo to appear/disappear.

Shell Eject
Proxy Transform A proxy transform where ejected shells will be spawned.

Shell
Prefab PooledObject The shell prefab object to spawn.

Delay
Type Dropdown The delay type between firing and ejecting a shell. Options are None, Elapsed Time, External Trigger.

Delay* Float The delay time between firing and ejecting a shell.

Out
Speed Float The ejected shell speed directly out from the ejector.

Back
Speed Float The ejected shell speed back over the wielder's shoulder.

Inherit
Velocity Float How much of the character's velocity should be added to the ejected shells.

Angular
Velocity A Vector3 The minimum angular velocity on each axis (will be picked at random between this an B).

Angular
Velocity B Vector3 The maximum angular velocity on each axis (will be picked at random between this an A).

https://docs.unity3d.com/Manual/class-Transform.html

* This property will only be visible if the delay type is set to Elapsed Time

See Also
Modular Firearms

PooledObject

SurfaceBulletPhysicsAmmoEffect MonoBehaviour
Overview
The SurfaceBulletPhysicsAmmoEffect module allows bullets to ricochet and penetrate objects based on the surface. This ammo
effect is used alongside another effect to apply damage and visual elements. Since both ricochets and penetrations reduce the
speed of the resulting projectile, this effect works well when paired with the AdvancedBulletAmmoEffect which allows damage to
fall-off with speed.

The penetration and ricochet settings for each surface are specified using a SurfaceBulletPhysicsInfo scriptable object.

This module only works with projectile based shooters.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Type DamageType The type of damage the weapon should do with this ammo (does nothing for this effect).

Hit Effect BaseAmmoEffect The effect of the ammo when it hits something.

Surface Physics SurfaceBulletPhysicsInfo The per-surface bullet physics info

Layers [LayerMask][unity-
layers] The layers bullets will collide with.

Normal Vs
Deflection Float A blending value based on ricocheting directly along the hit normal (0) vs the reflection

of the inbound ray (1).

Max Ricochet
Scatter Float Randomises the deflected bullet direction within this cone angle, dependent on surface

settings.

Max Penetration
Deflect Float Randomises the penetrating bullet direction within this cone angle, dependent on surface

settings.

Exit Effect Size Float Uses the surface system to show a bullet hit effect on exit. Set this to zero if you don't
want it to happen.

Recursive Boolean Should the bullet keep ricocheting / penetrating after the first time until it has slowed or
travelled far enough.

Projectile Prefab PooledObject The projectile to spawn.

Gravity Float The gravity for the projectile.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

Surfaces

TargetingSystemTracker MonoBehaviour
Overview
The TargetingSystemTracker behaviour is a guided projectile tracking system which defers its target tracking to a targeting
system such as a TargetLockTrigger or LaserTargetingSystem.

Inspector

Properties
The TargetingSystemTracker behaviour has no properties exposed in the inspector.

See Also
Modular Firearms

Hitscan vs Projectiles

TargetLockTrigger MonoBehaviour
Overview
The TargetLockTrigger module charges up while the fire button is held down and fires once it hits full charge.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active trigger immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Charge
Duration Float How long does it take to charge the trigger.

Uncharge
Duration Float How long does it take to uncharge the trigger, assuming it hasn't gone off.

Repeat Boolean Once the shot is fired, start charging the next shot if this is true.

Repeat
Delay Float The time between a shot firing and starting charging the next shot.

Audio
Source AudioSource The source to play the audio from (needs its own as it must be interrupted and seeked).

Trigger
Audio
Charge

AudioClip The audio clip to play on charge.

Trigger
Audio
Release

AudioClip The audio clip to play on release.

See Also
Modular Firearms

https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

TargetTrackingAmmoEffect MonoBehaviour
Overview
The TargetTrackingAmmoEffect behaviour is used to tag targets for guided projectiles to home in on. The projectiles must use a
TargetingSystemTracker component.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Type Dropdown The type of damage the impact counts as. This is a common property for all ammo effects and actually
has no effect in this case.

Secondary
Effect AmmoEffect An optional secondary ammo effect to allow the tracking bullet to deal damage, etc.

Tracker
Lifetime Float The amount of time (seconds) the tracking effect will last for.

On Target
Tagged UnityEvent An event fired when an object is successfully tagged. You can use this to perform actions like switching

ammo effects.

See Also
Modular Firearms

Hitscan vs Projectiles

https://docs.unity3d.com/Manual/UnityEvents.html

ThrownWeapon MonoBehaviour
Overview
The ThrownWeapon behavior is used for weapons such as hand grenades.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Animator The animator component of the weapon.

Projectile Spawn Point
Weak Transform A proxy transform for setting the position and rotation of the spawned projectile (weak throw).

Projectile Spawn Point
Strong Transform A proxy transform for setting the position and rotation of the spawned projectile (strong

throw).

Spawned Projectile PooledObject The prefab to throw.

Held Object GameObject The weapon game object. This is deactivated and swapped with the pooled object during the
throw animation.

Inherit Velocity Float How much of the character velocity does the thrown weapon inherit (think Counter Strike).

Spawn Time Weak Float The point in the animation (seconds) to swap the animated weapon with the pooled physics
weapon (weak throw).

Spawn Time Strong Float The point in the animation (seconds) to swap the animated weapon with the pooled physics
weapon (strong throw).

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Transform.html

Throw Speed Weak Float The throw speed of the projectile (weak throw).

Throw Speed Strong Float The throw speed of the projectile (strong throw).

Throw Duration Weak Float The full duration of the weak throw animation.

Throw Duration Strong Float The full duration of the strong throw animation.

Draw Duration Float The time it takes to raise the weapon.

Crosshair FpsCrosshair The crosshair to show when the weapon is drawn.

Audio Rotator AudioRotator An audio rotator for weapon noises.

Audio Select AudioClip The audio clip when raising the weapon.

Audio Throw Light AudioClip The audio clip for a weak throw.

Audio Throw Heavy AudioClip The audio clip for a strong throw.

Animator Animator The animator component of the weapon.

Anim Key Draw String The key for the AnimatorController trigger property that triggers the draw animation.

Anim Key Light Throw String The key for the AnimatorController trigger property that triggers the light throw animation.

Anim Key Heavy Throw String The key for the AnimatorController trigger property that triggers the heavy throw animation.

Anim Key Lower String The AnimatorController trigger key for the weapon lower animation (blank = no animation).

Lower Duration Float The time taken to lower the item on deselection.

NAME T YPE D ES CR IPTION

Origin Point
The NeoFPS weapons assume that the camera is placed at the origin. For many assets or 3rd party weapons, the origin is at the
character feet or hips and the camera is a child object of the weapon's hierarchy. To align the object to correctly work with
NeoFPS you can drag the camera object of the weapon into the Match Transform field under the Origin Point heading. This will
move everything below the spring object to match up.

See Also
Thrown Weapons

PooledObject

Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

ThrownnWieldableStanceManager MonoBehaviour
Overview
The ThrownnWieldableStanceManager behaviour is used to specify poses or stances for a thrown weapon. The entire weapon will
be moved to match the stance, and can optionally set an animator bool parameter too.

The stance will be exited temporarily whenever the weapon is thrown.

Inspector

Properties
Use the Add Stance buttons to add a new stance to the manager.

Stances
Individual stances have the following properties:

NAME T YPE D ES CR IPTION

Name String The name of the stance.

Animator
Bool Key String An optional name of a bool parameter in the weapon's Animator.

Position Vector The position to move the weapon to in this stance.

Rotation Vector The rotation of the weapon in this stance.

In
Position
Blend

Dropdown The easing method for blending between the source position and stance position on entering the stance.
Options are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

In
Rotation
Blend

Dropdown The easing method for blending between the source rotation and stance rotation on entering the stance.
Options are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

In Time Float The time taken to enter the stance.

https://docs.unity3d.com/Manual/class-Animator.html

Out
Position
Blend

Dropdown The easing method for blending between the stance position and idle position on exiting the stance. Options
are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

Out
Rotation
Blend

Dropdown The easing method for blending between the stance rotation and Idle rotation on exiting the stance. Options
are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

Out Time Float The time taken to enter the stance.

NAME T YPE D ES CR IPTION

See Also
Thrown Weapons

TimedExploder MonoBehaviour
Overview
The TimedExploder behaviour is attached to such as hand grenades, spawning an explosion after a set time. The item should be a
PooledObject and will be returned to the pool when the explosion is spawned.

Inspector

Properties
NAME T YPE D ES CR IPTION

Explosion
Type ExplosionType The id of the explosion to spawn.

Delay The delay before exploding.

Explosion
Radius The radius of the explosion.

Explosion
Damage The damage the explosion does at its center.

Max Force The max force to be imparted onto any objects in the explosion radius. The force falls off as distance from
the center increases. Requires either a Rigidbody or an impact handler.

See Also
Explosions

https://docs.unity3d.com/Manual/class-Rigidbody.html

UnityEventToolAction MonoBehaviour
Overview
The UnityEventToolAction behaviour is used to add a Unity event to a wieldable tool to aid in connecting to other systems.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timing Dropdown When should the event be triggered.

Event UnityEvent The event to fire.

See Also
Wieldable Tools

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

WeaponMoveAimer MonoBehaviour
Overview
The WeaponMoveAimer module moves the entire weapon up to align the center of the camera with the weapon sights.

In The Scene View

With a gameobject selected that uses a HeadMoveAimer component, the aimer guide handle will be visible in the scene view. This
is used to represent the aim point of the aimer, with the blue arrow pointing forwards, and the green arrow pointing up.

Inspector

Properties
NAME T YPE D ES CR IPTION

Start
Active Boolean Should this module register as the active aimer immediately on start.

Activation
Mode Dropdown

How does module activation work. Options are: Component means the component will be enabled / disabled
- use this when you have multiple modules on an object such as the firearm root. GameObject activates /
deactivates the object - use this for attachments where you want the geo to appear/disappear.

Aim Up
Audio AudioClip An audio clip to play when the weapon is raised.

Aim
Down
Audio

AudioClip An audio clip to play when the weapon is lowered.

Hip
Accuracy
Cap

Float The highest accuracy the firearm can achieve while not aiming down sights.

Aimed
Accuracy
Cap

Float The highest accuracy the firearm can achieve while aiming down sights.

Can Aim
While
Reloading

Boolean Should the weapon be lowered when reloading or can it stay aimed.

On Aim
Up UnityEvent An event called when the weapon is fully raised.

On Aim
Down UnityEvent An event called when the weapon is fully lowered.

Aim
Offset Transform A target aim transform. The weapon will be moved to align this transform to the camera when aiming down

sights. Offsets are calculated on Awake, so moving this transform at after this point has no effect.

Aim
Position Vector3 The offset for the weapon transform to move to align the weapon sights with the camera. This property will

only be visible if no AimOffset transform is set.

Aim
Rotation Vector3 An euler angle offset for the weapon to move to align the weapon sights with the camera. This property will

only be visible if no AimOffset transform is set.

Fov
Multiplier Float A multiplier for the camera FoV for aim zoom.

Input
Multiplier Float

A multiplier for the camera input when aiming down sights. By default, this value is locked to the FoV
multiplier. Clicking the lock icon next to the 2 multipliers allows you to modify it separately for situations such
as render texture scopes.

Aim Time Float The time it takes to reach full aim, or return to zero aim.

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-Transform.html

Transition Dropdown

The transitions easing to apply. Note: custom transition requires inheriting a new class and overriding the
custom transition methods. Lerp moves between states with uniform speed, SwingUp moves across and
then up, SwingAcross moves up and then across, EaseInOut smoothes the beginning and end of the
transition for a more natural feel, Overshoot moves past the target position and then back, OvershootIn
overshoots when raising the weapon, but with a smoother return to lowered, Spring overshoots and
wobbles back to position, SpringIn has a smoother return to lowered position, Bounce bounces off the
target pose briefly, BounceIn has a smoother return to lowered, Custom uses virtual methods which you can
override in a custom script.

Position
Spring
Multiplier

Float A multiplier for procedural spring position animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Rotation
Spring
Multiplier

Float A multiplier for procedural spring rotation animation on the weapon. Used to reduce movement when the
firearm is close to the camera.

Aim Anim
Bool String The animator parameter key for a bool used to control aiming state in animations.

Block
Trigger Boolean If true then the gun cannot fire while transitioning in and out of aim mode. This is used to prevent gunshots

interrupting the animation. This property will only be shown if the Aim Anim Bool property is true.

Crosshair
Up FpsCrosshair The crosshair to show when aiming down sights.

Crosshair
Down FpsCrosshair The crosshair to show when not aiming down sights.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

First Person Camera

WieldableFlashlight MonoBehaviour
Overview
The WieldableFlashlight behaviour is used to add a toggleable flashlight to firearms.

Inspector

Properties
NAME T YPE D ES CR IPTION

Light Object GameObject A child object with a light component attached.

Start Enabled Boolean Should the flashlight be on from the start.

On Toggle On UnityEvent An event fired when the laser is switched on.

On Toggle Off UnityEvent An event fired when the laser is switched off.

See Also
Modular Firearms

Attachments

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

WieldableLaserPointer MonoBehaviour
Overview
The WieldableLaserPointer behaviour is used to add a toggleable laser pointer to firearms with configurable colour and intensity.

Inspector

Properties
The WieldableLaserPointer properties are split into a number of sections:

NAME T YPE D ES CR IPTION

Laser Colour Color The colour of the laser.

Start On Boolean Should the laser be on from start.

Beam
NAME T YPE D ES CR IPTION

Laser Source Transform The transform the laser will be projected from (forwards).

Max Laser Distance Float The furthest distance the laser pointer will be visible.

Beam Falloff Float The alpha falloff of the beam over its length.

Flare
NAME T YPE D ES CR IPTION

Flare Size Float The size of the laser hit point flare.

Flare Offset Float The distance the flare should be pushed forward towards the camera from the point of impact (prevents
intersection with walls).

https://docs.unity3d.com/Manual/class-Transform.html

Flare
Material Material The material to use for the laser impact flare. NeoFPS includes a shader for laser flares with variable intensity and

colour.

NAME T YPE D ES CR IPTION

Events
NAME T YPE D ES CR IPTION

On Toggle On UnityEvent An event fired when the laser is switched on.

On Toggle Off UnityEvent An event fired when the laser is switched off.

See Also
Modular Firearms

Attachments

https://docs.unity3d.com/Manual/Materials.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

WieldableTool MonoBehaviour
Overview
The WieldableTool behaviour is used to create tools and items that are equipped and used in a character's hands. They have both
a primary and secondary fire, and are built out of modules and actions.

Inspector

Properties
NAME T YPE D ES CR IPTION

Animator Animator The animator component of the tool.

Anim Key Draw String The key for the AnimatorController trigger property that triggers the draw animation.

Draw Duration Float The time it takes to raise the tool. This option will only be visible when the anim key is set.

Anim Key
Lower String The AnimatorController trigger key for the tool lower animation (blank = no animation).

Lower Duration Float The time taken to lower the item on deselection. This option will only be visible when the anim key is
set.

Audio Select AudioClip The audio clip when raising the tool.

Audio Deselect AudioClip The audio clip when lowering the tool.

Crosshair [FpsCrosshair]
[3] The crosshair to show when the weapon is drawn.

Unmapped Modules
The unmapped modules are the tool modules and actions that exist on this object but have not yet been assigned to either the
primary fire. The buttons will assign the module to the relevant fire mode, or remove it from the object.

Primary and Secondary Modules

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
http://docs.unity3d.com/Manual/class-AudioClip.html
http://docs.unity3d.com/Manual/class-AudioClip.html

The primary and secondary modules array assign each of the attached modules to either the primary or secondary fire modes,
including specifying the order they trigger. The S, C and E characters specify whether the module's actions are triggered on the
fire mode's start (S), end (E) or continuously while the trigger is held (C). A number of modules have options you can set for which
they should use.

Add New Module
The "Add New Module" button is a fast way to add a module component to the tool. Clicking it will list all the available module
types for you to choose from.

Origin Point
The NeoFPS weapons assume that the camera is placed at the origin. For many assets or 3rd party weapons, the origin is at the
character feet or hips and the camera is a child object of the weapon's hierarchy. To align the object to correctly work with
NeoFPS you can drag the camera object of the weapon into the Match Transform field under the Origin Point heading. This will
move everything below the spring object to match up.

See Also
Wieldable Tools

WieldableToolStanceManager MonoBehaviour
Overview
The WieldableToolStanceManager behaviour is used to specify poses or stances for a wieldable tool. The entire tool will be moved
to match the stance, and can optionally set an animator bool parameter too.

The stance will be temporarily exited when aiming and reloading.

Inspector

Properties
Use the Add Stance buttons to add a new stance to the manager.

Stances
Individual stances have the following properties:

NAME T YPE D ES CR IPTION

Name String The name of the stance.

Animator
Bool Key String An optional name of a bool parameter in the weapon's Animator.

Position Vector The position to move the weapon to in this stance.

Rotation Vector The rotation of the weapon in this stance.

In
Position
Blend

Dropdown The easing method for blending between the source position and stance position on entering the stance.
Options are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

In
Rotation
Blend

Dropdown The easing method for blending between the source rotation and stance rotation on entering the stance.
Options are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

In Time Float The time taken to enter the stance.

https://docs.unity3d.com/Manual/class-Animator.html

Out
Position
Blend

Dropdown The easing method for blending between the stance position and idle position on exiting the stance. Options
are: **Lerp, EaseIn, EaseOut, EaseInOut, SwingAcross, SwingUp, Spring, Bounce and Overshoot.

Out
Rotation
Blend

Dropdown The easing method for blending between the stance rotation and Idle rotation on exiting the stance. Options
are: **Lerp, Slerp, EaseIn, EaseOut, EaseInOut, Spring, Bounce, Overshoot.

Out Time Float The time taken to enter the stance.

NAME T YPE D ES CR IPTION

See Also
Wieldable Tools

SharedAmmoType ScriptableObject
Overview
The SharedAmmoType scriptable object is an ammo type that can be stored in the inventory and used by multiple firearms.

Inspector

Properties
NAME T YPE D ES CR IPTION

Inventory ID ID Picker The inventory item key. Clicking this button will open the inventory database item picker.

Printable Name String The name to be printed on the HUD.

Max Quantity Int The maximum quantity a character can carry.

See Also
Modular Firearms

FpsInventoryAmmo

SurfaceBulletPhysicsInfo ScriptableObject
Overview
The SurfaceBulletPhysicsInfo scriptable object specifies how bullets react to different surface types using a
SurfaceBulletPhysicsAmmoEffect. Individual surfaces can have different settings for ricochet and penetration.

Inspector

Properties
NAME T YPE D ES CR IPTION

Penetration
Speed Float The speed at which the penetration values below are accurate. As speed drops away, projectiles cannot

penetrate as far.

Per-Surface Properties
NAME T YPE D ES CR IPTION

Can Penetrate Boolean Can the projectile penetrate this surface type.

Penetration
Depth Float The maximum depth the projectile can penetrate this surface when travelling at the Penetration Speed

specified above.

Max Penetration
Angle Float The maximum angle of incidence with the surface where a projectile can penetrate.

Max Deflection Float A 0-1 value representing how much the projectile direction can be altered by moving through the surface.

Can Ricochet Boolean Can the projectile ricochet off this surface.

Min Ricochet
Speed Float The speed below which a projectile cannot ricochet.

Min Ricochet
Angle Float The minimum angle of incidence that a projectile will ricochet. Below this and the projectile will penetrate

or be destroyed.

Strong Ricochet
Angle Float The angle of incidence where the projectile is deflected with the least speed loss.

Min Speed
Multiplier Float The multiplier applied to the projectile speed when it hits at the minimum angle (as close to straight on as

it can ricochet).

Max Speed
Multiplier Float The multiplier applied to the projectile speed when it hits at the maximum glancing angle.

Surface Friction Float Surface friction is used to add randomness to the ricocheted projectile's direction. Lower friction means a
more predictable ricochet.

NAME T YPE D ES CR IPTION

See Also
Modular Firearms

FpsInventoryAmmo

Health and Damage
Overview
Character health and damage are handler by 2 elements in NeoFPS: A health manager and a number of damage handlers.
Damage handlers react to damage from weapons and other scripts, modify that damage, and then pass it on to the health
manager. For more information, see the BasicDamageHandler and EventDamageHandler.

Incoming damage can have a source attached, which can be used to work out the position or direction damage came from as well
as the type of damage.

Health Pickups
Characters can regain health by collecting health pickups. These have a number of options for how they heal, and can be applied
to either interactive objects, or trigger based pickups. The simplest way to create a health pickup is using the Pickup Wizard in the
NeoFPS Hub.

Shields & Armour
Alongside health, NeoFPS has systems for simple energy shields and inventory based armour. When the character or object takes
damage, first shields will absorb that damage until they are depleted, then armour will mitigate some of the damage (and be
destroyed in the process).

Shields require the character to have a ShieldSystem behaviour attached, and the damage handlers are replaced with
ShieldedDamageHandlers. You can then specify a number of shield steps, each with a set charge. Damage is taken from each step
in order, and if any step is not fully broken it will recharge after a set period. To restore broken steps you can use a ShieldPickup.

Armour is implemented by using ArmouredDamageHandler components. These allow you to specify the inventory key for an
armour item, and then any damage will be (partially) absorbed and taken away from that inventory item instead.

If you want to use both shields and armour, you can use the ShieldedArmouredDamageHandler.

The simplest way to create shield booster pickups or armour (inventory item) pickups is using the Pickup Wizard in the NeoFPS
Hub.

Healing and Damage Zones
You can define areas that heal or damage characters over time by using the HealZone and DamageZone behaviours.

Damage Filters
Damage in NeoFPS can be filtered by team and by type. This allows for gameplay mechanics such as ignoring friendly fire, or
blocking damage from explosions but not bullets.

The damage filter can be used for up to 8 teams and 8 damage types.

Damage handlers have an incoming damage filter, while damage sources have an outgoing damage filter. In code a collision can
be checked via the following code:

if (inDamageFilter.CollidesWith (sourceDamageFilter, friendlyFire))
{
 // React to damage here
}

The friendly fire parameter is a bool . If this is true then the team section of either filter will be ignored. If not then the team has to
be valid as well as the damage type.

Damage Source
The damage source allows for feedback on the location of the source and, when combined with damage filters, effects such as
returning damage to melee attackers.

The damage source specifies outgoing damage filter and the character controller if relevant.

See Also

ArmouredDamageHandler MonoBehaviour
Overview
The ArmouredDamageHandler behaviour adds an armour system to the BasicDamageHandler. Armour will mitigate some or all
of the damage received by the damage handler, but it is consumed in the process. Armour is an inventory item that is picked up in
the scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Multiplier Float The value to multiply any incoming damage by. Use to reduce damage to areas like feet, or
raise it for areas like the head.

Critical Boolean Does the damage count as critical. Used to change the feedback for the damage taker and
dealer.

Inventory Key FpsInventoryKey The inventory key of the armour type.

Damage Mitigation Float The amount of damage the armour should nullify.

Armour Damage
Multiplier Float A multiplier used to modify how much armour is destroyed by the incoming damage.

See Also
Health and Damage

BasicDamageHandler MonoBehaviour
Overview
The BasicDamageHandler behaviour takes damage and passes it to a parent HealthManager

Inspector

Properties
NAME T YPE D ES CR IPTION

Multiplier Float The value to multiply any incoming damage by. Use to reduce damage to areas like feet, or raise it for areas like
the head.

Critical Boolean Does the damage count as critical. Used to change the feedback for the damage taker and dealer.

See Also
Health and Damage

BasicHealthManager MonoBehaviour
Overview
The BasicHealthManager behaviour manages a character's health, firing events when health changes and on death.

Inspector

Properties
NAME T YPE D ES CR IPTION

Health Float The starting health of the character.

Health Max Float The maximum health of the character.

Can Damage Self Boolean Can the character damage itself (eg with explosives).

On Health Changed Unity Event An event called whenever the health changes.

On Is Alive Changed Unity Event An event called whenever the alive state of the health manager changes.

See Also
Health and Damage

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

DamageZone MonoBehaviour
Overview
The DamageZone behaviour applies damage to a character over time whilst they are inside it. It is used alongside a
CharacterTriggerZone, so it should be placed on a GameObject on the TriggerZones layer with a collider with IsTrigger set to
true.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Per Second Float The amount of damage to apply to the player character per second.

Damage Type DamageType The type of damage to apply.

Damage Description String A description of the damage to use in logs, etc.

See Also
Health and Damage

EventDamageHandler MonoBehaviour
Overview
The EventDamageHandler behaviour takes damage and passes it to a parent HealthManager as well as invoking a damage event.

Inspector

Properties
NAME T YPE D ES CR IPTION

Multiplier Float The value to multiply any incoming damage by. Use to reduce damage to areas like feet, or raise it for areas like
the head.

Critical Boolean Does the damage count as critical. Used to change the feedback for the damage taker and dealer.

On
Damage UnityEvent An event that is invoked when damage is taken. The parameters are:

float damage, Vector3 direction, bool critical

See Also
Health and Damage

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

HealthPickup MonoBehaviour
Overview
The HealthPickup behaviour restores health to the character that picks it up. It can be set to provide a set amount of healing, or
some factor of the character's total or missing health.

Inspector

Properties
NAME T YPE D ES CR IPTION

Heal Type Dropdown How the heal is applied. FixedValue adds the health. Factor adds amount * max health. MissingFactor
adds amount * missing health.

Heal
Amount Float The amount to heal by. If heal type is Factor or MissingFactor, this will be a value between 0 and 1.

On Healed
Character UnityEvent An event called when the pickup heals a character.

Single Use Float If the character needs less healing than the pickup amount, should the pickup still be destroyed or should
the remainder be available to use again?

Consume
Result Dropdown What to do to the pickup object once its item has been used (fully, or single use). Available options are

Destroy, Disable and Respawn.

Respawn
Duration* Float How long to wait before respawning if the consume result is set to Respawn.

Display
Mesh GameObject The object containing the display mesh of the pickup. This should be a child of the object this behaviour is

applied to, so that if this is disabled the pickup will still respawn if required.

* This property is only visible if the consume result is set to Respawn.

See Also
Health and Damage

https://docs.unity3d.com/Manual/UnityEvents.html

HealZone MonoBehaviour
Overview
The HealZone behaviour restores health to a character over time whilst they are inside it. It is used alongside a
CharacterTriggerZone, so it should be placed on a GameObject on the TriggerZones layer with a collider with IsTrigger set to
true.

Inspector

Properties
NAME T YPE D ES CR IPTION

Health Per Second Float The amount of health to apply to the player character per second.

See Also
Health and Damage

RechargingHealthManager MonoBehaviour
Overview
The RechargingHealthManager behaviour will recharge to full health, with a set delay after being damaged. New damage
interrupts the healing and resets the timer.

Inspector

Properties
NAME T YPE D ES CR IPTION

Health Float The starting health of the character.

Health Max Float The maximum health of the character.

On Health Changed Unity Event An event called whenever the health changes.

On Is Alive Changed Unity Event An event called whenever the alive state of the health manager changes.

Recharge Rate Float The recharge speed for health regeneration.

Recharge Delay Float The delay between taking damage and starting health regen.

Interrupt Damage Float Health recharge will be interrupted if damage greater than this amount is received.

See Also
Health and Damage

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

ShieldedArmouredDamageHandler MonoBehaviour
Overview
The ShieldedArmouredDamageHandler behaviour combines the ShieldedDamageHandler and ArmouredDamageHandler
systems. Damage is first absorbed by the character's shields. Any damage that is not shielded (because the shields have been
depleted) is then mitigated by the armour, before being passed to the character's health manager.

Inspector

Properties
NAME T YPE D ES CR IPTION

Multiplier Float The value to multiply any incoming damage by. Use to reduce damage to areas like feet, or
raise it for areas like the head.

Critical Boolean Does the damage count as critical. Used to change the feedback for the damage taker and
dealer.

Inventory Key [FpsInventoryKey]
[4] The inventory key of the armour type.

Damage Mitigation Float The amount of damage the armour should nullify.

Armour Damage
Multiplier Float A multiplier used to modify how much armour is destroyed by the incoming damage.

See Also
Health and Damage

ShieldedDamageHandler MonoBehaviour
Overview
The ShieldedDamageHandler behaviour adds an energy shield system to the BasicDamageHandler. Energy shields completely
absorb damage until they are broken. The shield capacity and charge is handled by a ShieldManager behaviour on the character.

Inspector

Properties
NAME T YPE D ES CR IPTION

Multiplier Float The value to multiply any incoming damage by. Use to reduce damage to areas like feet, or raise it for areas like
the head.

Critical Boolean Does the damage count as critical. Used to change the feedback for the damage taker and dealer.

See Also
Health and Damage

ShieldManager MonoBehaviour
Overview
The ShieldManager behaviour is used to track a character's energy shields. Shields completely absorb damage via the
ShieldedDamageHandler and ShieldedArmouredDamageHandler, but are depleted in the process. A character's shields are split
into steps. The steps automatically recharge if partially depleted after a short delay. If a shield step is completely depleted, then
that step is broken and will not recharge. You will need to collect a ShieldPickup to restore broken steps.

Inspector

Properties
NAME T YPE D ES CR IPTION

Shield Float The starting shield amount.

Step Capacity Float The shield capacity of each shield step / block.

Step Count Integer The number of shield steps / blocks.

Damage
Mitigation Float The amount of damage (multiplier) that the shield negates.

Charge Rate Float The recharge speed for shield regeneration.

Charge Delay Float The delay between taking damage and starting shield regen.

Can Break
Step 1 Bolean Shield steps only recharge if the shield value is greater than their starting level. If this property is false, step 1

will always recharge, even if it hits zero.

See Also
Health and Damage

ShieldPickup MonoBehaviour
Overview
The ShieldPickup behaviour is used to restore broken shield steps to a ShieldManager.

Inspector

Properties
NAME T YPE D ES CR IPTION

Step
Count Integer The number of shield steps to recharge.

On
Shields
Recharged

UnityEvent An event called when the pickup heals a character.

Single Use Boolean If the character needs less recharging than the pickup amount, should the pickup still be destroyed or should
the remainder be available to use again?

Consume
Result Dropdown

What to do to the pickup object once its item has been used (fully, or single use). Options are Destroy to
destroy the whole object, Disable to disable the render mesh and trigger so it can be reset later, and
Respawn to disable and the reset automatically after a brief wait.

Respawn
Duration Float How long to wait before respawning if the consume result is set to Respawn.

Display
Mesh GameObject The display mesh of the pickup. This should not be the same game object as this, so that if this is disabled the

pickup will still respawn if required.

See Also
Health and Damage

https://docs.unity3d.com/Manual/UnityEvents.html

The Player HUD
Overview
The player heads up display is made up of a number of UI elements that each present specific information about the player
character or their inventory.

The Player Character Watcher
Most of the HUD elements subcsribe to a player character watcher behaviour that is added to an object in their parent hierarchy.
This is a behaviour that implements the IPlayerCharacterWatcher interface and tells the HUD elements when the player
character changes so that they can attach to the relevant property or system attached to the character. If a behaviour that
implements this interface is not found, then the HUD elements will log an error to the console on start. The NeoFPS samples use
the SoloPlayerCharacterEventWatcher behaviour, though you are free to implement your own if required.

HUD Layout
The demo HUD makes use of Unity's UI auto layout components to properly order items. This means that when a player character
is spawned that does not have a certain feature attached or enabled, then the relevant HUD item will be hidden, and the other
HUD elements in its group will be positioned to fill the gap.

HUD Hider
The HudHider is used to hide the HUD elements when the player is not looking through a first person camera. This can be used
for things like cutscenes.

Included HUD elements
The following HUD elements are included with NeoFPS for direct use or for reference when designing your own player HUD.

Health Counter

The health counter shows how much health your character currently has. For more information see HudHealthCounter.

Shield Meter
![Shield Meter](../images/screenshot-hud-shield meter.jpg)

The shield meter shows the status of the player character's energy shields. These can be split into multiple shield steps which
recharge unless broken. For more information see HudShieldMeter.

Damage Markers

https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UIAutoLayout.html

The damage markers highlight which direction damage comes from. The relevant edge of the screen is highlighted and then fades
out over time. For more information see HudDamageMarkers.

Death Popup

The death popup appears when the player character is killed and before they respawn. For more information see
HudDeathPopup.

Ammo Counter

The ammo counter shows the current and available ammo along with the ammo type and weapon mode. For more information
see HudAmmoCounter.

Firearm Mode

The firearm mode readout will appear when the player selects a firearm that has multiple modes. It displays the current mode. For
more information see HudAmmoCounter.

Crosshair

The crosshair is used for aiming and expands and contracts based on the current accuracy of the weapon. Multiple crosshairs can
be used and referenced by ID. For more information see HudCrosshair.

You can also use the advanced crosshair system which has a more extensible system for drawing individual crosshairs, and adds
hit and critical hit markers. For more information see HudAdvancedCrosshair.

Scopes

The scope is an image overlay that is used for certain weapons. Multiple scope images can be used and are referenced by ID. For
more information see HudScope.

Interaction Tooltip

The interaction tooltip displays the name of the interactive object you are currently aiming at, along with the action performed
when you interact with it. For more information see HudInteractionTooltip.

Progress Bar

The progress bar is used to show the interaction progress for items that require you to hold down the interact control. For more
information see HudProgressBar.

Stamina Bar

The stamina bar shows how much health your character currently has. For more information see HudStaminaBar.

Inventory - Standard

The standard inventory is the kind of inventory you would see in a classic PC FPS. Each weapon has a set slot in a sequence that
matches the number keys. This HUD inventory is also used for the swappable inventory. For more information see
HudInventoryStandardPC and HudInventoryItemStandard.

Inventory - Stacked

The stacked inventory groups items together into stacks of a similar type. This is the inventory used in FPS games such as Half-
Life. For more information see HudInventoryStackedPC, HudInventoryItemStacked and HudInventoryStackedSlot.

Meters and Counters

A number of different HUD meters and counnters are provided to track various properties. These include:

B EHAVIOU R D ES CR IPTION

HudInventoryItemCounter Shows the quantity of a specific item in the player character's inventory.

HudInventoryItemMeter Shows the quantity vs max quantity of a specific item in the player character's inventory.

HudMotionGraphParameterMeter Shows the value in the relevant motion graph parameter on the character as a meter based on a set
range.

HudMotionGraphParameterReadout Shows the value in the relevant motion graph parameter on the character.

HudOxygenMeter Shows the amount of oxygen remaining while swimming.

HudSlowMoCharge Shows the charge of the slow-mo system. Sometimes called focus or adrenaline.

HudStaminaBar Shows the player character's stamina / fatigue levels.

B EHAVIOU R D ES CR IPTION

Target Lock

The target lock HUD shows icons over objects in the world that are locked onto. Locks can be partial (a second icon overlays and
shows the lock progress) and full (only a location marker is shown). For more information see HudTargetLockMarkers and
HudTargetLock

See Also
Health and Damage

Modular Firearms

Inventory

HudAdvancedCrosshair MonoBehaviour
Overview
The HudAdvancedCrosshair behaviour displays a Unity UI based crosshair when an appropriate wieldable is selected, expanding
based on accuracy. It can also show a hit marker briefly when the player deals damage to something, including highlighting the
marker for critical hits.

Inspector

Properties
NAME T YPE D ES CR IPTION

Crosshairs HudAdvancedCrosshairStyleStandard
Array The individual crosshairs.

Default
Crosshair FpsCrosshair The default crosshair to use (when no valid crosshair driver is being

wielded).

See Also
Weapons

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html

HudAdvancedCrosshairStyleStandard MonoBehaviour
Overview
The HudAdvancedCrosshairStyleStandard behaviour represents a specific crosshair style for the HudAdvancedCrosshair
behaviour. It handles animating the hit marker and changing its size based on accuracy. You can also write your own crosshair
styles for more complex effects if desired.

Inspector

Properties
NAME T YPE D ES CR IPTION

Crosshair Rect RectTransform The parent rect transform of the crosshairs (will be expanded and contracted based on accuracy).

Max Accuracy Size Float The size the UI element will reach at 100% accuracy.

Min Accuracy Size Float The size the UI element will reach at 0% accuracy.

m_OnlyShowCriticals Boolean Should the hit marker only show critical hits, or any hit that dealt damage.

m_CritColour Color The colour of the hit markers if for critical hits. Non-critical will use the crosshair colour.

m_HitmarkerDuration Float The amount of time the hit marker will be visible.

m_Animation Dropdown The animation easing function of the hit marker size. Available options are: Lerp, EaseIn,
EaseOut, EaseInOut, Spring and Bounce.

m_HitMarkerRect RectTransform The parent rect transform of the hit marker.

m_HitStartSize Float The starting size of the hit marker.

m_HitEndSize Float The size of the hit marker just before it vanishes.

See Also
HudAdvancedCrosshair

Unity UI

https://docs.unity3d.com/Manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html

HudAmmoCounter MonoBehaviour
Overview
The HudAmmoCounter behaviour is a simple Unity UI based counter for firearm ammo or item stack counts. It also displays a
description of the firearm's ammo type.

Inspector

Properties
NAME T YPE D ES CR IPTION

Stacked Group GameObject The group used for wieldable item stacks such as hand grenades.

Stack Count Text Text The stack count text entry for displaying count and total.

Firearm Group GameObject The group used for firearms.

Magazine Text Text The text entry for the current ammo in the firearm magazine.

Total Text Text The text entry for the total ammo the character is carrying.

Ammo Type Text Text The text entry for displaying the ammo type.

See Also
Modular Firearms

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudCrosshair MonoBehaviour
Overview
The HudCrosshair behaviour displays a Unity UI based crosshair when an appropriate wieldable is selected, expanding based on
accuracy.

Inspector

Properties
NAME T YPE D ES CR IPTION

Crosshair Rect RectTransform The parent rect transform of the crosshairs (will be expanded and contracted based on
accuracy).

Minimum Size Float The size the UI element will reach at 100% accuracy.

Maximum Size Float The size the UI element will reach at 0% accuracy.

Default
Crosshair FpsCrosshair The crosshair to show by default.

Crosshairs RectTransform
Array The individual crosshairs to match the FpsCrosshair generated constants values.

See Also
Modular Firearms

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html

HudDamageMarkers MonoBehaviour
Overview
The HudDamageMarkers behaviour displays images at the edge of the screen based on the direction the player character takes
damage from and then fades out over time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Fullscreen CanvasGroup The group for that encompasses all of the markers.

Left Marker CanvasGroup The group for fading out the left hand marker.

Right Marker CanvasGroup The group for fading out the right hand marker.

Front Marker CanvasGroup The group for fading out the front marker (top of the screen).

Back Marker CanvasGroup The group for fading out the back marker (bottom of the screen).

Show Duration Float How long should the markers remain fully visible.

Fade Duration Float How long do the markers take to fade out.

See Also
Health and Damage

Unity UI

https://docs.unity3d.com/Manual/class-CanvasGroup.html
https://docs.unity3d.com/Manual/class-CanvasGroup.html
https://docs.unity3d.com/Manual/class-CanvasGroup.html
https://docs.unity3d.com/Manual/class-CanvasGroup.html
https://docs.unity3d.com/Manual/class-CanvasGroup.html
https://docs.unity3d.com/Manual/UISystem.html

HudDeathPopup MonoBehaviour
Overview
The HudDeathPopup behaviour is a simple Unity UI Image popup that displays when the player character dies.

Inspector

Properties
The HudDeathPopup behaviour has no properties exposed in the inspector.

See Also
Health and Damage

Unity UI

https://docs.unity3d.com/Manual/script-Image.html
https://docs.unity3d.com/Manual/UISystem.html

HudFirearmMode MonoBehaviour
Overview
The HudFirearmMode behaviour is used to display a description of the equipped firearm's current mode if appropriate.

Inspector

Properties
NAME T YPE D ES CR IPTION

Fire Mode Text Text The text entry for displaying the weapon fire mode.

See Also
Modular Firearms

Unity UI

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudFIrearmOverheatBar MonoBehaviour
Overview
The HudFIrearmOverheatBar behaviour displays a bar showing the current heat of the selected weapon. If the weapon overheats,
then it will show a warning. If the selected weapon does not have a FirearmOverheat behaviour attached then this HUD element
will be disabled.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect RectTransform The heat bar rect transform. This will be scaled along the x-axis based on the heat.

Cooldown
Marker
Rect

RectTransform The rect transform of the cooldown marker. The cooldown marker shows the cooling threshold once a
weapon has overheated. It will be hidden if the weapon cannot overheat, or if the threshold is 0.

Overheated
Warning GameObject An object that is displayed while the weapon is overheating.

See Also
FirearmOverheat Monobehaviour

Unity UI

https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/class-RectTransform.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html

HudHealthCounter MonoBehaviour
Overview
The HudHealthCounter behaviour is a basic numeric Unity UI based health counter.

Inspector

Properties
NAME T YPE D ES CR IPTION

Contents GameObject The health counter game object (hidden when the player is not controlling a character.

Health Text Text The text readout for the current character health.

See Also
Health and Damage

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudHider MonoBehaviour
Overview
The HudHider behaviour is used to hide the HUD canvas when there is no first person camera active.

Inspector

Properties
The HudHider behaviour has no properties exposed in the inspector.

See Also
Health and Damage

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudInteractionTooltip MonoBehaviour
Overview
The HudInteractionTooltip behaviour is used to display the name of the interactive object that the player character is aiming at,
along with a simple description of what interacting with it does.

Inspector

Properties
NAME T YPE D ES CR IPTION

Name Text Text The UI text element to show the highlighted object's name.

Input Action Text Text The UI text element to show the input action required (press or hold).

Interaction Text Text The UI text element to show the interaction result (eg pick up).

See Also
Interactive Objects

Unity UI

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryItemCounter MonoBehaviour
Overview
The HudInventoryItemCounter behaviour displays a simple text counter showing the quantity of a specific item in the player
character's inventory.

Inspector

Properties
NAME T YPE D ES CR IPTION

Counter
Text Text The UI text element to output the quantity to.

Format Dropdown
How to format the quantity. Available options are: Quantity prints the number of items, but hides itself when at
0; QuantityAlwaysVisible prints the number of items, including at 0; QuantityOfMaximum prints the stored
number and maximum, eg. 1/10; Percent displays the quantity as a percentage of the maximum.

See Also
Inventory

Unity UI

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryItemMeter MonoBehaviour
Overview
The HudInventoryItemMeter behaviour displays a simple meter bar that represents the quantity vs max quantity of a specific item
in the player character's inventory.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect RectTransform The rect transform of the filled bar.

See Also
Inventory

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudInventoryStackedPC MonoBehaviour
Overview
The HudInventoryStackedPC behaviour represents the stacked inventory on the HUD. Layed out for keyboard users.

Inspector

Properties
NAME T YPE D ES CR IPTION

Persistent Boolean Does the HUD inventory stay visible at all times, or fade out?

Timeout Float The duration the HUD inventory stays fully visible before fading out.

Transition Duration Float The duration the fade out lasts.

Stack Prototype HudInventoryStackedSlot A prototype of a single quick-slot stack for duplicating.

End Padding Transform The padding transform to pad the layout group and push the item slots together.

See Also
HudInventoryStackedSlot

Inventory Examples

Unity UI

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryItemStacked MonoBehaviour
Overview
The HudInventoryStackedSlot behaviour represents an individual quick-slot item in the HudInventoryStackedPC.

Inspector

Properties
NAME T YPE D ES CR IPTION

Icon Image Image The UI image that is used to display the correct UI icon for the item.

Slot Text Text The UI text to display the slot number.

Colour Selected Color A colour for the item in the HUD when selected.

Colour Unselected Color A colour for the item in the HUD when not selected.

See Also
HudInventoryStackedPC

Inventory Examples

Unity UI

https://docs.unity3d.com/Manual/script-Image.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryStackedSlot MonoBehaviour
Overview
The HudInventoryStackedSlot behaviour represents a quick-slot stack in the HudInventoryStackedPC.

Inspector

Properties
NAME T YPE D ES CR IPTION

Item Prototype HudInventoryItemStacked The item slot prototype to duplicate for the stack.

Padding Transform RectTransform The padding transform to pad the layout group and push the item slots together.

See Also
HudInventoryItemStacked

HudInventoryStackedPC

Inventory Examples

Unity UI

https://docs.unity3d.com/Manual/class-RectTransform.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryStandardPC MonoBehaviour
Overview
The HudInventoryStandardPC behaviour represents the standard inventory on the HUD. Layed out for keyboard users.

Inspector

Properties
NAME T YPE D ES CR IPTION

Persistent Boolean Does the HUD inventory stay visible at all times, or fade out?

Timeout Float The duration the HUD inventory stays fully visible before fading out.

Transition Duration Float The duration the fade out lasts.

Item Prototype HudInventoryItemStandard A prototype of a single quick-slot item for duplicating.

End Padding Transform The padding transform to pad the layout group and push the item slots together.

See Also
HudInventoryItemStandard

Inventory Examples

Unity UI

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/UISystem.html

HudInventoryItemStandard MonoBehaviour
Overview
The HudInventoryItemStandard represents a quick-slot item in the HudInventoryStandardPC.

Inspector

Properties
NAME T YPE D ES CR IPTION

Icon Image Image The UI image that is used to display the correct UI icon for the item.

Slot Text Text The UI text to display the slot number.

Selection Offset Vector2 An offset to highlight quick slot items when selected.

See Also
Inventory Examples

Unity UI

https://docs.unity3d.com/Manual/script-Image.html
https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

HudCrosshair MonoBehaviour
Overview
The HudMotionGraphParameterMeter behaviour displays is used to track a parameter on the player character's motion graph
and display it as a meter bar on the Unity UI. An example usage is for jetpack fuel on the jetpack character.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect [RectTransform][unity-recttransform] The rect transform of the meter's bar. This will be scaled based on the value.

Parameter Key String The name of the motion graph float parameter to watch.

Min Value Float The minimum value at which the meter bar will have zero width.

Max Value Float The maximum value at which the meter bar will have reached its full width.

See Also
Unity UI

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html

HudCrosshair MonoBehaviour
Overview
The HudMotionGraphParameterReadout behaviour displays is used to track a parameter on the player character's motion graph
and display it as a text readout on the Unity UI.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect [RectTransform][unity-recttransform] The rect transform of the meter's bar. This will be scaled based on the value.

Parameter Key String The name of the motion graph float parameter to watch.

See Also
Unity UI

Motion Graph Parameters And Data

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html

HudOxygenMeter MonoBehaviour
Overview
The HudOxygenMeter behaviour displays a simple meter bar for the player character's oxygen level when swimming.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect RectTransform The rect transform of the filled bar.

See Also
SlowMoSystem

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudProgressBar MonoBehaviour
Overview
The HudProgressBar behaviour is used to display a progress bar whent the character interacts with an interactive object in the
world.

Inspector

Properties
NAME T YPE D ES CR IPTION

Full Bar Image The image for the completed progress (overlaps the empty bar. Should be scaled so 100 wide fills the empty bar.

Empty Bar Image The image for the empty bar.

See Also
Interactive Objects

Unity UI

https://docs.unity3d.com/Manual/script-Image.html
https://docs.unity3d.com/Manual/script-Image.html
https://docs.unity3d.com/Manual/UISystem.html

HudScope MonoBehaviour
Overview
The HudScope behaviour displays a UI based scope.

Inspector

Properties
NAME T YPE D ES CR IPTION

Key String The scope name. Used to allow different weapons to use different scopes.

See Also
Modular Firearms

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudShieldMeter MonoBehaviour
Overview
The HudShieldMeter behaviour displays a meter representing the player character's shield strength if it has a ShieldManager
attached. Shields are broken into multiple recharging steps and the current step can be broken if fully depleted. The steps are
represented in the HUD by the HudShieldMeterStep behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Step Prototype HudShieldMeterStep A shield meter step (in the object hierarchy) that can be duplicated for multiple steps.

See Also
ShieldManager

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudShieldMeterStep MonoBehaviour
Overview
The HudShieldMeterStep behaviour represents a single shield step for the HudShieldMeter behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Spacing Integer The spacing between steps.

See Also
ShieldManager

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudSlowMoCharge MonoBehaviour
Overview
The HudSlowMoCharge behaviour displays a simple meter bar for the player character's slow-mo charge (sometimes called focus
or adrenaline in games) if it detects they have a SlowMoSystem attached.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect RectTransform The rect transform of the filled bar.

See Also
SlowMoSystem

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudStaminaBar MonoBehaviour
Overview
The HudStaminaBar behaviour is used to display the player character's stamina levels if it detects they have a StaminaSystem
attached.

Inspector

Properties
NAME T YPE D ES CR IPTION

Bar Rect RectTransform The rect transform of the filled bar.

See Also
StaminaSystem

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudTargetLock MonoBehaviour
Overview
The HudTargetLock behaviour is represents a single target lock marker. It can be used for full and partial target locks. The markers
are managed by the HudTargetLockMarkers behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Progress
Transform RectTransform The transform used to show the progress of the target lock. This size will reduce as the lock strength

increases.

See Also
[The Player HUD1

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudTargetLockMarkers MonoBehaviour
Overview
The HudTargetLockMarkers behaviour connects to a player character or weapon's targeting system and displays target markers
for each lock. Each target lock marker must have a script implementing the ITargetLock interface, such as the HudTargetLock
behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Source Dropdown
Where to get find the targeting system on the player character. Weapon checks the selected weapon. Character
checks the root of the player character. CharacterChildren checks any child objects of the child character. If
CharacterChildren is selected, then be careful not to use a targeting system on any weapons as these could conflict.

See Also
[The Player HUD1

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

HudToggle MonoBehaviour
Overview
The HudToggle behaviour is used to hide or show the HUD (useful for taking screenshots).

Inspector

Properties
NAME T YPE D ES CR IPTION

Toggle Key Dropdown The keyboard key which toggles the HUD visibility.

HUD Object GameObject The gameobject containing the HUD UI. Must be a child of this object.

See Also
[The Player HUD1

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

Save Games
Overview
NeoFPS uses a comprehensive but flexible system for saving game state which is designed to achieve the same effect you see in
top single-player first person shooters. The player should be able to quick-save the game at any point without a perceptible
freeze, and then re-load to the exact same state down to the level of bullets in flight and rigidbodies mid-fall.

The system can also be set up to save as much or as little information as desired. The mentioned quick-saves might be the desired
effect for a narrative game, but a rogue-lite style FPS might want to save limited information on inventory and character skills
only, while a first person platformer might want to use checkpoints that save the active spawn point and score.

Quick, Auto and Manual Saves
The save system has 2 user controlled save types that are enabled by default. On standalone builds, the player can quick-save
using the F5 key, and quick-load using the F9 key (these can be remapped in the game options). The player can also manually
save the game from the in-game menu and give the save a specific name to help understand what point in the game they had
reached (commonly called a hard save).

In most modern FPS games it is also common to save the game state at specific points in a scene or after specific actions. The
save system can trigger auto-saves via scripts, and includes an example behaviour called AutoSaveBehaviour.

Each of the above save types can be enabled or disabled in the SaveGameManager settings.

Save Browser
The NeoFPS samples provides a save game browser in the main menu, implemented in the NeoFPS sample UI system. The same
functionality can be recreated fairly simply in another UI, though it requires some scripting knowledge.

The save browser lists all the of the available saves, along with the following details:

Name - For manual saves, this can be set by the player. For quick and auto saves, this is set in the scene save info.
Save Type - Quick, auto or manual save.
Save Date & Time - The moment the save button was hit.
Thumbnail - An image that represents the save. For quick and auto saves, the save system can take a screenshot on save,
get a texture from the scene save info, or get a texture from the save game manager. Manual saves cannot use a screenshot
(it would just be a menu).

There is also a version of the save browser in the in-game menu which only listss manual saves, and allows you to create a new
manual save or choose one of the existing ones to overwrite.

From the main menu, you can also use the Continue button to load from the latest save (this can be set to specific types or all
types in the manager).

Overrides and Persistence
Besides the standard game saves, the save game system can also be used for other purposes where serializing and deserializing
scene or object date is required (either to disk or to a memory buffer). One example of this is persisting character data between
scenes as the player progresses through the game. In this situation, the game mode tells the save manager to save the data for
the player and character objects, and then reloads them when the new scene has loaded.

In the case of persistence, it is only desired to save and load specific data such as the character health and inventory. Information
such as character position, aim and animation states could actually cause some major problems if they did not match the new
scene. To achieve this, the NeoFPS save system supports a feature called overrides. You can specify different save modes, and
then each object can override what information is saved for each mode.

For more information see Overrides and Persistence.

Controlling What Data Is Saved
The NeoFPS save system requires some setup for objects to control what information is saved and loaded. You can specify
individual child objects and components to either include in or exclude from the save.

Components can come in 2 forms. Neo-serialized components are MonoBehaviours which implement the
INeoSerializableComponent interface. This is the best method of serialization. If you want to serialize a component that you do
not have control over the script for (such as an inbuilt Unity component, or a script from another asset), there must be a formatter
created for it which understands what data to save and load.

For more information see Serializing Data.

Objects that are instantiated at runtime can also be recreated from their prefabs as long as that prefab is registered with either the
save game manager or the scene save info for the scene it is instantiated in. Unity does not provide information on whether an
object is being created as part of a scene load, or a runtime instantiation. This means that in order for the objects to be correctly
registered in the scene hierarchy, there are some rules about how to instantiate prefabs and where.

For more information see Runtime Objects.

Troubleshooting
In the event that data is not being saved properly there are a few common mistakes to look out for, and the save game inspector
can be used to examine saved data and check where the problem lies.

For more information see Troubleshooting Saves.

See Also
Serializing Data

Runtime Objects

Overrides And Persistence

Troubleshooting Saves

Serializing Data
Overview
The core of the NeoFPS save games system is the pairing of the SceneSaveInfo and NeoSerializedGameObject. The latter is used
to identify which objects, along with which of their components, to save and load. The former is required for each saved scene and
inside the save files it acts as the container for all the root serialized objects in the scene.

NeoSerializedGameObject
The NeoSerializedGameObject is placed on every object that needs to be saved, or that has components that need saving. On its
own it can save the transform properties of the object along with its name. It is also used to filter all of the child objects, neo-
serialized components and non-neo-serialized components.

Child Objects
By default, a NeoSerializedGameObject has its child object filter set to Exclude. This means that it will save all child
NeoSerializedGameObjects, and to block a child from being saved, it must be added to the filter list. You can also set the filter to
Include. This means that none of the child objects will be saved, unless they are specifically added to the filter list.

Child objects do not need to be direct children of the parent NeoSerializedGameObject. Other GameObjects can sit inbetween
them in the hierarchy. The exception to this is when objects are instantiated at runtime. When the hierarchy is rebuilt while
loading from save, any runtime instantiated objects will be recreated as direct child objects of their parent
NeoSerializedGameObject. Therefore it is advisable to make sure that this relationship is in place from the start. For more
information on the instantiation of objects at runtime, see Runtime Objects.

Neo-Serialized Components
Neo-serialized components are any monobehaviour which implements the INeoSerializableComponent interface, requiring the
following 2 methods:

public void WriteProperties(INeoSerializer writer, NeoSerializedGameObject nsgo, SaveMode saveMode);
public void ReadProperties(INeoDeserializer reader, NeoSerializedGameObject nsgo);

The nsgo parameter is the object the component is attached to (useful if you want to store references to other components),
while the saveMode parameter is used for overrides (see Overrides And Persistence).

Other Components
Components which do not implement the INeoSerializableComponent interface require a "formatter" to handle writing and
reading their data. The following is an example implementation:

public class RigidbodyFormatter : NeoSerializationFormatter<Rigidbody>
{
 // Register the formatter with the save manager.
 [RuntimeInitializeOnLoadMethod(RuntimeInitializeLoadType.BeforeSceneLoad)]
#if UNITY_EDITOR // Required for the formatter to be recognised when selecting components to serialize
 [UnityEditor.InitializeOnLoadMethod]
#endif
 static void Register()
 {
 NeoSerializationFormatters.RegisterFormatter(new RigidbodyFormatter());
 }

 private static readonly NeoSerializationKey k_VelocityKey = new NeoSerializationKey("velocity");

 protected override void WriteProperties(INeoSerializer writer, Rigidbody from)
 {
 writer.WriteValue(k_VelocityKey, from.velocity);

 // Write other properties here...
 }

 protected override void ReadProperties(INeoDeserializer reader, Rigidbody to)
 {
 Vector3 v;
 if (reader.TryReadValue(k_VelocityKey, out v, Vector3.zero))
 to.velocity = v;

 // Read other properties here...
 }
}

Inside the ReadProperties() method you can also perform logic such as simulating a particle system or starting a coroutine.

Formatters allow you to save components which you do not have source control over, such as in-built Unity components or the
scripts from other assets.

SceneSaveInfo
The SceneSaveInfo behaviour must be placed in each scene that needs to be saved. It allows you to specify the scene name, along
with a thumbnail to show in the save browser if the manager is not set to use a screenshot. It also acts as a root container for each
of the NeoSerializedGameObjects in the scene (though they should not be its child in the scene hierarchy).

The SceneSaveInfo component can also be used to register prefabs that can be instantiated at runtime and rebuilt by the save
system. For more information on this see Runtime Objects.

The Binary Serializer / Deserializer
NeoFPS uses a custom written binary serializer and deserializer for save games. It is designed with the following principles in
mind: it should be very fast to gather and write the save data. It should be very robust when reading the data.

Speed is important when writing saves so that the save system does not cause large frame hitches and interfere with the flow of
the game. To achieve this, the serializer uses pre-allocated buffers and keeps the save size small by storing the values using a
hash instead of a name. This is very different from save systems which prioritise human readability by saving in JSON or XML
formats, but makes a huge difference to performance. The actual file writing from the buffers to the save file is performed on a
separate thread to the rest of the game.

Robustness is most important when reading because there is no guarantee that the saved data will be up to date with the game
when it is run. The player might save the game and then not return to it until a long time has passed and the game has received
multiple content updates. The deserializer builds a map of all the properties that is queried by the gameobjects and components
in the scene immediately after the scene itself has loaded. Firstly, any objects are destroyed or instantiated as required to recreate
the hierarchy in the save file (objects are only destroyed here if they were destroyed in the save so new content is not affected).

After that, all the objects and their components are asked to take the data they need from the save data in turn. This allows the
components to handle missing data gracefully while redundant data will just be ignored. Speed is also less important at the point
of deserialization as it is usually behind a loading screen and not during ongoing play.

The custom serializer uses what's called "unsafe" code to achieve high performance. This means that it uses pointers to move
around the buffers and break values into individual bytes. This requires the code to be placed in an assembly definition which
enables unsafe code for its contents. This also means that the serializer cannot work for WebGL builds. For this situation, another
serializer / deserializer combo has been created called the SafeSerializer. This relies on the .NET binary formatter and streams. It
has a higher performance overhead than the custom version but is able to run on all platforms.

Property Keys And Hashes
For the best performance, when writing your own formatter and INeoSerializableComponent scripts, you can store the property
key hashes instead of saving and loading using the key names. If you save or load a value using a string then it will be hashed
there and then. If this is done thousands of times in a frame then it can be a very expensive process. To make storing the hash
easier, you can use the NeoSerializationKey helper class. Some examples of writing a value are as follows:

public class ExampleNeoComponent : MonoBehaviour, INeoSerializableComponent
{
 // Create a static readonly key helper once which can be used multiple times
 private static readonly NeoSerializationKey k_PropertyKey = new NeoSerializationKey("propertyName");

 public int propertyValue = 5;

 public void WriteProperties(INeoSerializer writer, NeoSerializedGameObject nsgo, SaveMode saveMode)
 {
 // Use the property name directly. Easiest, and good for prototyping, but poor performance
 writer.WriteValue("propertyName", v);

 // Hash the property name. This is what the serializer does behind the scenes in the previous case
 writer.WriteValue(NeoSerializationUtilities.StringToHash("propertyName"), v);

 // Use the key that was hashed once on creation. Best performance
 writer.WriteValue(k_PropertyKey, v);
 }

 // ...
}

Component And Object References
The save system can serialize references to other NeoSerializedGameObjects or the components on them. It cannot serialize
references to components on an object that does not have a NeoSerializedGameObject component attached and is not also
serialized.

The following helper functions exist to aid in saving or loading references:

https://docs.unity3d.com/2019.2/Documentation/Manual/ScriptCompilationAssemblyDefinitionFiles.html

public class ExampleNeoComponent : MonoBehaviour, INeoSerializableComponent
{
 public GameObject testGameObject;
 public NeoSerializedGameObject testNsgo;
 public Transform testTransform;
 public NeoComponent testComponent;

 public void WriteProperties(INeoSerializer writer, NeoSerializedGameObject nsgo, SaveMode saveMode)
 {
 writer.WriteGameObjectReference("testGameObject", testGameObject, nsgo);
 writer.WriteNeoSerializedGameObjectReference("testNsgo", testNsgo, nsgo);
 writer.WriteTransformReference("testTransform", testTransform, nsgo);
 writer.WriteComponentReference("testComponent", testComponent, nsgo);
 }

 public void ReadProperties(INeoDeserializer reader, NeoSerializedGameObject nsgo)
 {
 reader.TryReadGameObjectReference("testGameObject", out testGameObject, nsgo);
 reader.TryReadNeoSerializedGameObjectReference("testNsgo", out testNsgo, nsgo);
 reader.TryReadTransformReference("testTransform", out testTransform, nsgo);
 reader.TryReadComponentReference("testComponent", out testComponent, nsgo);
 }
}

See Also
NeoSerializedGameObject MonoBehaviour

SceneSaveInfo MonoBehaviour

Runtime Objects
Overview
The NeoFPS save system is able to save and load objects that are instantiated at runtime, providing they adhere to the following
rules:

1. The prefab must have a NeoSerializedGameObject on its root object.
2. The prefab must be registered with the save sytem
3. The object has to be instantiated by the the scene's SceneSaveInfo object or a parent NeoSerializedGameObject that is

correctly set up.

Registering Prefabs
Prefabs can be registered in 2 places: on the SaveGameManager asset (NeoFPS/Resources/FpsSettings_SaveGames.asset by
default), or on the scene's SceneSaveInfo object. Prefabs registered on the save game manager asset will be available at all times,
however they (and all the assets such as textures and audio clips they reference) will be loaded into memory at all times. If the
prefab is only supposed to be available in a few scenes then it should be registered in those scenes only.

The process for registering a prefab is the same for both situations. The SaveGameManager asset and the SceneSaveInfo
monobehaviour both have the following section in the inspector:

To register a prefab, you can drag it from the project view into the Add Prefab field. Alternatively you can drag a folder from the
project view onto the Add Folder field and every prefab in that folder or its subfolders that has a NeoSerializedGameObject on its
root will be registered. Each item will only be registered once, and duplicate items will be skipped.

To view the registered prefabs, you can expand the Registered Items foldout at the bottom of the inspector. The order of the
items has no effect. You can remove an item by selecting the marker on the left (=) and hitting the - button at the bottom of the
list. You can also click the Clear Prefabs button to remove all registered prefabs from the list.

Instantiating Prefabs
Instantiating a serializable prefab must be done via the following methods on a NeoSerializedGameObject or SceneSaveInfo
monobehaviour:

public T InstantiatePrefab<T>(T prototype);
public T InstantiatePrefab<T>(T prototype, Vector3 position, Quaternion rotation);
public T InstantiatePrefab<T>(int prefabID, int serializationKey);

For the first two methods, if the prefab that's instantiated does not have a NeoSerializedGameObject at its root then it will be
instantiated the standard Unity way. Otherwise it will be given unique serialization ID, registered with the parent object or scene
and flagged as a runtime object.

The second method is usually used by the save game manager when rebuilding the scene hierarchy, but it can also be used in
special situations where you don't want the save system to generate unique IDs.

Destroying Objects
You can destroy an object using the standard Destroy() method. If the object was instantiated at runtime then it will simply be
unregistered by the parent object or scene. If the object was in the scene hierarchy on load, then it willl be flagged for destruction
by the scene or parent object.

Changing Hierarchy
Each NeoSerializedGameObject is attached to its parent or the scene on load or instantiation. If you want to move an object from
one NeoSerializedGameObject parent to another, then you can use the NeoSerializedGameObject.SetParent() method. Using
the transform.SetParent() method as standard will cause unexpected results as the object will still be registered with its
original parent. This means that on saving and loading using the save system, the object will be recreated as though it was still
attached to the original.

Runtime instantiated objects must be a direct child of their parent NeoSerializedGameObject. The save game
InstantiatePrefab() and SetParent() methods will enforce this, but the object hierarchy must not be changed separately.

Loading Process
When a scene is loaded from a save game, the system starts by loading the scene as standard. As soon as the scene is available,
the NeoSerializedGameObject hierarchy is traversed and any changes to the hierarchy made. In order from the root
NeoSerializedGameObject objects to the children, any objects that are flagged for destruction in the save are destroyed. Any
runtime instantiated objects registered with the parents are instantiated via their prefab ID and assigned their original
serialization ID. Once the hierarchy has been rebuilt, it is traversed again to load all the stored component data.

See Also
Troubleshooting

Overrides and Persistence
Overview
The NeoFPS save system has multiple uses. In the samples it is also set up to save character data for persistence when changing
scenes, but it can also be extended to for other purposes.

Persistence
When progressing through a game you often have levels which continue on from each other. In this situation, you need certain
data to carry over into the new scene, while other data can be discarded. For example, you would want the character to spawn at
the position of the spawn point in the new scene, in a neutral state, but you would probably want them to retain their health and
the contents of their inventory from the previous scene.

The actual persistence of the data is handled by the game mode. This tells the save game manger to save the player object and
character object to a byte buffer using the persistence save mode. If you want to extend the persistence system or create your
own, then it can be done with the following methods:

public static bool SaveGameManager.SaveGameObjectsToBuffer(NeoSerializedGameObject[] objects, SaveMode
saveMode);
public static bool SaveGameManager.LoadGameObjectsFromBuffer(NeoSerializedGameObject[] objects);

These both take an array of objects and will serialize them in order. As long as the objects in the save method match the objects in
the load method (in terms of source prefab and order), then the requested data will be transferred between them.

Adding New Save Modes
The available save modes are set using the NeoFPS generated constants system. The first option is always the default save mode,
as used by the standard quick, auto and manual saves. It is advised to keep the second option as persistence and add any new
modes after this unless you're sure it isn't required for your project.

Using Overrides To Customise Saved Data
Each NeoSerializedGameObject can be set up to save different data for each game mode. The main filters and transform options
are used for the default mode.

At the bottom of its inspector, you can see a section called Save Type Overrides. The dropdown button below this (Add
Override) allows you to add a new override based on the available modes.

The override settings will appear below this and mirror the save settings and filters in the main inspector. Each property has a Use
Default option so that not every property needs to be overriden. It can be limited to just transform properties, children or
components as required.

See Also
Inventory Examples

Troubleshooting The Save System
Overview
Serializing and deserializing game state is a complex topic, and it can be tricky to work out why something isn't being saved the
way you would expect it to. The NeoFPS save system tries to give the visual feedback in the inspector to help diagnose issues,
along with a tool called the NeoSave File Inspector, which you can use to check data that has been saved to a file.

Troubleshooting NeoSerializedGameObjects
The following is an example of the serialization info shown in the inspector for a NeoSerializedGameObject:

While this is an example of an object that will not be correctly saved by the save system:

If an object says it will not be saved then that is generally down to one of four reasons:

1. The scene does not have a valid SceneSaveInfo.
2. The object's heirarchy does not have a NeoSerializedGameObject at its root.
3. The object or one of its parents is blocked from saving by NeoSerializedGameObject child object filters higher up the

hierarchy.
4. The object was instantiated at runtime, but using default Unity instantiation and not via the NeoFPS save system.

NeoSave File Inspector

The NeoSave File Inspector can be used to open save files and inspect their contents. It can be found in the menus at
Tools/NeoFPS/NeoSave File Inspector, or by clicking the Save Game Inspector button from within the SaveGameManager

settings.

Save Location Settings

At the top of the editor is a foldout section for exploring to the project's save files. This matches the SaveGameManager settings
and will display an info box that shows if the folder exists and contains save files.

Searching For Strings

NeoFPS save files are designed to use a low footprint and fast format, and not to be human readable. Data is not organised using
property names, but hashes instead. This can make it tricky to understand what values in the save file inspector correspond to
what properties in a component or object. To aid in this, you can register property names with the inspector, and when a hash
matches one of those property names, then the name will be displayed in green besides the hash value.

You can add new property names via the Search For Keys text field. This will add the name and its hash to the inspector. The
inspector automatically registers a number of common property names that are used in the base NeoSerializedGameObject and
save file metadata. You can also export and import the property names via the Export Search Strings and Import Search
Strings buttons. This is useful if you are making frequent use of the save file inspector and have specific classes you want to focus
on.

Navigating The File

Near the top of the inspector is a section which displays information on your current location in the save file, and allows you to
navigate up the save hierarchy.

NeoFPS save files group data into contexts, These context are things like Scene, MetaData, GameObject and
ComponentNeoSerialized or ComponentNeoFormatted. These contexts are stored in a tree hierarchy, similar to the scene
hierarchy. At the root of the save file is always the Root context. At any time while inspecting the save file contents, you can return
to the save file root by using the Inspect Root Context button. You can also move back up the hierarchy towards the root one
node at a time using the Inspect Parent button. The brackets next to this display the context type of the parent.

The Current Context readout tells you what context you are currently inspecting.

The Properties section displays the values that are currently saved for the inspected context and contains the following info:

Property Name displays the name of the property if a property name has been registered with the inspector that matches
the property's hash (see above).
Hash is the hashed property name that was used to save the data.
Property Type is the type of the value (it will also say if it is an array).

Value is the saved value. In the case of arrays, you can expand this section to see the individual values (large arrays will
show the first 50 values, followed by a "..." to signify there is more data in the file).

The Sub-Contexts section shows the child contexts that the current context contains and shows the following info:

Hash/ID is the ID value that was used to identify the context when saved. This could be a generated ID, a hashed name, or a
sequential number based on the context type. The only rule is that it is unique within the current parent context.
Context Type is the type of the context.
Contents shows the number of properties and child contexts for this context.
The Inspect button will change the currently inspected context to this one. You can reach the previous context using the
Inspect Parent button.

Loading vs Initialisation Order
Another area where it can be complicated to enforce correct behaviour is in the execution order of loading objects from save data
vs initialising them using the standard Unity Awake() and Start() methods.

Unfortunately Unity only provides limited functionality to detect when a scene has been loaded, and events are only fired once
Unity has initialised all objects with Awake() . It is possible to halt async scene loads once all objects have been created, but the
scene state is not sufficent for searching for or instantiating objects.

The NeoFPS save system attempts to get around this by using Script Execution Order with the SceneSaveInfo behaviour to ensure
that it is the first object to be awakened in the scene, which in turn triggers the loading from save data before the rest of the scene
objects are awake. The reasoning behind this is that the save system can recreate the scene hierarchy and destroy any objects that
require it before they are initialised. Runtime objects that are instantiated will call Awake() immediately, while scene objects will
call Awake() once the hierarchy has been fully rebuilt.

If you find that your components are being loaded after they have already been initialised then check in the Script Execution
Order settings that the top value is NeoSaveGames.SceneSaveInfo.

It is also a good idea to move any common initialisation logic out of Awake() and into a separate method that can be called from
inside both Awake() and ReadProperties() with a check that it does not occur twice. For example:

https://docs.unity3d.com/Manual/class-MonoManager.html
https://docs.unity3d.com/Manual/class-MonoManager.html

public class ExampleBehaviour : MonoBehaviour, INeoSerializableComponent
{
 private bool m_Initialised = false;

 void Awake()
 {
 // Do not initialise if already loaded by save system
 if (!m_Initialised)
 {
 // Perform non-shared initialisation logic here

 Initialise();
 }
 }

 void Initialise()
 {
 // Perform shared initialisation logic here

 m_Initialised = true;
 }

 public void ReadProperties(INeoDeserializer reader, NeoSerializedGameObject nsgo)
 {
 if (!m_Initialised)
 {
 // Read the relevant data here

 Initialise();
 }
 else
 Debug.LogError("Reading propertes after component was initialised. Check script execution order of
SceneSaveInfo.cs");
 }
}

See Also
[Inventory Examples][2]

AutoSaveBehaviour MonoBehaviour
Overview
The AutoSaveBehaviour behaviour is used to trigger auto-saves or checkpoint saves via the NeoFPS save system. It can be
triggered via unity events, and used with the NeoFPS contact triggers and interactive objects.

Inspector

Properties
NAME T YPE D ES CR IPTION

One Shot Boolean Can the autosave be triggered multiple times by this behaviour.

Cooldown Float The time in seconds before the autosave can be triggered again. This property will only appear if One Shot is
set to false.

Retry
Attempts Integer If the save fails (because another save or load event is in progress), the behaviour will try every second this

manny times.

See Also
Save Games

Unity Events

Interaction With The World

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

NeoSerializedGameObject MonoBehaviour
Overview
The NeoSerializedGameObject behaviour is a key component of the NeoSave system. This component must be added to any
objects that need to be saved and is used to specify which of its components and child objects are serialized.

Inspector

The information box at the top of the inspector gives details on the state of the object. It will list the object's serialization key, if the
object was instantiated at run-time and whether the object is correctly set up to be saved. This requires that the root object has a
valid and enabled NeoSerializedGameObject attached and none of its NeoSerializedGameObject parents are disabled or filtered
out.

Properties

NAME T YPE D ES CR IPTION

Save
Name Boolean Save and load the object's name. This is not required in most cases.

Position Dropdown How to save and load the object's transform position. The avialable options are Local Space, World Space
and Ignore.

Rotation Dropdown How to save and load the object's transform rotation. The avialable options are Local Space, World Space
and Ignore.

Local
Scale Boolean Should the object transform local scale be saved and loaded or ignored. Saving scale in world space is not an

option .

Child Objects Foldout
NAME T YPE D ES CR IPTION

Filter
Child
Objects

Dropdown How to filter child objects for saving and loading. If set to Exclude then any objects added to the list below will
not be saved. If set to Include then only objects in the list below will be saved.

To add objects to the list, click the + button and the available objects will be shown in a dropdown.

Neo-Serialized Components Foldout
NAME T YPE D ES CR IPTION

Filter Neo
Components Dropdown How to filter the neo-serialized components attached to this game object. If set to Exclude then any objects

added to the list below will not be saved. If set to Include then only objects in the list below will be saved.

To add objects to the list, click the + button and the available components will be shown in a dropdown. A neo-serialized
component is any behaviour that implements the INeoSerializedComponent interface. For more information see Serializing
Data.

Other Components Foldout
Components that do not implement the INeoSerializedComponent interface can be serialized by adding them to this list. In order
for a component (that is not a neo-serialized component) to appear in this list, it must be attached to this gameobject and have a
valid formatter registered with the save system. For more information see Serializing Data.

Save Type Overrides
The NeoSave system allows you to define save modes using the generated constants system. By default, the samples use the save
modes Default for standard game saves and Persistence for persisting certain data such as character health and inventory
between scenes. You can add overrides here by clicing the Add Override button. This will show the available modes except for
Default and any that have already been overriden. You can then override the filters and properties for that save mode as
required or set them to use default. For example, the characters override the persistence save mode to only save the health
manager and inventory components while not saving data like position, aim and motion graph states.

See Also
Serializing Data

SceneSaveInfo MonoBehaviour
Overview
The SceneSaveInfo behaviour stores information about the current scene for the save system. This includes the display name and
thumbnail for the [save game browser][2] along with the objects registered for runtime instantiation and serialization.

Inspector

Properties
NAME T YPE D ES CR IPTION

Display Name String The title of the scene to display in the save browser.

Thumbnail Texture Texture2D An image to display in the save browser, depending on how the thumbnails are set up.

Recreatable Items
This section in the inspector is used to register objects with the save system so that they can be instantiated at runtime. This is
only required for objects which need to be instantiated for this scene only. For more information see Runtime Objects.

See Also
Runtime Objects

SaveGameManager ScriptableObject
Overview
The SaveGameManager asset is the central access point for the save games system. It specifies the various save game settings as
well as registering objects for instantiation at runtime.

Inspector

Properties
Location

NAME T YPE D ES CR IPTION

Save Path Dropdown The available save file locations.

Sub-Folder String A sub-folder within the save path folder to place save files in.

You can use the Explore To Folder button to open the save games folder in the OS file explorer.

You can also use the Save Game Inspector button to show the save game inspector (also availabe via Tools/NeoFPS/Save Game
Inspector). This allows you to open a save file and browse its contents. For more information see Troubleshooting

Quick-Save
NAME T YPE D ES CR IPTION

Can Quick Save Boolean Sets whether the quick-save system is enabled in this project.

Quick Load All Boolean If true, quick loading will load the latest quick/auto/manual save. If not then it will only load the latest quick-
save.

Num
Quicksaves Integer The number of quicksaves to maintain. If the number exceeds this value, the oldest saves will be deleted.

Auto-Save
NAME T YPE D ES CR IPTION

Num Autosaves Integer The number of autosaves to maintain. If the number exceeds this value, the oldest saves will be deleted.

Manual Save
NAME T YPE D ES CR IPTION

Can Manual Save Boolean Sets whether the manual system is enabled in this project.

Continue
NAME T YPE D ES CR IPTION

Continue
From Dropdown What type of saves the game can be continued from. Available options are None, All and Auto Save

Only.

Thumbnails
NAME T YPE D ES CR IPTION

Quicksave
Thumbnail Dropdown Where to get the thumbnail texture for quick-saves. Options are None, Texture, TextureFromScene,

Screenshot.

(Fallback)
Texture Texture2D

If the thumbnail type is set to Texture then this is the texture that will be serialized to save files. If the
thumbnail type is set to Texture From Scene or Screenshot then this texture will be used in the event
those methods fail.

Autosave
Thumbnail Dropdown Where to get the thumbnail texture for auto-saves. Options are None, Texture, TextureFromScene,

Screenshot. The Texture / Fallback Texture property will appear below this if required.

Manual Save
Thumbnail Dropdown Where to get the thumbnail texture for manual saves. Options are None, Texture, TextureFromScene,

Screenshot. The Texture / Fallback Texture property will appear below this if required.

Screenshot
Size Vector2Int If any of the thumbnail types are set to Screenshot then this property defines the resulting size of the saved

screenshot texture.

Screenshot
Compression Boolean This property defines whether the resulting texture will be compressed before serialization.

Using Linear
Rendering Boolean Set this property to true if the project is set to use linear color space rendering. Screenshots need adapting

to the correct color space or they can appear washed out.

NAME T YPE D ES CR IPTION

Recreatable Items
This section in the inspector is used to register objects with the save system so that they can be instantiated at runtime. This is
only required for objects which need to be instantiated for this scene only. For more information see [Runtime Objects][4].

See Also
Serializing Data

Troubleshooting

NeoSceneManager ScriptableObject
Overview
The NeoSceneManager asset specifies the default loading screen scene and exposes events to the inspector.

Inspector

Properties
NAME T YPE D ES CR IPTION

Default
Loading Screen Scene The loading screen scene to use by default if none are specified. This is stored by index, so if changing the

build settings, make sure to check this after.

Min Load Time Float The minimum amount of time the loading screen should stay visible before the scene is fully activated.

On Scene
Loaded

Unity
Event An event called when the new scene is correctly loaded.

On Scene Load
Failed

Unity
Event An event called when the new scene fails to load.

See Also
Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

Samples
Overview
NeoFPS comes with a number of sample assets to demonstrate features and provide refererence for your own implementations.

Demo Facility

The demo facility is an early stages demo that is intended to grow with NeoFPS. As more features are added it will be expanded
into a small demonstration of a story driven FPS' game mechanics.

In this version it contains a firing range and a number of environment elements.

Feature Demos
Firing Range

The firing range demo features 4 ranges to experiment with the weapons in NeoFPS:

A quick reaction target to test reflexes
An occupied building with popup targets inside and out
Popup targets over a large area to test accuracy at different ranges
Multi-range sliding targets to test scopes and aimers

Parkour

The parkour demo uses a custom motion graph that is set up to show off the parkour features of NeoFPS, and provides an
obstacle course to try it out in. The scene has obstacles to demo:

Wall Running
Crouch Slides
Jumping Between Walls
Climbing
Vertical Wall Run

Jetpacks & Guided Missiles

The jetpacks and guided missiles puts you in control of a character with tribes inspired movement including jetpacks, skiing and
aim-hover. You also have a shoulder mounted missile launcher which can lock onto up to 6 targets at once using the ability
button.

Inventories

The inventories demo comprises 3 scenes with a different inventory type in each. Use the scene switch buttons to switch to the
other scenes and compare.

Swimming

The swimming demo uses a custom motion graph that is set up to show off one implementation of swimming in NeoFPS. It has a
number of water zones to demonstrate features like moving surface heights, flow, and changing depths.

Moving Platforms

The moving platforms demo features a number of moving and rotating platforms, including complex rotations and waypoint
based platforms.

NeoCharacterController

The NeoCharacterController demo shows some of the features of the NeoFPS character controller including pushing rigidbodies,
variable gravity, and slope effects.

Persistence

The persistence demo shows how the NeoFPS save system can be used to persist data like character health and inventory across
scene changes.

Doors

The doors demo features the main door types in NeoFPS. It is worth exploring the scene hierarchy and tweaking values in the
door behaviours to see what happens. The demo also contains a number of locked doors to demonstrate how the locks system
works. This includes:

Inventory keys
Keypad locks
Lockpicking
Destructible locks

Ladders

The ladders demo features the main ladder types for comparison and experimentation. For consistency across a project, a number
of the properties that affect ladder climbing are accessible through the relevant motion graph states instead of the ladders
themselves.

Minimal Character

The minimal character demo uses a character that is stripped down to only the fundamental features of NeoFPS: movement and
aim. It serves as an example of how you can pick and choose which features of NeoFPS to make use of and acts as a bare
minimum foundation to build on using either NeoFPS' solutions, third party solutions, or your own custom solutions.

Since the minimal character demo uses default Unity input instead of NeoFPS' bindable input, it does not handle the sample
menus and UI system. Because of this, the minimal character demo will not be visible in the "Select Level" section of the game
main menu, and is intended only as an example in the editor.

See Also

AI
Overview

The NeoFPS Demo Facility sample includes a number of simple AI turrets and cameras. This is a very limited AI system that was
mainly created to test out using theModular Firearm system to create non-player weapons. The turret is set up with similar
modules to the sample assault rifle, with some modifications such as a larger magazine size.

Both the cameras and turrets work by tracking side to side. If the player enters the AI's detection range and view area, then the AI
will enter a suspicious state. After a brief period, it will upgrade to an alerted state and the turret will start shooting at the player. If
the player leaves AI's view, then it will seek randomly from point to point until it times out and returns to an idle state, or detects
the player again and re-enters the alerted state.

The turret and camera systems are not considered optimised for use in a complete game. For alternative AI solutions for NeoFPS
you can check the integrations page on the NeoFPS website.

See Also
Modular Firearms

https://neofps.com/integrations

Sample UI
Overview

The sample UI is a tweaked implementation of the main Unity UI controls for more consistent menus that work with mouse
navigation as well as keyboard or gamepad.

The original Unity UI source can be found here.

The main reasoning is to create a set of menu controls with multiple elements that can work as one. For example, a slider menu
item in the options menu could comprise of a slider, a + button, a - button and a text input field. These all work together to drive
and display the correct value. When using a mouse, dragging on the slider or clicking the buttons will change the value and that
will be shown in the input field. Clicking the input field will capture keyboard input, which will set the new value and position the
slider to match. When using a gamepad, highlighting the menu entry and hitting submit will give it focus. Until the user cancels or
hits submit again the direction controls will update the value (eg. right is increase, left is decrease) instead of navigating to the
next item.

The sample UI also has basic layout functionality using menu panels and navigation bars.

Lastly, the sample UI also implements popups that can be displayed from any script. This is used with the DemoInfoLaptop to
provide info popups when used.

Using the sample UI is not a requirement for any of the features of NeoFPS. It is only intended for use in the NeoFPS samples and
needs extra work to be considered a complete solution for use in other games. It can be useful, however, in demonstrating how to
block character input whilst accessing UI elements

UI Styles
The sample UI uses UiStyle scriptable object assets to define a consistent style for the UI elements. The examples include the
following assets:

UiStyleMenus asset is used for menu buttons and items
UiStyleMenuGroups asset is used for the foldouts and dropdowns of menu items
UiStyleNavigation asset is used for the navigation menus (SinglePlayer, Options, etc)

See Also
Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://bitbucket.org/Unity-Technologies/ui
https://docs.unity3d.com/Manual/UISystem.html

ApplyRandomDamage MonoBehaviour
Overview
The ApplyRandomDamage behaviour applies a random amount of damage between the min and max provided.

Inspector

Properties
NAME T YPE D ES CR IPTION

Min Damage Float The minimum damage to apply each time.

Max Damage Float The miaximum damage to apply each time.

See Also
Health and Damage

CameraSeeker MonoBehaviour
Overview
The CameraSeeker behaviour is a very simple fixed position AI which scans back and forth looking for a player, and enters an alert
mode when it finds them.

Inspector

Properties
NAME T YPE D ES CR IPTION

Look Transform Transform The transform used to detect look angles (should be the last in the chain, eg. camera body).

Horizontal Servo Transform Transform The transform used to rotate on the horizontal axis.

Vertical Servo Transform Transform The transform used to rotate on the vertical axis.

Rotation Speed Idle Float The camera rotation speed when idle (degrees per second).

Pause Idle Float The length of the pause at each extreme of rotation while idle.

Idle Rotations Vector2 The rotation points for the camera when idling.

Rotation Speed Hostile Float The camera rotation speed when hostile (degrees per second).

Pause Hostile Float The length of the pause at each extreme of rotation when hostile (degrees per second).

Suspicious Time Float The duration the camera will be suspicious before engaging.

Hunting Time Float The duration the camera will stay in hunting mode before going idle.

Detection Range Float The maximum range of the camera in meters.

Min Angles Vector2 The minimum angles the camera can reach (negative y is down).

Max Angles Vector2 The maximum angles the camera can reach (negative y is down).

Camera Light Light The halo glow for the camera.

Colour Idle Color The halo colour for the idle state.

Colour Suspicious Color The halo colour for the suspicious state.

Colour Engaged Color The halo colour for the engaged state.

On Idle UnityEvent An event invoked when the seeker enters the idle state.

On Suspicious UnityEvent An event invoked when the seeker enters the suspicious state.

On Engaged UnityEvent An event invoked when the seeker enters the engaged state.

On Hunting UnityEvent An event invoked when the seeker enters the hunting state.

On Killed UnityEvent An event invoked when the seeker is killed.

Starting Health Float The health of the seeker.

NAME T YPE D ES CR IPTION

See Also

DemoFacilityTarget MonoBehaviour
Overview
The DemoFacilityTarget is a simple target that sends damage to a tracker for displaying to the player.

Inspector

Properties
NAME T YPE D ES CR IPTION

Tracker DemoDamageTracker The target damage tracker.

Target Index Int The target index in the tracker.

See Also
DemoFacilityTargetDamageTracker

Health and Damage

DemoFacilityTargetDamageTracker MonoBehaviour
Overview
The DemoFacilityTargetDamageTracker behaviour tracks damage to a number of DemoFacilityTarget objects and prints it to a
[Unity UI] readout.

Inspector

Properties
NAME T YPE D ES CR IPTION

Readout Text The text readout for target damage.

Target Count Int The number of targets to track.

See Also
DemoFacilityTarget

Unity UI

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

DemoInfoLaptop MonoBehaviour
Overview
The DemoInfoLaptop behaviour is an info point that can be interacted with and displays a text popup using the demo UI.

Inspector

Properties
NAME T YPE D ES CR IPTION

Title String The title to display on the laptop screen.

Info String The info to display in the popup when interated with.

See Also
Sample UI

Interactive Objects

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

DoorsDemoElevatorReadout MonoBehaviour
Overview
The DoorsDemoElevatorReadout behaviour subscribes to the events on an ElevatorController, and prints it to a Unity UI.

Inspector

Properties
The DoorsDemoElevatorReadout behaviour has no properties exposed in the inspector.

See Also
ElevatorController

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html

FiringRangeMovingTarget MonoBehaviour
Overview
The FiringRangeMovingTarget behaviour is a variant of the FiringRangeTarget that also moves.

Inspector

Properties
The FiringRangeMovingTarget inherits from the FiringRangeTarget. Check the reference for information on its properties.

NAME T YPE D ES CR IPTION

Move Offset Vector3 The offset to move to.

Move Duration Float The time taken to reach the offset.

See Also
Health and Damage

FiringRangeTarget

FiringRangeSequencer

FiringRangeReadout MonoBehaviour
Overview
The FiringRangeReadout behaviour recieves hit and miss events from the targets in the firing range demo and prints them to a
Unity UI.

Inspector

Properties
The FiringRangeReadout behaviour has no properties exposed in the inspector.

See Also
FiringRangeSequencer

Unity UI

https://docs.unity3d.com/Manual/UISystem.html
https://docs.unity3d.com/Manual/UISystem.html

FiringRangeSequencer MonoBehaviour
Overview
The FiringRangeSequencer behaviour manages all the targets in a demo firing range. It works in waves, controlling the number of
targets that pop up at once along with the spacing.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time Between Waves Float The pause in between each wave.

Targets Target Group Array The targets for each wave.

On Hits Changed UnityEvent An event that is invoked when a target is hit.

On Misses Changed UnityEvent An event that is invoked when a target is missed.

Audio Transform Transform The transform to attach the audio rotator to.

Audio Source AudioSource The audio source for playing one shot firing range audio clips.

Audio Start AudioClip The audio clip to play when the sequence starts.

Audio Cancel AudioClip The audio clip to play when the sequence is cancelled.

Audio Hit AudioClip The audio clip to play when a target is hit.

Target Group

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-AudioSource.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

NAME T YPE D ES CR IPTION

Targets FiringRangeTarget Array The targets for this wave.

Total Int The total number of targets to pop up this wave.

Per Step Int The number of targets to pop up for each step of the wave.

Randomise Boolean Should the targets be chosen at random or in sequence.

Duration Float The duration a target should stay up.

Delay Float The delay between steps.

See Also
FiringRangeTarget

FiringRangeMovingTarget

FiringRangeTarget MonoBehaviour
Overview
The FiringRangeTarget behaviour is a pop-up target that sends hit or miss events to the sequencer.

Inspector

Properties
NAME T YPE D ES CR IPTION

Damage Threshold Float The damage threshold for the target to drop and register as a hit.

Popup Duration Float The duration the target will be visible. If the target is not hit in this time it registers as a miss.

Rotation Axis Vector3 The axis to rotate the target around when it pops up.

Hidden Rotation Float The rotation of the target around the specified axis when it is fully hidden.

See Also
Health and Damage

FiringRangeSequencer

InfoPopupTrigger MonoBehaviour
Overview
The InfoPopupTrigger behaviour is an info point that can be interacted with and displays a text popup using the demo UI.

Inspector

Properties
NAME T YPE D ES CR IPTION

Title String The title to display on the laptop screen.

Info String The info to display in the popup when interated with.

See Also
Sample UI

Interactive Objects

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

KeypadPopup MonoBehaviour
Overview
The KeypadPopup behaviour is an info point that can be interacted with and displays a text popup using the demo UI.

Inspector

Properties
NAME T YPE D ES CR IPTION

Title String The title to display on the laptop screen.

Info String The info to display in the popup when interated with.

See Also
Sample UI

Interactive Objects

Unity UI

https://docs.unity3d.com/Manual/UISystem.html

LoadingScreen MonoBehaviour
Overview
The LoadingScreen behaviour is a very simple example implementation of a loading screen with gameplay hints and instructions.

The first time the loading screen is shown, it will display a warning about exiting while performing a save. After this, a random
hint will be displayed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Hint Text Text The text output for the gameplay hints.

Hint Object GameObject The object that contains the hints UI. The first time the screen is shown, this object will be hidden.

Hints String Array An array of hints to display, chosen at random.

Save Warning Object GameObject The object that contains a warning about the "saving" icon. This will only be shown the first time.

See Also
Unity UI

https://docs.unity3d.com/Manual/script-Text.html
https://docs.unity3d.com/Manual/UISystem.html

MinimalDemoCharacter MonoBehaviour
Overview
The MinimalDemoCharacter behaviour ties together the NeoCharacterController, MotionController and
MouseAndGamepadAimController to create a simplified playable character with all the movement and aim features of the main
NeoFPS demo character.

The minimal character uses Unity's input system to control the character instead of NeoFPS' bindable input system, while all of
NeoFPS' features outside movement and aiming are removed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Mouse Aim Multiplier Float The mouse aim sensitivity.

Mouse Invert Y Boolean Is the mouse vertical aim rotation flipped.

Jump Key String The key to the jump trigger property in the character motion graph.

Crouch Key String The key to the crouch switch property in the character motion graph.

Sprint Key String The key to the sprint switch property in the character motion graph.

See Also
NeoCharacterController

MotionController

MouseAndGamepadAimController

Samples

OutOfBoundsRespawn MonoBehaviour
Overview
The OutOfBoundsRespawn behaviour simply watches the player character, and if their height is lower than a set value, it
respawns them.

Inspector

Properties
NAME T YPE D ES CR IPTION

Respawn Height Float If the player character's position is lower than this height then it will trigger a respawn.

TurretSeeker MonoBehaviour
Overview
The TurretSeeker behaviour is a very simple fixed position AI which scans back and forth looking for a player, similarly to the
CameraSeeker. Once it spots a player it will enter a suspicious mode, and then start shooting after a brief pause.

The TurretSeeker uses the Modular Firearm system to model gun behaviour using the same modules as the player's first person
weapons.

Inspector

Properties

NAME T YPE D ES CR IPTION

Look Transform Transform The transform used to detect look angles (should be the last in the chain, eg. camera body).

Horizontal Servo Transform Transform The transform used to rotate on the horizontal axis.

Vertical Servo Transform Transform The transform used to rotate on the vertical axis.

Rotation Speed Idle Float The camera rotation speed when idle (degrees per second).

Pause Idle Float The length of the pause at each extreme of rotation while idle.

Idle Rotations Vector2 The rotation points for the camera when idling.

Rotation Speed Hostile Float The camera rotation speed when hostile (degrees per second).

Pause Hostile Float The length of the pause at each extreme of rotation when hostile (degrees per second).

Suspicious Time Float The duration the camera will be suspicious before engaging.

Hunting Time Float The duration the camera will stay in hunting mode before going idle.

Detection Range Float The maximum range of the camera in meters.

Min Angles Vector2 The minimum angles the camera can reach (negative y is down).

Max Angles Vector2 The maximum angles the camera can reach (negative y is down).

Camera Light Light The halo glow for the camera.

Colour Idle Color The halo colour for the idle state.

Colour Suspicious Color The halo colour for the suspicious state.

Colour Engaged Color The halo colour for the engaged state.

On Idle UnityEvent An event invoked when the seeker enters the idle state.

On Suspicious UnityEvent An event invoked when the seeker enters the suspicious state.

On Engaged UnityEvent An event invoked when the seeker enters the engaged state.

On Hunting UnityEvent An event invoked when the seeker enters the hunting state.

On Killed UnityEvent An event invoked when the seeker is killed.

Starting Health Float The health of the turret.

See Also
Modular Firearms

CameraSeeker

WaterZoneMover MonoBehaviour
Overview
The WaterZoneMover behaviour is used in the swimming demo to raise and lower one of the water zones.

Inspector

Properties
NAME T YPE D ES CR IPTION

Pause Duration Float The pause between moving up and down.

Move Duration Float The time it takes to go from the original position to the offset position or back again.

Move Offset Vector3 The offset from the original position to move in local space.

Utilities
Animation Behaviours
Animation graph behaviours are attached to states in the unity animator controller graphs. NeoFPS uses 2 behaviours that allow
animations to sync the active state of objects to specific clips, and to swap animated objects with dynamic physics objects. These
are used in the modular firearms during reload animations but can have a number of uses besides.

For more information, see the AnimStateObjectActivator, AnimStateObjectSwapper, and AnimStateObjectSwapperTarget
references.

Pooling
Pooling is an important optimisation in any game. It means pre-instantiating a pool of objects before they are needed that can be
spawned and recycled at any time. Instantiation and the garbage collection resulting from object destruction are relatively
expensive operations and it is best practice not to instantiate or destroy objects during gameplay. The NeoFPS pooling utilities can
specify pool sizes for individual prefabs that will be instantiated at startup. These can then be retrieved and returned as needed.

The PoolManager specifies the pooled objects to be made available across all scenes, along with a number of default settings,
while the ScenePoolHandler is responsible for preallocating and accessing pools within the active scene. Retrieve a PooledObject
with the following function:

public T GetPooledObject<T> (PooledObject prototype) where T : MonoBehaviour

The PooledObject can be returned to the pool with the following function:

void PooledObject.ReturnToPool ()

If a prototype PooledObject is not managed by the PoolManager already then a new pool of the default size will be instantiated.
This is an expensive operation so it is best to try and anticipate the required objects in advance.

Object Lifecycle
NeoFPS uses a number of simple utilities that manage the active state and lifecycle of an object. See the TimedDisabler,
ObjectLifecycleManager and ObjectLifecycleMgrDictionary for more information. You can also use a TemporaryPooledObject
which has the lifecycle built in for objects that should only be visible for a brief period.

Teleporters
There are 2 teleporter setups provided in NeoFPS:

The Teleporter behaviour is used in the NeoFPS demos to quickly get around the scenes. It is used for physical teleporter
objects that you step into and interact with to teleport to another location. The target location needs to be another
teleporter, and that teleporter will be disabled for a bried period on teleporting into it.
The TeleportZone1Way behaviour is used for simpler navigation around scenes. On stepping into the teleport zone a timer
will start and an onEntered UnityEvent will fire that you can use to trigger particle and audio effects. Once the timer
completes, the character is teleported to the target transform and an onTeleported event is fired. If the character leaves the
zone before the timer completes, then the timer resets and an onCancelled event is fired.

Slow-Motion System
NeoFPS implements a simple slow-motion system that allows you to create slow-mo effects in response to various triggers. The
SlowMoSystem behaviour can be added to the player character to create an adrenaline or focus style system as used in games
like F.E.A.R. This system has a slow-mo charge which is drained while in slow motion and the recharges when back in normal
time. You can also zero the drain or recharge rates for more control over when the effect starts or stops.

To trigger the slow-mo effect, NeoFPS implements a number of sample mechanisms. These include:

https://docs.unity3d.com/Manual/UnityEvents.html

The SetTimeScale Motion Graph Behaviour triggers slow-mo when entering a specific motion state.
The SlowMoZone behaviour is used to define a trigger zone. When the player character enters, time is slowed. When they
exit, time speed is restored.
The TimedSlowMoZone behaviour is similar, but the slow-mo effect only lasts for a short period (based on the drain rate).

The slow-mo system works by modifying the following script property: NeoFpsTimeScale.timeScale . This is similar to Unity's
Time.timeScale , but fires events that allow other systems to monitor the time scale. This allows things like [audio sources][unity-
audiosource] to react by modifying their pitch (and therefore speed) via the AudioTimeScalePitchBend behaviour. If you want to
create extremely simple slow-mo effects (such as when liberating an outpost in far cry), you can modify this property directly.

See Also
Unity AnimatorController

Unity State Machine Behaviours

https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/StateMachineBehaviours.html

AnimStateObjectActivator StateMachineBehaviour
Overview
This is used to control when gameobjects are active from within an animation graph. For example, controlling a shotgun shell's
visibility during a reload animation.

Inspector

Properties
NAME T YPE D ES CR IPTION

Object Path String The path to the relevant object in the object hierarchy the animator is attached to.

Active On Enter Boolean Should the object be active when the animation state is entered.

Active On Exit Boolean Should the object be active when the animation state is exited.

Start Offset
Normalised Float The normalised offset (0 to 1) from entry of the state for the object state to be changed (0 is the start, 1

is the end).

End Offset
Normalised Float The normalised offset (0 to 1) from the end of the state for the object state to be changed (0 is the end,

1 is the start).

See Also
Unity Animator

Unity AnimatorController

https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html

AnimStateObjectSwapper StateMachineBehaviour
Overview
The AnimStateObjectSwapper is a StateMachineBehaviour. It is attached to animator controller graph states and will trigger an
AnimatedObjectSwapper to swap an object out.

Inspector

Properties
NAME T YPE D ES CR IPTION

Object Path String The path to the object containing the AnimatedObjectSwapper relative to the object hierarchy the
animator is attached to.

Normalised Swap
Time Float The normalised offset (0 to 1) from entry of the state for the object swap to occur. (0 is the start, 1 is the

end).

See Also
AnimatedObjectSwapper

Unity Animator

Unity AnimatorController

Unity StateMachineBehaviour

https://docs.unity3d.com/Manual/StateMachineBehaviours.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/StateMachineBehaviours.html

AbilityBasedSlowMoSystem MonoBehaviour
Overview
The AbilityBasedSlowMoSystem behaviour swaps out an object with a pooled physics object. It is paired with an
AnimStateObjectSwapper state machine behaviour that triggers the swap.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Transform Transform The object to swap.

Pooled Object PooledObject The pooled object to swap the target object with.

Spawn Velocity Vector3 The velocity to spawn the physics object at relative to the target object rotation.

Spawn Angular Velocity Vector3 The angular velocity of the spawned physics object.

See Also
AnimStateObjectSwapper

PooledObject

Unity Animator

Unity AnimatorController

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

AnimStateObjectSwapperTarget MonoBehaviour
Overview
The AnimStateObjectSwapperTarget behaviour swaps out an object with a pooled physics object. It is paired with an
AnimStateObjectSwapper state machine behaviour that triggers the swap.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Transform Transform The object to swap.

Pooled Object PooledObject The pooled object to swap the target object with.

Spawn Velocity Vector3 The velocity to spawn the physics object at relative to the target object rotation.

Spawn Angular Velocity Vector3 The angular velocity of the spawned physics object.

See Also
AnimStateObjectSwapper

PooledObject

Unity Animator

Unity AnimatorController

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-AnimatorController.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

BillboardOrientation MonoBehaviour
Overview
The BillboardOrientation behaviour is used to orient an object towards the currently active camera.

Inspector

Properties
NAME T YPE D ES CR IPTION

Billboard Normal Dropdown The billboard surface normal direction (this will be turned towards the camera).

BulletTrailCleaner MonoBehaviour
Overview
The BulletTrailCleaner behaviour is attached to pooled projectiles with a trail renderer and clears the trail when the projectile is
disabled so that it can be recycled without old trail data bleeding into new.

Inspector

Properties
NAME T YPE D ES CR IPTION

Emit Delay Float The delay before enabling the trail render.

See Also
Interactive Objects

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html

CheckpointTrigger MonoBehaviour
Overview
The CheckpointTrigger behaviour is used to signify progression checkpoints in your levels. Crossing a checkpoint can enable the
connected spawn points and disable the old spawns, as well as auto-saving the game.

Inspector

Properties
NAME T YPE D ES CR IPTION

One Shot Boolean Should the checkpoint trigger fire multiple times (eg allow back-tracking).

Auto Save Boolean Save the game progress using the auto save feature.

Spawn Points SpawnPoint Array A list of spawn points to enable at this checkpoint.

Disable Old Spawns Boolean Should previous spawn points be disabled (guaranteeing that the player spawns here).

See Also
Save Games

DemoButtonPresser MonoBehaviour
Overview
The DemoButtonPresser behaviour is used to procedurally animate a simple button. It has a public Press() function that can be
attached to unity events, for example on the InteractiveObject OnUsed event.

Inspector

Properties
NAME T YPE D ES CR IPTION

Press Offset Vector3 The button position offset when pressed.

Hold Duration Float The duration to hold the button down.

Spring Duration Float The duration to spring back to the original position.

See Also
Interactive Objects

Unity Events

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

NeoFpsSceneSwitcher MonoBehaviour
Overview
The NeoFpsSceneSwitcher behaviour is used to trigger loading a new scene.

The NeoFPS scene management system loads a scene with the following steps:

1. Load the loading screen scene which displays a loading screen over the game view.
2. If the switcher is set to persist data, then ask the current game mode to save the relevant game data to a memory buffer.
3. Unload the current scene.
4. Load the new scene asynchronously in the background.
5. If data was persisted, ask the new scene's game mode to load it.
6. Unload the loading screen scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Mode Dropdown How the scene to load is specified. The options are Scene Name, Scene Index, Next Scene Index. If the
last option is used then the next scene listed in the build options will be loaded.

Target
Scene String/Integer The name or index of the scene to load, matching the entry in the project build options.

Loading
Scene
Mode

Dropdown How to choose the loading screen scene to load. The options are Default (specified in the
NeoSceneManager options, Scene Name and Scene Index.

Loading
Scene String/Integer The name or index of the loading screen scene to load, matching the entry in the project build options.

Persist
Game Data Boolean Should game data (eg, character health and inventory) be persisted to the new scene?

See Also
Runtime Objects

NeoSceneManager

Game Modes

ObjectLifecycleManager MonoBehaviour
Overview
The ObjectLifecycleManager is used to manage the active state of attached objects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Active On Enabled Boolean Should all the attached objects be enabled when this is.

Active On Disabled Boolean Should all the attached objects be disabled when this is.

Objects GameObject Array The objects being managed.

See Also

ObjectLifecycleMgrDictionary MonoBehaviour
Overview
The ObjectLifecycleMgrDictionary behaviour allows scripts to manage the active state of attached objects by name.

Inspector

Properties
NAME T YPE D ES CR IPTION

Active On Enabled Boolean Should all the attached objects be enabled when this is.

Active On Disabled Boolean Should all the attached objects be disabled when this is.

Objects Entry Array The objects being managed.

Entry
NAME T YPE D ES CR IPTION

Key String A string key for the object.

Game Object GameObject The object to manage.

See Also

ObjectMover MonoBehaviour
Overview
The ObjectMover behaviour is attached to an object to interpolate from one position to another.

Inspector

Properties
NAME T YPE D ES CR IPTION

Offset Position Vector3 The offset from the starting position to move to.

Duration Float The time taken to move from position to position.

See Also

ParticleSystemPlayOnEnable MonoBehaviour
Overview
The ParticleSystemPlayOnEnable behaviour is a simple utility component that is used to get the effect of "Play On Awake" on a
particle system that is recycled and reused multiple times by the pooling system.

Inspector

Properties
NAME T YPE D ES CR IPTION

Particle Systems Particle System Array The particle systems to play on enabling the object.

See Also
PoolManager

Utilities

https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html

PooledObject MonoBehaviour
Overview
The PooledObject behaviour is used to manage object lifecycle for a reusable object. It is managed by the PoolManager.

Inspector

Properties
The PooledObject behaviour has no properties exposed in the inspector.

See Also
PoolManager

Utilities

PooledObjectSwapper MonoBehaviour
Overview
The PooledPhysicsObjectSwapper behviour swaps out a number of objects with pooled objects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Transforms Transform Array The objects to swap.

Pooled Object Prototype PooledObject The pooled object to swap the target objects with.

Swap If Disabled Boolean Swap the target objects if they are disabled.

See Also
PooledObject

PooledPhysicsObjectSwapper

https://docs.unity3d.com/Manual/class-Transform.html

PooledPhysicsObjectSwapper MonoBehaviour
Overview
The PooledPhysicsObjectSwapper behviour swaps out a number of objects with pooled physics objects. An example use is in the
revolver where it swaps the empty shells for physics objects during a reload.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Transforms Transform Array The objects to swap.

Pooled Object Prototype PooledObject The pooled object to swap the target objects with.

Swap If Disabled Boolean Swap the target objects if they are disabled.

Spawn Velocity Vector3 The velocity to spawn the physics object at relative to the target object rotation.

Spawn Angular Velocity Vector3 The angular velocity of the spawned physics object.

See Also
PooledObject

PooledObjectSwapper

Unity Rigidbody

https://docs.unity3d.com/Manual/class-Transform.html
https://docs.unity3d.com/Manual/class-Rigidbody.html

ReplaceObject MonoBehaviour
Overview
The ReplaceObject behaviour simply replaces the object it's attached to with the prefab in its settings. It needs triggering via code
or using an event on something like an interactive object or trigger zone.

Inspector

Properties
NAME T YPE D ES CR IPTION

Swap Prefab GameObject The object to replace this one with.

See Also
SlowMoSystem

CharacterTriggerZone

ScenePoolHandler ScriptableObject
Overview
The ScenePoolHandler behaviour manages PooledObject prefab spawning and reuse within a scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Add Prefab PooledObject Adds a prefab to the pools list below, using the new pool size setting.

Add Folder Folder Adds all the prefabs within the folder and all its sub-folders to the pools list below, using the new pool size
setting.

New Pool
Size Integer The pool size to use for any new tools added to the pools list below.

Pools Pool Info
Array The pools to set up at initialisation.

Pool Info
NAME T YPE D ES CR IPTION

Prototype PooledObject The prefab object to spawn.

Count Int The number of objects to instantiate for the pool.

See Also
PooledObject

PoolManager

Utilities

SlowMoSystem MonoBehaviour
Overview
The SlowMoSystem behaviour is added to a the player character and exposes a simple API to allow slow-motion effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Transition Duration Float The (real, unscaled) time taken to transition time scales.

Charge Rate Float The amount of charge added per (real, unscaled) second.

Enter Slow Mo Audio AudioClip The sound to play on entering slow-mo.

Exit Slow Mo Audio AudioClip The sound to play on exiting slow-mo.

See Also
InteractiveObject

https://docs.unity3d.com/Manual/class-AudioClip.html
https://docs.unity3d.com/Manual/class-AudioClip.html

SlowMoZone MonoBehaviour
Overview
The SlowMoZone behaviour derives from CharacterTriggerZone and is used to define an area that will cause time to slow down
when entered, and return to normal once exited.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time Scale Float The time scale inside this zone.

See Also
SlowMoSystem

CharacterTriggerZone

Teleporter MonoBehaviour
Overview
The Teleporter behaviour is used to teleport a character from one point to another. It is triggered via an InteractiveObject.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target Teleporter The target teleporter to teleport to.

Interactable InteractiveObject The interactive object that triggers the teleport. Is disabled for cooldown.

Delay Float The delay between triggering and teleport.

Cooldown Float The cooldown blocks teleport until it has completed.

Vertical
Offset Float An amount to raise the character on teleport to prevent ground overlap.

Reverse
Rotation Boolean Should the relative rotation be reversed on teleport. For example walking in to teleporter A translates

to walking out of teleporter B.

See Also
InteractiveObject

TeleportZone1Way MonoBehaviour
Overview
The TeleportZone1Way behaviour is used to teleport a character to a target transform position and rotation. It can be set with an
optional delay and exposes events to control charge up and teleport / cancel effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Target
Transform Transform The transform to teleport to. The character will match its position and orientation.

Teleport Delay Float The time between entering the trigger zone and teleporting. Allows for effects and feedback to
communicate what's going on.

On Entered UnityEvent An event fired as soon as a character enters the teleport trigger zone.

On Cancelled UnityEvent An event fired if the character leaves before the teleport delay is over.

On Teleported UnityEvent An event fired after the character is teleported.

See Also
InteractiveObject

https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html
https://docs.unity3d.com/Manual/UnityEvents.html

TemporaryPooledObject MonoBehaviour
Overview
The TemporaryPooledObject behaviour is used to manage object lifecycle for a reusable object. It is spawned from the
PoolManager, and will be returned after the specified time has elapsed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Lifetime Float The duration the object will stay active before returning to the pool.

See Also
PoolManager

Utilities

TimedDisabler MonoBehaviour
Overview
The TimedDisabler behaviour is attached to an object to disable or destroy it after a set time.

Inspector

Properties
NAME T YPE D ES CR IPTION

Timeout Float The time after starting that the action will be performed.

Action Dropdown The action to performm on timeout. Options are Disable and Destroy

See Also

TimedSlowMoZone MonoBehaviour
Overview
The TimedSlowMoZone behaviour derives from CharacterTriggerZone and is used to define an area that will cause time to slow
down when entered, and return to normal after a set period of (unscaled) time has passed.

Inspector

Properties
NAME T YPE D ES CR IPTION

Time Scale Float The time scale inside this zone.

Duration Float The duration the slow-mo effect should last.

See Also
SlowMoSystem

CharacterTriggerZone

PoolManager ScriptableObject
Overview
The PoolManager scriptable object specifies the PooledObject prefabs available across all scenes, and handles creation or
registration of the ScenePoolHandler after scene loads.

Inspector

Properties
NAME T YPE D ES CR IPTION

Scene Pool Handler
Prefab ScenePoolHandler A scene pool handler prefab to be instantiated in the scene if none already exists.

Default Runtime Pool
Size Int The size of any new pools that are added to the array after initialisation.

Add Prefab PooledObject Adds a prefab to the pools list below, using the new pool size setting.

Add Folder Folder Adds all the prefabs within the folder and all its sub-folders to the pools list below, using the
new pool size setting.

New Pool Size Integer The pool size to use for any new tools added to the pools list below.

Pools Pool Info Array The pools to set up at initialisation.

Pool Info
NAME T YPE D ES CR IPTION

Prototype PooledObject The prefab object to spawn.

Count Int The number of objects to instantiate for the pool.

See Also
PooledObject

ScenePoolHandler

Utilities

Surfaces
Overview
The NeoFPS surfaces system is an in-development system for querying impact surface materials. It is used in a number of places
in the NeoFPS framework, including Footsteps and Bullet Hit Effects.

Surface Manager
The SurfaceManager scriptable object is located in the NeoFPS/Resources folder, and accessible through the NeoFPS hub. The
surface manager associates specific surfaces with effects and audio clips for use in bullet hits, etc. You can also place a
SurfaceFxOverrides behaviour in the scene in order to override the surface effects on a scene by scene basis.

Adding New Surface Types
The Surface identifier is a generated constant that lists the available surfaces in the game. Adding new surfaces is as simple as
editing the ConstantsSettings and regenerating the constant. Keep in mind that in the inspector generated constants are stored by
index. This means that reordering or removing existing surfaces will not be correctly picked up in inspector properties. This means
that it is best to try and decide on the available surfaces early in a project if possible.

Once you have added new surface types, you can then access these when assigning audio clips in the SurfaceAudioData assets
used for things like footstep and bullet hit audio, and the SurfaceHitFxData asset used to specify impact visual effects among
others.

Surface Behaviours
Surface behaviours (currently just SimpleSurface) are attached to physics objects that need a surface ID such as environment or
prop colliders. This means that if the object is shot, hit or stepped on the surface behaviour will tell the relevant system the surface
they need to react to with audio or graphics effects.

New surface behaviours will be added in future updates.

Adding New Bullet Hit VFX
The SurfaceManager holds a reference to the SurfaceHitFxData asset that specifies all the bullet hit VFX for different surface types.
This is currently shared for all bullet and melee impacts, but the future you will be able to specify separate hit FX data for different
attack types. The architecture of this has not been decided yet.

Each of the entries in the SurfaceHitFxData asset references a prefab with a component that implements the BaseHitFxBehaviour
base class. The demos all use the ParticleSystemHitFxBehaviour which works by moving a group of particle systems to align with
the hit point, and calling Emit() on them. This means that all of the particles per surface type reuse the same particle systems
instead of having hundreds of separate systems all working at once. Another option that helps when replacing the impact FX with
other assets is the PooledObjectHitFxBehaviour. This uses the pooling system to recycle objects for efficiency. This can be
combined with the ParticleSystemPlayOnEnable component to trigger particle systems each time a pooled object is activated.

You can also implement your own FX by writing a script with a class that inherits from the BaseHitFxBehaviour base class.

See Also
SurfaceManager

SimpleSurface

ParticleSystemHitFxBehaviour MonoBehaviour
Overview
The ParticleSystemHitFxBehaviour ties together a number of particle systems to create surface impact effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Chips System ParticleSystem The particle system for chunks of surface material (eg. wood splinters, paint chips).

Default Chip
Count Int The number of chip particles for a bullet hit with size 1.

Dust System ParticleSystem The particle system for fine dust spray or similar.

Default Dust
Count Int The number of dust particles for a bullet hit with size 1.

Decal System ParticleSystem The particle system used to place a decal.

Default Decal Size Float The amount of deflection for the hit system (0 follows the impact normal, 1 follows the reflected
impact ray).

Deflection Float The amount of deflection for the hit system (0 follows the impact normal, 1 follows the reflected
impact ray).

Surface Offset Float The distance from the surface to place the decal (prevents z-fighting).

See Also
Surfaces

SurfaceHitFxData

https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html

PooledObjectHitFxBehaviour MonoBehaviour
Overview
The PooledObjectHitFxBehaviour spawns an object at the hit location & rotation using the NeoFPS pooling system. This can be
used with a TemporaryPooledObject to ensure the spawned object is returned to the pool after a brief delay.

Inspector

Properties
NAME T YPE D ES CR IPTION

Prototypes PooledObject The pooled objects to choose from.

See Also
Surfaces

SurfaceHitFxData

SimpleSurface MonoBehaviour
Overview
The SimpleSurface behaviour is attached to objects in the scene and assigns them a surface tag for responding to effects.

Inspector

Properties
NAME T YPE D ES CR IPTION

Surface FpsSurfaceMaterial The surface material ID.

See Also
Surfaces

Generated Constants

SurfaceFxOverrides MonoBehaviour
Overview
The SurfaceFxOverrides behaviour is used to override the surface effects of the SurfaceManager for a specific scene.

Inspector

Properties
NAME T YPE D ES CR IPTION

Impact Effects SurfaceHitFxData The impact special effects for things like bullet hits.

Impact Audio SurfaceAudioData The audio library for impact audio, eg. bullet hits.

See Also
Surfaces

SurfaceManager

SurfaceHitFxData

SurfaceAudioData

SurfaceHitFxData ScriptableObject
Overview
The SurfaceHitFxData scriptable object specifies per-surface visual effects for impacts.

Inspector

Properties
NAME T YPE D ES CR IPTION

Data HitFx
Array

Per-surface hit effects. Must inherit from the BaseHitFxBehaviour class. Entries correspond to the values in the
FpsSurfaceMaterial generated constant.

See Also
Surfaces

ParticleSystemHitFxBehaviour

SurfaceManager ScriptableObject
Overview
The SurfaceManager scriptable object is a central manager that handles visual and audio impact effects with various surfaces. You
can also override this on a scene by scene basis by using a SurfaceFxOverrides behaviour.

Inspector

Properties
NAME T YPE D ES CR IPTION

Impact Effects SurfaceHitFxData The impact special effects for things like bullet hits.

Impact Audio SurfaceAudioData The audio library for impact audio, eg. bullet hits.

Scale Volume To Hit Size Bool Should impact audio be louder for heavier hits.

Max Impact Audio Distance Float The maximum distance from the player character to play impact audio.

See Also
Surfaces

SurfaceHitFxData

SurfaceAudioData

	Cover Page
	User Manual
	Working With NeoFPS
	Installation
	Getting Started
	Common Tasks
	Wizards
	Game Modes
	Generated Constants
	Layers and Tags
	Game Settings
	NeoFPS Shaders
	Reference
	MonoBehaviours
	FpsSoloGameMinimal

	ScriptableObjects
	ConstantsSettings
	FpsAudioSettings
	FpsGamepadSettings
	FpsGameplaySettings
	FpsGraphicsSettings
	FpsInputSettings
	FpsKeyBindings

	FPS Characters
	Spawning
	Stamina
	Reference
	FpsPrototypePlayerController
	FpsSoloCharacter
	FpsSoloPlayerController
	OrderedSpawnPointGroup
	SimpleBreathManager
	SoloPlayerCharacterEventWatcher
	SpawnManager
	SpawnPoint
	StaminaSystem

	First Person Camera
	Aim Controllers
	Additive Transforms & Effects
	Reference
	MonoBehaviours
	AdditiveJiggle
	AdditiveKicker
	AdditiveTransformHandler
	BodyLean
	BodyTilt
	BoxShakeZone
	BoxShakeZone2D
	BreathingEffect
	CameraShake
	CharacterEventKickTrigger
	CharacterRecoilEffect
	CharacterMovementSway
	CircleShakeZone
	CutSceneCamera
	FirearmRecoilEffect
	FirstPersonCamera
	HeadBob
	HeadBobV2
	HeadDuck
	ImpactHandlerKickTrigger
	OverShoulder
	PeekVertical
	PositionBob
	PostProcessLayerFix
	RotationBob
	SphereShakeZone
	TransformMatcher
	WeaponAimAmplifier
	WeaponBob
	WeaponMomentumSway

	ScriptableObjects
	PositionBobData
	PostProcessLayerSettings

	The Motion Graph
	NeoCharacterController
	The Motion Graph Editor
	Motion Graph States
	Motion Graph Behaviours
	Motion Graph Conditions
	Motion Graph Parameters And Data
	Ladders
	Moving Platforms
	Swimming
	Motion Debugger
	Reference
	States
	AdaptiveJetpack
	AnimCurveDash
	AnimCurveWallDash
	BoostPad
	ConstantMove
	ContactLadder
	ControlledJetpack
	Dash
	Dodge
	Falling
	Fly
	GrappleSwing
	Impulse
	InteractiveLadder
	Jetpack
	Jump
	JumpDirection
	JumpDirectionV2
	MaintainVelocity
	Mantle
	MatchTransform
	Movement
	MoveToPoint
	Null
	PushOff
	Repulse
	Ski
	SteepSlide
	SwimSmoothSurface
	SwimSmoothUnderwater
	SwimStrokeSurface
	SwimStrokeUnderwater
	SwimSubmerge
	VerticalWallRun
	Wading
	WallRun

	Behaviours
	AddForce
	AnimatorInputVector
	AnimatorSpeed
	AnimatorVelocity
	BlockSwitchParameter
	BlockTriggerParameter
	BodyTilt
	CameraJiggleSpring
	CameraKickSpring
	CameraPulseFoV
	CameraShake
	ClampFloat
	ClampInt
	ConstrainCameraPitch
	ConstrainCameraYaw
	Debug
	DisableCollider
	DrainStamina
	FootstepAudio
	ImpactDamage
	InvokeEvent
	LadderAudio
	LockInventorySelection
	LoopingAudio
	ModifyCharacterVelocity
	ModifyFloatParameter
	ModifyIntParameter
	ModifyStamina
	ModifySwitchParameter
	ModifyTransformParameter
	ModifyTriggerParameter
	ModifyVectorParameter
	PassiveSlide
	PlayAudioClip
	PlayCharacterAudio
	RecordVelocity
	SetAnimatorBool
	SetAnimatorFloat
	SetAnimatorInt
	SetAnimatorTrigger
	SetSteering
	SetTargetHeight
	SetTimeScale
	SetWieldableStance
	SlidingAudio
	SurfaceAudio
	SurfaceFootstepAudio
	TimeOps
	TrackSteps
	UnlockInventorySelection

	Conditions
	AirTime
	CapsuleCast
	CapsuleLookahead
	CharacterHeight
	Climbable
	CollisionFlags
	CompareFloatsCondition
	CompareIntsCondition
	CompareSwitchesCondition
	CompareTime
	CompletedCondition
	ConditionGroup
	DebugCondition
	Direction
	ElapsedTime
	EnhancedCapsuleCast
	EnhancedCapsuleLookahead
	EnhancedRayCast
	EnhancedRayLookahead
	EnhancedSphereCast
	EnhancedSphereLookahead
	Float
	GroundContact
	GroundNormal
	GroundSurfaceNormal
	HeightRestriction
	InputVector
	Int
	Pitch
	RayCast
	RayLookahead
	ScriptedComponent
	SphereCast
	SphereLookahead
	SwitchCondition
	TransformCondition
	TriggerCondition
	Vector
	Velocity
	Water

	MonoBehaviours
	BasicWaterZone
	CharacterImpactHandler
	ConstantRotatingPlatform
	ContactLadder
	DrivenMovingPlatform
	DrowningMotionGraphWatcher
	InteractiveLadder
	JumpPad
	MotionController
	NeoCharacterController
	SimpleMovingPlatform
	SimpleRotatingPlatform
	WaypointMovingPlatform

	ScriptableObjects
	MotionGraph
	MotionGraphDataOverrideAsset
	SlopeSpeedCurve

	NeoFPS Input System
	Input Settings
	Creating Custom Input Handlers
	Reference
	MonoBehaviours
	InputAbilityFirearm
	InputCharacterMotion
	InputCharacterSlowMo
	InputFirearm
	InputGame
	InputInventory
	InputLockpick
	InputMeleeWeapon
	InputMenu
	InputThrownWeapon
	InputWieldableTool
	MouseAndGamepadAimController

	ScriptableObjects
	NeoFpsInputManager

	Interaction With The World
	Doors
	Interactive Objects
	Reference
	AnimatedDoorHandle
	CharacterInteractionHandler
	CharacterTriggerZone
	CharacterTriggerZonePersistant
	DoorInteractiveObject
	DoorTrigger
	ElevatorController
	ElevatorMovingPlatform
	InteractiveObject
	InteractiveObjectCornerMarkers
	InteractiveObjectMaterialMarker
	KeypadInteractiveObject
	KeypadPopup
	KeyRing
	KinematicHingeDoor
	LockedDoorInteractiveObject
	LockedDoorTrigger
	LockedTriggerZone
	LockpickPopup3D
	LockpickPopupUI
	PhysicsHingeDoor
	PickableLockedDoorInteractiveObject
	SlidingDoor
	SoloCharacterTriggerZone
	SoloCharacterTriggerZonePersistant
	TriggerZoneColliderCounter

	Audio Systems
	Footsteps
	Reference
	AnimationEventAudioPlayer
	AudioTimeScalePitchBend
	ClipSetContactAudioHandler
	FpsCharacterAudioData
	FpsCharacterAudioHandler
	NeoFpsAudioManager
	SurfaceAudioData
	SurfaceContactAudioHandler

	Inventory
	Inventory Examples
	Reference
	MonoBehaviours
	FpsInventoryAmmo
	FpsInventoryItem
	FpsInventoryQuickSwitch
	FpsInventoryStacked
	FpsInventorySwappable
	FpsInventoryWieldable
	FpsInventoryWieldableDrop
	FpsInventoryWieldableSwappable
	InteractiveMultiPickup
	InteractivePickup
	InteractivePickupTrigger
	InventoryItemPickup
	PickupTriggerZone

	ScriptableObjects
	FpsInventoryDbTable
	FpsInventoryKeyDbTable
	FpsInventoryLoadout
	NeoFpsInventoryDatabase

	Weapons
	Firearms
	The Modular Firearm System
	Hitscan vs Projectiles
	Scopes & Optics
	Attachments

	Melee Weapons
	Thrown Weapons
	Wieldable Tools
	Explosions
	Reference
	MonoBehaviours
	AccuracyOnlyRecoilHandler
	AddInventoryItemToolAction
	AdvancedBulletAmmoEffect
	AdvancedParticleMuzzleEffect
	AnimatedFirearmSprintHandler
	AnimatedMeleeSprintHandler
	AnimatedThrownSprintHandler
	AnimatedToolSprintHandler
	AnimatorTriggerToolAction
	AnimOnlyAimer
	AttachedAmmoCounter
	AudioOnlyMuzzleEffect
	AutomaticTrigger
	BallisticProjectile
	BallisticProjectileWithParticles
	BallisticProjectileWithSimpleDrag
	BallisticShooter
	BasicGameObjectMuzzleEffect
	BetterSpringRecoilHandler
	BlinkToolModule
	BulletAmmoEffect
	BurstFireTrigger
	ChamberedReloader
	ChargedTrigger
	ChargeToolAction
	ConsumeInventoryItemToolAction
	ContactGrenadeThrownProjectile
	CustomAmmo
	CustomRevolverReloader
	DrunkMissileMotor
	ExplosionSpawner
	ExplosiveAmmoEffect
	ExplosiveObject
	FirearmAimFatigue
	FirearmAnimEventsHandler
	FirearmOverheat
	FirearmTransformMatchSetter
	FirearmWieldableStanceManager
	FlashlightToolModule
	GrappleToolModule
	GrenadeThrownProjectile
	GuidedBallisticProjectile
	HeadMoveAimer
	HealToolAction
	HitscanShooter
	HolographicSight
	IncrementalReloader
	InfiniteAmmo
	InstantScopedAimer
	LaserPointerAimerSwitch
	LaserTargetingSystem
	LineAndParticleHitscanTrail
	LineRendererHitscanTrail
	MeleeWeapon
	MeleeWieldableStanceManager
	ModularAssaultRifle
	ModularFirearm
	ModularFirearmAmmoPickup
	ModularFirearmDrop
	ModularFirearmModeSwitcher
	MultiObjectSwapEjector
	MultiTargetLockTrigger
	NearestObjectWithTagTracker
	NoisyLineHitscanTrail
	ObjectSwapEjector
	ParticleAmmoEffect
	ParticleHitscanTrail
	ParticleImpactEffect
	ParticleSystemShellEject
	ParticleToRigidbodyShellEject
	PassthroughReloader
	PatternBallisticShooter
	PatternHitscanShooter
	PenetratingHitscanAmmoEffect
	PenetratingProjectileAmmoEffect
	PhysicsBulletCasing
	PlayAudioToolAction
	PlayerTracker
	PooledExplosion
	PooledExplosionAmmoEffect
	PooledExplosionSpawner
	ProceduralFirearmSprintHandler
	ProceduralMeleeSprintHandler
	ProceduralThrownSprintHandler
	ProceduralToolSprintHandler
	QueuedTrigger
	RandomObjectMuzzleEffect
	RaycastTargetingSystem
	RechargingAmmo
	RecoilPushback
	ReloaderCountdown
	RenderTextureScope
	RicochetHitscanAmmoEffect
	RicochetProjectileAmmoEffect
	SampleParticleExplosion
	ScopedAimer
	SemiAutoTrigger
	SharedPoolAmmo
	ShieldBoosterToolAction
	SimpleBallisticShooter
	SimpleParticleMuzzleEffect
	SimpleReloader
	SimpleSteeringMotor
	SpreadBallisticShooter
	SpreadHitscanShooter
	SpringRecoilHandler
	StandardShellEject
	SurfaceBulletPhysicsAmmoEffect
	TargetingSystemTracker
	TargetLockTrigger
	TargetTrackingAmmoEffect
	ThrownWeapon
	ThrownWieldableStanceManager
	TimedExploder
	UnityEventToolAction
	WeaponMoveAimer
	WieldableFlashlight
	WieldableLaserPointer
	WieldableTool
	WieldableToolStanceManager

	ScriptableObjects
	SharedAmmoType
	SurfaceBulletPhysicsInfo

	Health and Damage
	Reference
	ArmouredDamageHandler
	BasicDamageHandler
	BasicHealthManager
	DamageZone
	EventDamageHandler
	HealthPickup
	HealZone
	RechargingHealthManager
	ShieldedArmouredDamageHandler
	ShieldedDamageHandler
	ShieldManager
	ShieldPickup

	The Player HUD
	Reference
	HudAdvancedCrosshair
	HudAdvancedCrosshairStyleStandard
	HudAmmoCounter
	HudCrosshair
	HudDamageMarkers
	HudDeathPopup
	HudFirearmMode
	HudFirearmOverheatBar
	HudHealthCounter
	HudHider
	HudInteractionTooltip
	HudInventoryItemCounter
	HudInventoryItemMeter
	HudInventoryStackedPC
	HudInventoryItemStacked
	HudInventoryStackedSlot
	HudInventoryStandardPC
	HudInventoryItemStandard
	HudMotionGraphParameterMeter
	HudMotionGraphParameterReadout
	HudOxygenMeter
	HudProgressBar
	HudScope
	HudShieldMeter
	HudShieldMeterStep
	HudSlowMoCharge
	HudStaminaBar
	HudTargetLock
	HudTargetLockMarkers
	HudToggle

	Save Games
	Serializing Data
	Runtime Objects
	Overrides And Persistence
	Troubleshooting
	Reference
	MonoBehaviours
	AutoSaveBehaviour
	NeoSerializedGameObject
	SceneSaveInfo

	ScriptableObjects
	SaveGameManager
	NeoSceneManager

	Samples
	AI
	UI
	Reference
	ApplyRandomDamage
	CameraSeeker
	DemoFacilityTarget
	DemoFacilityTargetDamageTracker
	DemoInfoLaptop
	DoorsDemoElevatorReadout
	FiringRangeMovingTarget
	FiringRangeReadout
	FiringRangeSequencer
	FiringRangeTarget
	InfoPopupTrigger
	KeypadPopup
	LoadingScreen
	MinimalDemoCharacter
	OutOfBoundsRespawn
	TurretSeeker
	WaterZoneMover

	Utilities
	Reference
	StateMachineBehaviours
	AnimStateObjectActivator
	AnimStateObjectSwapper

	MonoBehaviours
	AbiityBasedSlowMoSystem
	AnimStateObjectSwapperTarget
	BillboardOrientation
	BulletTrailCleaner
	CheckpointTrigger
	DemoButtonPresser
	NeoFpsSceneSwitcher
	ObjectLifecycleManager
	ObjectLifecycleMgrDictionary
	ObjectMover
	ParticleSystemPlayOnEnable
	PooledObject
	PooledObjectSwapper
	PooledPhysicsObjectSwapper
	ReplaceObject
	ScenePoolHandler
	SlowMoSystem
	SlowMoZone
	Teleporter
	TeleportZone1Way
	TemporaryPooledObject
	TimedDisabler
	TimedSlowMoZone

	ScriptableObjects
	PoolManager

	Surfaces
	Reference
	MonoBehaviours
	ParticleSystemHitFxBehaviour
	PooledObjectHitFxBehaviour
	SimpleSurface
	SurfaceFxOverrides

	ScriptableObjects
	SurfaceHitFxData
	SurfaceManager

